FCC Part 15 Subpart C EMI TEST REPORT

of

E.U.T. : Wireless Ten Key

FCC ID.: O3L-PD-0020203

MODEL: PT-2001-TA

Working Frequency: 27.095MHz(CH1),

27.145MHz(CH2)

Issused Dated: Mar. 08, 2002

for

APPLICANT: Paten Wireless Technology Inc.

ADDRESS: 4F, No. 50, Lane 10, Jihu Road, Neihu, Taipei 114,

Taiwan, R.O.C.

Test Performed by

ELECTRONICS TESTING CENTER, TAIWAN

NO. 8 LANE 29, WENMIMG ROAD, LOSHAN TSUN, KWEISHAN HSIANG, TAOYUAN, TAIWAN, R.O.C.

Tel:(03)3276170-3276174

Fax:(03)3276188

Report Number : ET90S-12-094-03

TEST REPORT CERTIFICATION

Applicant	: Paten Wireless Technology Inc. 4F, No. 50, Lane 10, Jihu Road, Neihu, Taipei 114, Taiwan, R.O.C.							
Manufacturer		: WEI FU ENTERPRISE CO., LTD. Da-Ning Industrial Zone, Humen, Dongguan, Guangdong, China						
Description of EUT	:							
	a) Type of EUTb) Trade Namec) Model No.d) FCC IDe) Working Frequencyf) Power Supply	: Paten : PT-2001-TA : O3L-PD-0020203						
Regulation Applied	: FCC Rules and Regulatio	ns Part 15 Subpart C (2001)						
given in ANSI C63.4 and		report were made in accordance with the procedures evice was founded to be within the limits applicable. I of these data.						
	_	e items tested. pt in full, without the written						
Test Date :	Jan. 30, 200)2						
Test Engineer:	_							
Approve & Author Signer:	rized							
-		Tsai, Manager, NVLAP Signatory IC Dept. I of ELECTRONICS						

TESTING CENTER, TAIWAN

Table of Contents

Page

1. GENERAL INFORMATION	1
1.1 PRODUCT DESCRIPTION	1
1.2 CHARACTERISTICS OF DEVICE:	
1.3 Test Methodology	
1.4 TEST FACILITY	
2. DEFINITION AND LIMITS	2
2.1 Definition	2
2.2 RESTRICTED BANDS OF OPERATION	
2.3 LIMITATION	
2.4 LABELING REQUIREMENT	4
2.5 USER INFORMATION	4
3. RADIATED EMISSION MEASUREMENT	5
3.1 APPLICABLE STANDARD	5
3.2 DEVICES FOR TESTED SYSTEM	
3.3 MEASUREMENT PROCEDURE	5
3.4 TEST DATA	8
3.5 FIELD STRENGTH CALCULATION	11
3.6 RADIATED TEST EQUIPMENT	11
3.7 MEASURING INSTRUMENT SETUP	12
3.8 RADIATED MEASUREMENT PHOTOS	13
4. CONDUCTED EMISSION MEASUREMENT	14
4.1 APPLICABLE STANDARD	14
5. BANDEDGE COMPLIANCE MEASUREMENT	14

Page 1 of 20 FCC ID.: O3L-PD-0020203

1. GENERAL INFORMATION

1.1 Product Description

a) Type of EUT : Wireless Ten Key

b) Trade Name : Paten

c) Model No. : PT-2001-TA d) FCC ID : O3L-PD-0020203

e) Working Frequency : 27MHz

f) Power Supply : DC 1.5 V Battery

1.2 Characteristics of Device:

When the receiver receives the Signal from Transmitter (Wireless Ten key), it will produce decoder and communicate the computer through the usb port.

1.3 Test Methodology

Radiated testing were performed according to the procedures in chapter 13 of ANSI C63.4.

The Wireless Ten Key under test was operated continuously in its normal operating mode for the purpose of the measurements. In order to secure the continuous operation of the device under test, rewiring in the circuit was done by the manufacturer so as to affect its intended operation.

The receiving antenna was varied from 1 to 4 meters and the wooden turntable was rotated through 360 degrees to obtain the highest reading on the field strength meter or on the display of the spectrum analyzer. And also, each emission was to be maximized by changing the orientation of the Wireless Ten Key under test. The hand-held or body-worn devices rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relatives to the limit.

1.4 Test Facility

The semi-anechoic chamber and conducted measurement facility used to collect the radiated and conducted data are located inside the Building at No.8, Lane 29, Wen-ming Road, Lo-shan Tsun, Kweishan Hsiang, Taoyuan, Taiwan, R.O.C.

This site has been accreditation as a FCC filing site.

2. DEFINITION AND LIMITS

2.1 Definition

Intentional radiator:

A device that intentionally generates and emits radio frequency energy by radiation or induction.

2.2 Restricted Bands of Operation

Only spurious emissions are permitted in any of the frequency bands listed below:

		1 ,	
MHz	MHz	MHz	GHz
0.090 - 0.110	16.42-16.423	399.9-410	4.5-5.25
0.495 - 0.505 **	16.69475 - 16.69525	608-614	5.35-5.46
2.1735 - 2.1905	16.80425 - 16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475 - 156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Remark "**": Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

2.3 Limitation

(1) Conducted Emission Limits:

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the conducted limit is the following:

Frequency (MHz)	Emission (μV)	Emission (dBµV)	
0.45 - 30.0	250	48.0	

(2) Radiated Emission Limits:

According to 15.227 the field strength of emissions from intentional radiators operated under these frequency bands shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental		
	μV/meter	dBµV/meter	
26.96-27.28	10000	80	

Field strength limits are at the distance of 3 meters, emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209,as following table:

Other Frequencies (MHz)	Field Strength of Fundamental		
	μV/meter	dBµV/meter	
30 – 88	100	40.0	
88 – 216	150	43.5	
216 – 960	200	46.0	
Above 960	500	54.0	

As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Page 4 of 20 FCC ID.: O3L-PD-0020203

2.4 Labeling Requirement

The device shall bear the following statement in a conspicuous location on the device :

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

2.5 User Information

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Page 5 of 20 FCC ID.: O3L-PD-0020203

3. RADIATED EMISSION MEASUREMENT

3.1 Applicable Standard

- 1. The field strength of any emission within this band(26.96-27.28MHz) shall not exceed 10,000 microvolts/meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in Section 15.35 for limiting peak emissions apply.
- 2. The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in Section 15.209.

3.2 Devices for Tested System

Description	Model	Manufacturer	Cable
Wireless Ten Key *	PT-2001-TA	WEI FU ENTERPRISE CO.,	
D ' C XX' 1	DT 2001 TA	LTD.	G' 1 11 15 II 1' 11 1
Receiver for Wireless	PT-2001-TA	WEI FU ENTERPRISE CO.,	Signal cable:1.5m, Unshielded
Ten Key		LTD.	
Notebook PC	L7300	ASUS	Power cable:3.3m, Unshielded
Printer	DJ400	HP	Power cable:2.4m, Unshielded/ Adaptor
			Signal cable:1.7m, Shielded
Modem	1414	Aceex	Power cable:1.7m, Unshielded
			Signal cable:1.7m, Shielded
Mouse	IBM	3365430	Cable: 2.5m, shielded

[&]quot;*" -- Equipment Under Test

3.3 Measurement Procedure

- a. Below 30MHz
- 1. Setup the configuration per figure 1 for frequencies measured below 30MHz. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured is performed in a semi-anechoic chamber.
- 3. For emission measured, set the spectrum analyzer on a 10 KHz and 30 KHz resolution bandwidth respectively for fundamental frequency measured in step 2.
- 4. Change the orientation of EUT on the table over a range from 0° to 360° with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the EMI test receiver. Rotate Loop Antenna over a range from 0° to 360° with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the EMI test receiver. Vary the Loop Antenna height and record the highest value as a final reading. The Loop Antenna is to be raised and lowered over a range from 1 to 1.8m.

b. Above 30MHz and below 1GHz

Ground Plane

- 1. Setup the configuration per figure 2 for frequencies measured above 30 MHz and below 1 GHz. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured is performed in a semi-anechoic chamber.
- 3. For emission measured, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.

EUT

1.8m

Turn
Table

V

V

O.8m

Im

Active Loop Antenna

EMI test receiver

Figure 1 : Below 30 MHz chamber Setup Diagram

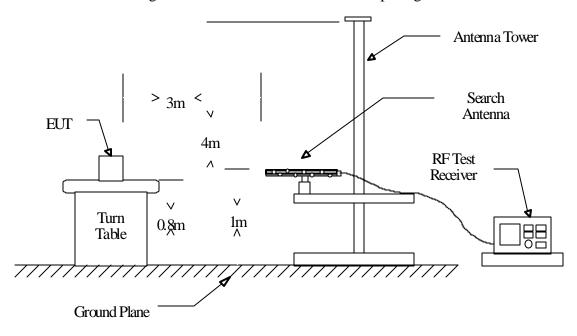


Figure 2 : Above 30 MHz chamber Setup Diagram

Page 8 of 20 FCC ID.: O3L-PD-0020203

3.4 Test Data

Data 1 : Fundamental & Harmonics

Temperature : 17Humidity : 67%

Test Date : <u>Jan. 30, 2002</u>

Frequency (MHz)	Ant Pol H/V	Reading (dBuV) Peak	Correct Factor (dB)	Result @3m (dBuV/m) Peak		@3m V/m) AVG.	Margin (dB)	Table Degree (Deg.)	Ant. High (m)
27.050	Н	5.7	34.0	39.6	100	80	-40.4	0	1.2

Frequency (MHz)	Ant Pol H/V	Reading (dBuV) Peak	Correct Factor (dB)	Result @3m (dBuV/m) Peak	Limit @3m (dBuV/m) Q.P.	Margin (dB)	Table Degree (Deg.)	Ant. High (m)
54.100	Н	***	***	***	40.0	***	***	***
54.100	V	***	***	***	40.0	***	***	***
81.150	Н	***	***	***	40.0	***	***	***
81.150	V	***	***	***	40.0	***	***	***
108.200	Н	***	***	***	4305	***	***	***
108.200	V	***	***	***	43.5	***	***	***
135.250	Н	***	***	***	43.5	***	***	***
135.250	V	***	***	***	43.5	***	***	***
162.300	Н	***	***	***	43.5	***	***	***
162.300	V	***	***	***	43.5	***	***	***
189.350	Н	***	***	***	43.5	***	***	***
189.350	V	***	***	***	43.5	***	***	***
216.400	Н	***	***	***	46.0	***	***	***
216.400	V	***	***	***	46.0	***	***	***
243.450	Н	***	***	***	46.0	***	***	***
243.450	V	***	***	***	46.0	***	***	***
270.500	Н	***	***	***	46.0	***	***	***

Page 9 of 20 FCC ID.: O3L-PD-0020203

	270.500	V	***	***	***	46.0	***	***	***	
--	---------	---	-----	-----	-----	------	-----	-----	-----	--

Note:

1. Limit on the field strength of funcdamental (Average)

 $50 \text{mV/m} = 20 \text{xlog}(50000) = 94.0 \text{ dB } \mu \text{ V/m}$

2. Limit on the field strength of Harmonics(Average)

 $500 \mu \text{ V/m} = 20 \text{xlog}(500) = 54.0 \text{ dB } \mu \text{ V/m}$

- 3.If the measured frequencies fall in the restricted frequency band, the limit employed is § 15.209 general requirement when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function, no duty factor applied.
- 4. The radiation emissions have been measuredd to beyond the tenth harmonic of the fundamental frequency and show the significant frequencies, other means the value is too low to be detected.
- 5. If the data table appeared symbol of "***" means the value is too low to be measured.

Page 10 of 20 FCC ID.: O3L-PD-0020203

Data 2: Other emissions

Temperature : $\frac{17}{67\%}$

Test Date : Jan. 30, 2002

Frequency (MHz)	Ant Pol H/V	Reading (dBuV) Peak	Correct Factor (dB)	Result @3m (dBuV/m) Peak	Limit @3m (dBuV/m) Q.P.	Margin (dB)	Table Degree (Deg.)	Ant. High (m)
31.897	V	34.0	8.0	31.6	40.0	-7.6	30	1.0
31.817	Н	19.5	9.2	28.7	40.0	-11.3	90	1.2
113.550	Н	***	9.1	***	43.5	***	***	***
113.550	V	***	9.1	***	43.5	***	***	***
120.430	Н	***	9.4	***	43.5	***	***	***
120.430	V	***	9.4	***	46.0	***	***	***
218.600	Н	***	13.4	***	46.0	***	***	***
218.600	V	***	13.4	***	46.0	***	***	***
259.850	Н	***	15.6	***	46.0	***	***	***
259.850	V	***	15.6	***	46.0	***	***	***
477.800	Н	***	22.3	***	46.0	***	***	***
477.800	V	***	22.3	***	46.0	***	***	***

Note:

- 1. AH means antenna height, DRT means degrees of rotation of turntable.
- 2. If the data table appeared symbol of "***" means the value is too low to be measured.
- 3. The system amplitude accuracy of the measurement made during the radiated emission tests was ± 4 dB.

Page 11 of 20 FCC ID.: O3L-PD-0020203

3.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$RESULT = READING + CORR. FACTOR$$

where CORR. FACTOR = Antenna FACTOR + Cable FACTOR

Assume a receiver reading of 22.5 dB μ V is obtained. The Antenna Factor of 14.5 and a Cable Factor of 1.5 is added. The total of field strength is 38.5 dB μ V/m.

RESULT =
$$22.5 + 14.5 + 1.5 = 38.5$$
 dB μ V/m
Level in μ V/m = Common Antilogarithm[(38.5 dB μ V/m)/20]
= 84.14 μ V/m

3.6 Radiated Test Equipment

The following instrument are used for radiated emissions measurement:

Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
EMI Test Receiver	Hewlett-Packard	8546A	13054404-001	Jun. 20, 2002
LogBicone Antenna	Schwarzbeck	VULB9160	13057310-001	Oct. 18, 2002
Loop Antenna	EMCO	6512	13054104-001	Mar. 25, 2002
Pre Amplifier	Advantest	BB525C	13040708-001	Mar. 25, 2002

Note: The standards used to perform this calibration are traceable to NML/ROC, NIST/USA and NPL.

Measuring instrument setup in measured frequency band when specified detector function is used:

Frequency Band (MHz)	Instrument	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	RF Test Receiver	Quasi-Peak	120 kHz	N/A
	Spectrum Analyzer	Peak	100 kHz	100 kHz
	Spectrum Analyzer	Peak	1 MHz	1 MHz
Above 1000	Spectrum Analyzer	Average	1 MHz	Auto

Page 12 of 20 FCC ID.: O3L-PD-0020203

3.7 Measuring Instrument Setup

Explanation of measuring instrument setup in frequency band measured is as following:

Frequency Band (MHz)	Instrument	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	RF Test Receiver	Quasi Peak	120 kHz	N/A
	Spectrum Analyzer	Peak	100 kHz	100 kHz
Above 1000	Spectrum Analyzer	Peak	1 MHz	1 MHz

3.8 Radiated Measurement Photos

Page 14 of 20 FCC ID.: O3L-PD-0020203

4. CONDUCTED EMISSION MEASUREMENT

4.1 Applicable Standard

This EUT is excused from investigation of conducted emission, for it is powered by battery only. According to § 15.207 (d), measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines.

5. BANDEDGE COMPLIANCE MEASUREMENT

The scanning test data is shown on next page.

MHZ 2888 STOP 27.8 SWP 20 DE DE ACTU MEAS k Hz 4Bm 2900 8W 3 (Ø 5 1 START 26,2 REF SC FC L06 10 48/ #ATN 20 df

MH2 dBm MHZ , 2800 20.0 m BE 99 40 27, 3WP : PEAK : PEAK MKB 27 STOP SI E.E. ACTU MEAS KH2 8 #BV6 kHz d B m H 0 900 NE S M 四 CJ 25, #IF REF START **田 U E** 106 128 487 #87N SLE 0 E UU 50

Sec MHz E STOP 27.2800 #SWP 20.0 ACTU MEAS k Hz AVG **48** 0 2900 5 START 26.8 #IF 106 10 48/ #8TN SB FC SC

MSEC MHz 7.2800 20.0 ACTU MEAS kHz 82 kHz dBm D 2900 8W 3 5 SIARI 26.2 #JF 4 100 10 48/ #8TN 20 48 SB FC ORR SC

MHz H7 18m 2553 15,68 STOP 27.2800 #SWP 20.0 k Hz **48**m 0 2900 BW 30 2 1 26. #IF REF SB START L06 18 48/ #ATN 28 dt SC