

Wi-Fi POS Terminal Model No.: NBS5800

FCC ID: 03JNBS5800

Applicant:

**NBS Payment Solutions** 703 Evans Ave., Suite 400 Toronto, Ontario Canada, M9C 5E9

In Accordance With

### FEDERAL COMMUNICATIONS COMMISSION (FCC) PART 15, SUBPART C, SECTION 15.247 **Digital Modulation (Wi-Fi)** Operating in the Frequency Band 2402-2480 MHz

UltraTech's File No.: MIS-083F15C247

Ľ

ANSI

0685

| This Test report is Issued under the Authority of<br>Tri M. Luu, Professional Engineer,<br>Vice President of Engineering<br>UltraTech Group of Labs                                                                                                               |                                                                 |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|
| Date: September 8, 2008                                                                                                                                                                                                                                           | T                                                               |  |  |
| Report Prepared by: Dharmajit Solanki                                                                                                                                                                                                                             | Tested by: Hung Trinh, RFI Technologist                         |  |  |
| Issued Date: September 8, 2008                                                                                                                                                                                                                                    | Test Dates: July 29 to August 8, 2008 & September 4 and 5, 2008 |  |  |
| <ul> <li>The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.</li> <li>This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.</li> </ul> |                                                                 |  |  |
| UltraTech                                                                                                                                                                                                                                                         |                                                                 |  |  |
| 3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4                                                                                                                                                                                                           |                                                                 |  |  |

Fax.: (905) 829-8050

Canada

46390-2049

Tel.: (905) 829-1570

VEI

C-1376

FC

31040/SIT





# TABLE OF CONTENTS

| EXHIB      | IT 1 | INTRODUCTION                                                                                              | 1  |
|------------|------|-----------------------------------------------------------------------------------------------------------|----|
| 1.1        |      | DPE                                                                                                       |    |
| 1.2        |      | LATED SUBMITTAL(S)/GRANT(S)                                                                               |    |
| 1.3        |      | RMATIVE REFERENCES                                                                                        |    |
| EXHIB      | IT 2 | PERFORMANCE ASSESSMENT                                                                                    | 2  |
| 2.1        |      | ENT INFORMATION                                                                                           |    |
| 2.2        |      | UIPMENT UNDER TEST (EUT) INFORMATION                                                                      |    |
| 2.3        |      | Γ'S TECHNICAL SPECIFICATIONS                                                                              |    |
| 2.4        |      | T OF EUT'S PORTS<br>CILLARY EQUIPMENT                                                                     |    |
| 2.5<br>2.6 |      | T SETUP BLOCK DIAGRAM                                                                                     |    |
|            |      | EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS                                                  |    |
| 3.1        |      |                                                                                                           |    |
|            |      | ERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS                                                         |    |
| EXHIB      | IT 4 | SUMMARY OF TEST RESULTS                                                                                   | 6  |
| 4.1        | LO   | CATION OF TESTS                                                                                           | 6  |
| 4.2        |      | PLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS                                                        |    |
| 4.3        | MC   | DIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES                                               | 6  |
| EXHIB      | IT 5 | MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS                                                  | 7  |
| 5.1        |      | T PROCEDURES                                                                                              |    |
| 5.2        |      | ASUREMENT UNCERTAINTIES                                                                                   |    |
| 5.3        |      | ASUREMENT EQUIPMENT USED                                                                                  |    |
| 5.4<br>5.5 |      | MPLIANCE WITH FCC PART 15 – GENERAL TECHNICAL REQUIREMENTS<br>POWER LINE CONDUCTED EMISSIONS [§15.207(A)] |    |
| 5.5<br>5.6 |      | B BANDWIDTH [§15.247(A)(2)]                                                                               |    |
| 5.0<br>5.7 |      | AK OUTPUT POWER [§ 15.247(B)(1)]                                                                          |    |
| 5.8        |      | ANSMITTER BAND-EDGE & SPURIOUS CONDUCTED EMISSIONS [§ 15.247(D)]                                          |    |
| 5.9        | RA   | DIATED SPURIOUS EMISSIONS @ 3 METERS [§ 15.209 & § 15.247(D)]                                             |    |
| 5.10       |      | WER SPECTRAL DENSITY [§ 15.247(E)]                                                                        |    |
| 5.11       | RF   | EXPOSURE REQUIREMENT [§ 15.247 (I), 1.1310 & 2.1093]                                                      |    |
| EXHIB      | IT 6 | TEST EQUIPMENT LIST                                                                                       | 57 |
| EXHIB      | IT 7 | MEASUREMENT UNCERTAINTY                                                                                   | 58 |
| 7.1        | LIN  | E CONDUCTED EMISSION MEASUREMENT UNCERTAINTY                                                              |    |
| 7.2        |      | DIATED EMISSION MEASUREMENT UNCERTAINTY                                                                   |    |
|            |      |                                                                                                           |    |

# EXHIBIT 1 INTRODUCTION

### 1.1 SCOPE

| Reference:                       | Part 15, Subpart C, Section 15.247                                                                                                                                                                                                                                                                           |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:                           | Telecommunication - Code of Federal Regulations, CFR 47, Part 15                                                                                                                                                                                                                                             |
| Purpose of Test:                 | To gain FCC Equipment Authorization for Digital Modulation Systems Operating in the Frequency Band 2400-2483.5 MHz.                                                                                                                                                                                          |
| Test Procedures:                 | Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz. |
| Environmental<br>Classification: | Commercial, light industry & heavy industry                                                                                                                                                                                                                                                                  |

# 1.2 RELATED SUBMITTAL(S)/GRANT(S)

None.

### 1.3 NORMATIVE REFERENCES

| Publication                       | Year                 | Title                                                                                                                                                                     |
|-----------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC 47CFR<br>Parts 0-19           | 2008                 | Code of Federal Regulations, Title 47 – Telecommunication                                                                                                                 |
| ANSI C63.4                        | 2003                 | American National Standard for Methods of Measurement of Radio-Noise<br>Emissions from Low-Voltage Electrical and Electronic Equipment in the Range<br>of 9 kHz to 40 GHz |
| CISPR 22 + A1<br>& A2<br>EN 55022 | 2005<br>2006<br>2006 | Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment                                                               |
| CISPR 16-1-1                      | 2003                 | Specification for radio disturbance and immunity measuring apparatus and methods.<br>Part 1-1: Measuring Apparatus                                                        |
| CISPR 16-2-1                      | 2003                 | Specification for radio disturbance and immunity measuring apparatus and methods.<br>Part 2-1: Conducted disturbance measurement                                          |
| CISPR 16-2-3                      | 2003                 | Specification for radio disturbance and immunity measuring apparatus and methods.<br>Part 2-3: Radiated disturbance measurement                                           |
| KDB<br>Publication No.<br>558074  | 2005                 | Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)                                                                                                 |

# EXHIBIT 2 PERFORMANCE ASSESSMENT

### 2.1 CLIENT INFORMATION

| APPLICANT:      |                                                                                                                |  |
|-----------------|----------------------------------------------------------------------------------------------------------------|--|
| Name:           | NBS Payment Solutions                                                                                          |  |
| Address:        | 703 Evans Ave., Suite 400<br>Toronto, ON<br>Canada, M9C 5E9                                                    |  |
| Contact Person: | Mr. Dragoslav Jovanovic<br>Phone #: 416-621-7410<br>Fax #: 416-621-2450<br>Email Address: djovanovic@nbsps.com |  |

| MANUFACTURER:   |                                                                                                                           |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Name:           | SAGEM Monetel                                                                                                             |  |
| Address:        | 1, Rue Claude Chappe – BP346<br>Guilherand-Granges<br>France, 07503                                                       |  |
| Contact Person: | Mr. Clement Lormeau<br>Phone #: +33 4 75 81 40 47<br>Fax #: +33 4 75 81 41 57<br>Email Address: Clement.lormeau@sagem.com |  |

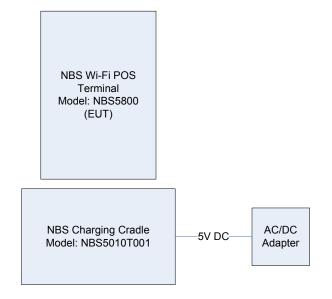
### 2.2 EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

| Brand Name:                    | NBS Payment Solutions                     |  |
|--------------------------------|-------------------------------------------|--|
| Product Name:                  | Wi-Fi POS Terminal                        |  |
| Model Name or Number:          | NBS5800                                   |  |
| Serial Number:                 | Test Sample                               |  |
| Oscillators' Frequencies:      | 32.768kHz, 2.000MHz, 10.000MHz, 20.000MHz |  |
| CPU's Frequencies:             | 3.57MHz, 48MHz, 57MHz (PLL)               |  |
| Input Power Supply Type:       | Li Ion Battery 3.6V 1.7Ah                 |  |
| Primary User Functions of EUT: | Financial Point-of-sales Transactions     |  |

### 2.3 EUT'S TECHNICAL SPECIFICATIONS

| TRANSMITTER                       |                                                                                                                            |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|
| Equipment Type:                   | Mobile                                                                                                                     |  |  |
| Intended Operating Environment:   | Commercial & industry                                                                                                      |  |  |
| Power Supply Requirement:         | Li Ion Battery 3.6V 1.7Ah                                                                                                  |  |  |
| RF Output Power Rating:           | 802.11b: 10.69 dBm peak conducted<br>802.11g: 15.85 dBm peak conducted                                                     |  |  |
| <b>Operating Frequency Range:</b> | 2412-2462 MHz                                                                                                              |  |  |
| RF Output Impedance:              | 50 Ω                                                                                                                       |  |  |
| Channel Spacing:                  | 5 MHz                                                                                                                      |  |  |
| Duty Cycle:                       | Maximum 1 %                                                                                                                |  |  |
| 6 dB bandwidth:                   | 802.11b: 10.97 MHz<br>802.11g: 16.28 MHz                                                                                   |  |  |
| Modulation Type:                  | DSSS & OFDM                                                                                                                |  |  |
| Antenna Connector Type:           | GSC connector mounted on the antenna                                                                                       |  |  |
| Antenna Description:              | Manufacturer:SAGEM MONETELType:Integral PCB Antenna Bluetooth/Wi-FiModel No.:251603930Freq. Range:2.4 – 2.5 GHzGain:1.2dBi |  |  |


### 2.4 LIST OF EUT'S PORTS

| Port<br>Number | EUT's Port Description | Number of<br>Identical Ports | Connector Type  | Cable Type<br>(Shielded/Non-shielded) |
|----------------|------------------------|------------------------------|-----------------|---------------------------------------|
| 1              | USB port               | 1                            | Mini USB Type A | Shielded                              |
| 2              | USB port               | 1                            | Mini USB Type B | Shielded                              |

### 2.5 ANCILLARY EQUIPMENT

|   | Description | Manufacturer  | Model Number | Serial Number |
|---|-------------|---------------|--------------|---------------|
| 1 | Cradle      | NBS Tech      | NBS5010B001  | TE904991      |
| 2 | AC Adapter  | SAGEM Monetel | FW7601       | 251957747     |

### 2.6 TEST SETUP BLOCK DIAGRAM



ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

# EXHIBIT 3 EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

### 3.1 OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

| Operating Modes:          | <ul> <li>Each of lowest, middle and highest channel frequencies transmits continuously for emissions measurements.</li> <li>The EUT operates in direct sequence or digital modulation mode.</li> </ul>                                                                          |  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Special Test Software:    | Special software is provided by the applicant to put the EUT into the test<br>mode and Wi-Fi test software was used to select and operate the EUT at<br>different channel frequency and mode of operation such as direct<br>sequence or digital modulation for testing purpose. |  |
| Special Hardware Used:    | N/A                                                                                                                                                                                                                                                                             |  |
| Transmitter Test Antenna: | The EUT is tested with the antenna fitted in a manner typical of normal intended use as integral antenna equipment.                                                                                                                                                             |  |

| Transmitter Test Signals                                                                                                    |                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Frequency Band(s):                                                                                                          | 2412 - 2462 MHz                                                     |
| <b>Frequency(ies) Tested:</b><br>(Near lowest, near middle & near highest frequencies in the frequency range of operation.) | 2412, 2437 & 2462 MHz.                                              |
| RF Power Output:                                                                                                            | 802.11b: 10.69 dBm peak conducted 802.11g: 15.85 dBm peak conducted |
| Normal Test Modulation:                                                                                                     | DSSS, OFDM                                                          |
| Modulating Signal Source:                                                                                                   | Internal                                                            |

# EXHIBIT 4 SUMMARY OF TEST RESULTS

# 4.1 LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).

Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049A-3). Last Date of Site Calibration: May 17, 2007.

### 4.2 APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

| FCC Section(s)             | Test Requirements                        | Compliance (Yes/No) |
|----------------------------|------------------------------------------|---------------------|
| 15.203                     | Antenna requirements                     | Yes                 |
| 15.107(a) /15.207(a)       | Power Line Conducted Emissions           | Yes                 |
| 15.109(a)                  | Class B Radiated Emissions               | Yes (Note 1)        |
| 15.247(a)(2)               | Spectrum Bandwidth & 6dB Bandwidth       | Yes                 |
| 15.247(b)(1)               | Maximum Peak Output Power                | Yes                 |
| 15.247(d)                  | Band-edge Measurement                    | Yes                 |
| 15.247(d)                  | Transmitter Conducted Spurious Emissions | Yes                 |
| 15.247(e)                  | Peak Power Spectral Density              | Yes                 |
| 15.247(i), 1.1310 & 2.1091 | RF Exposure                              | Yes                 |

#### Notes:

(1) Please refer to Cetecom engineering test report for compliance with FCC Part 15, Subpart B – Receiver and Unintentional Radiated emissions details.

# 4.3 MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

# EXHIBIT 5 MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

### 5.1 TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.4; KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247).

### 5.2 MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document LAB 34 with a confidence level of 95%. Please refer to Exhibit 6 for Measurement Uncertainties.

### 5.3 MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1.

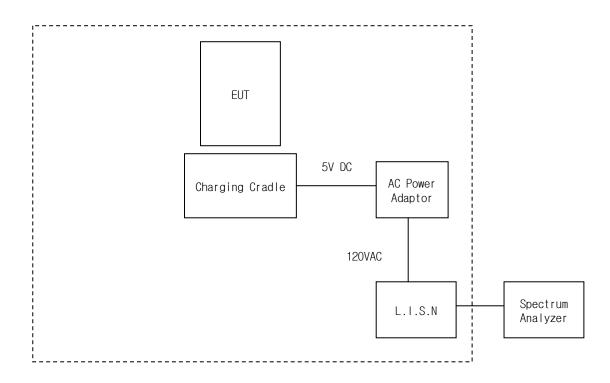
# 5.4 COMPLIANCE WITH FCC PART 15 – GENERAL TECHNICAL REQUIREMENTS

| FCC<br>Section | FCC Rules                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| 15.203         | Described how the EUT complies with the<br>requirement that either its antenna is<br>permanently attached, or that it employs a<br>unique antenna connector, for every antenna<br>proposed for use with the EUT.                                                                                                                                                   | The integral antenna is permanently<br>mounted on the printed circuit board and<br>located inside the enclosure |  |
|                | <ul> <li>The exception is in those cases where EUT must be professionally installed. In order to demonstrate that professional installation is required, the following 3 points must be addressed:</li> <li>The application (or intended use) of the EUT</li> <li>The installation requirements of the EUT</li> <li>The method by which the EUT will be</li> </ul> |                                                                                                                 |  |
| 15.204         | marketed<br>Provided the information for every antenna<br>proposed for use with the EUT:<br>(a) type (e.g. Yagi, patch, grid, dish, etc),<br>(b) manufacturer and model number<br>(c) gain with reference to an isotropic radiator                                                                                                                                 | Manufacturer:SAGEM MONETELType:Integral PCB AntennaModel No.:251603930Freq. Range:2.4 – 2.5 GHzGain:1.2dBi      |  |

# 5.5 AC POWER LINE CONDUCTED EMISSIONS [§15.207(a)]

### 5.5.1. Limit(s)

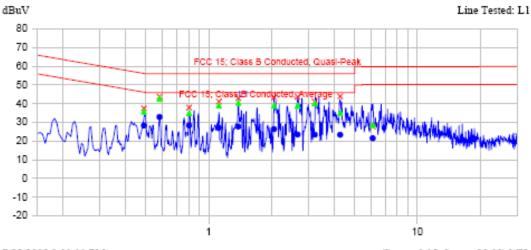
The equipment shall meet the limits of the following table:


| Frequency of emission     | Conducted Limits (dBµV) |                       |                                                                  |
|---------------------------|-------------------------|-----------------------|------------------------------------------------------------------|
| (MHz)                     | Quasi-peak Average      |                       | Measuring Bandwidth                                              |
| 0.15–0.5<br>0.5–5<br>5-30 | 66 to 56*<br>56<br>60   | 56 to 46*<br>46<br>50 | RBW = 9 kHz<br>VBW $\geq$ 9 kHz for QP<br>VBW = 1 Hz for Average |

\*Decreases linearly with the logarithm of the frequency

#### 5.5.2. Method of Measurements

ANSI C63.4, 2003.


#### 5.5.3. Test Arrangement



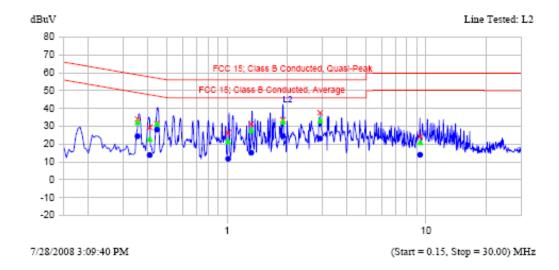
# **Plot 6.5.5.1** Power Line Conducted Emissions Line Voltage: 120 VAC 60 Hz, Line Tested: Hot

Description: 120V AC Setup Name: FCC 15 Class B Customer Name: NBS PAYMENT SOLUTIONS Project Number: MIS-082Q Operator Name: Wei EUT Name: NBS5800 WiFi Terminal Date Created: 7/28/2008 2:34:20 PM Date Modified: 7/28/2008 3:07:39 PM

### Current Graph



<sup>7/28/2008 3:00:11</sup> PM


<sup>(</sup>Start = 0.15, Stop = 30.00) MHz

| Frequency<br>MHz                                                                       | Peak<br>dBuV                                                                 | QP<br>dBuV           | Delta QP-QP Limit<br>dB                                                                | Avg<br>dBuV                                                          | Delta Avg-Avg Limit<br>dB                                                              | Trace Name                                                                                  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 0.489<br>0.581<br>0.805<br>1.117<br>1.385<br>2.057<br>2.666<br>3.226<br>4.267<br>6.108 | 37.5<br>43.8<br>38.0<br>41.1<br>43.0<br>43.4<br>43.7<br>41.1<br>43.9<br>27.7 | 35.0<br>39.1<br>40.5 | -20.5<br>-13.4<br>-21.0<br>-16.9<br>-15.5<br>-17.0<br>-17.0<br>-15.8<br>-20.9<br>-31.3 | 32.9<br>28.4<br>27.2<br>27.8<br>26.4<br>23.5<br>23.4<br>23.4<br>23.4 | -17.9<br>-13.1<br>-17.6<br>-18.8<br>-18.2<br>-19.6<br>-22.5<br>-22.6<br>-22.6<br>-28.5 | ម<br>ម<br>ម<br>ម<br>ម<br>ម<br>ម<br>ម<br>ម<br>ម<br>ម<br>ម<br>ម<br>ម<br>ម<br>ម<br>ម<br>ម<br>ម |

#### **Plot 6.5.5.2** Power Line Conducted Emissions Line Voltage: 120 VAC 60 Hz, Line Tested: Neutral

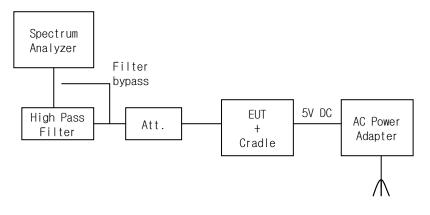
Description: 120V AC Setup Name: FCC 15 Class B Customer Name: NBS PAYMENT SOLUTIONS Project Number: MIS-082Q Operator Name: Wei EUT Name: NBS5800 WiFi Terminal Date Created: 7/28/2008 2:34:20 PM Date Modified: 7/28/2008 3:15:50 PM

#### Current Graph



| Frequency<br>MHz                                                     | Peak<br>dBuV                                                 | QP<br>dBuV                                                   | Delta QP-QP Limit<br>dB                                              | Avg<br>dBuV                                                  |                | Trace Name                                                     |
|----------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|----------------|----------------------------------------------------------------|
| 0.354<br>0.408<br>0.444<br>1.012<br>1.322<br>1.905<br>2.935<br>9.336 | 34.0<br>29.4<br>31.5<br>26.3<br>31.2<br>33.6<br>37.6<br>24.2 | 32.3<br>23.0<br>31.2<br>21.7<br>27.9<br>32.6<br>33.4<br>21.1 | -27.8<br>-35.6<br>-26.3<br>-34.3<br>-28.1<br>-23.4<br>-22.6<br>-38.9 | 24.4<br>13.8<br>28.1<br>11.8<br>15.2<br>24.6<br>23.1<br>14.0 | -19.5<br>-34.2 | L2<br>L2<br>L2<br>L2<br>L2<br>L2<br>L2<br>L2<br>L2<br>L2<br>L2 |

### 5.6 6 dB BANDWIDTH [§15.247(a)(2)]


#### 5.6.1. Limits

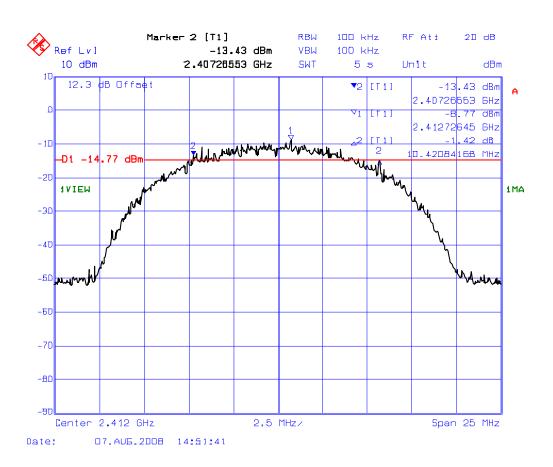
§15.247(a)(2): Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

#### 5.6.2. Method of Measurements

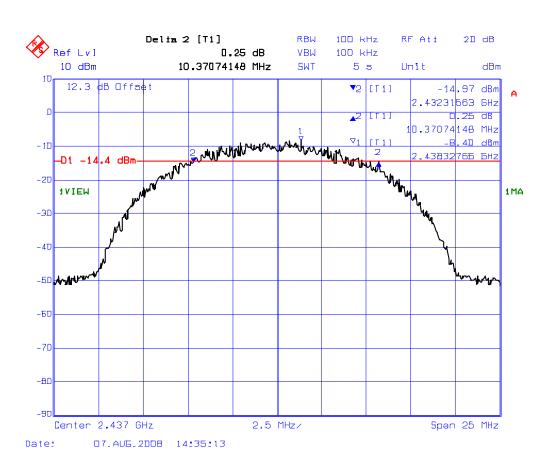
Refer to FCC KDB Publication No. 558074 on DTS and ANSI C63.4 for measurement methods.

#### 5.6.3. Test Arrangement

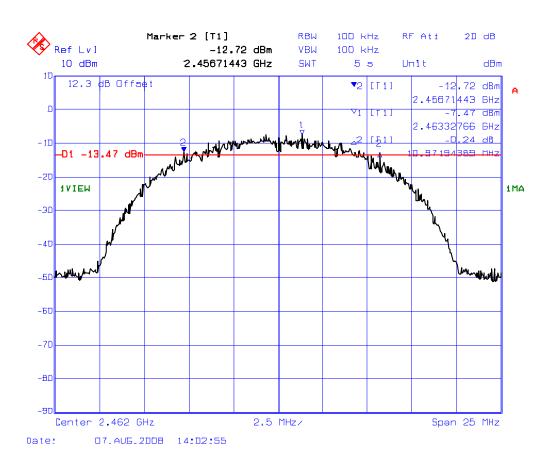



#### 5.6.4. Test Data

Note: Bandwidth measurements were done using the built-in auto function of the analyzer.


#### 5.6.4.1. For DSSS Mode (802.11b mode, 11 Mbps data rate)

| Frequency (MHz) | 6 dB Bandwidth (MHz) |
|-----------------|----------------------|
| 2412            | 10.42                |
| 2437            | 10.37                |
| 2462            | 10.97                |


See the following plots for detailed measurements.

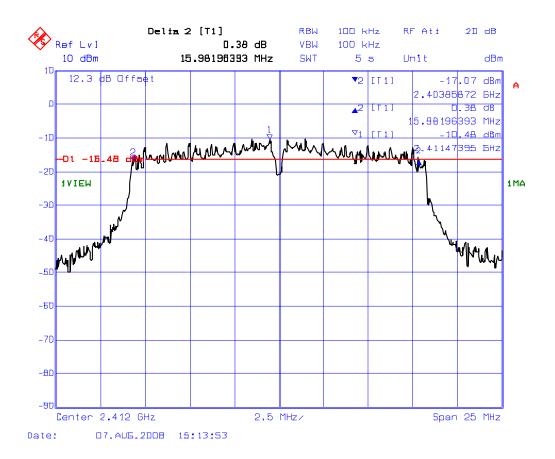


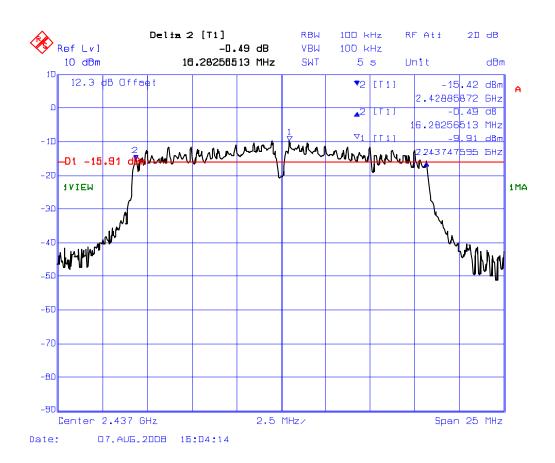
#### Plot 5.6.4.1.1. 6 dB Bandwidth Frequency: 2412 MHz



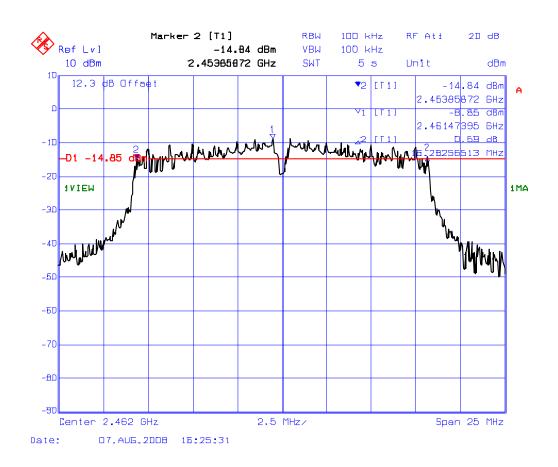
### Plot 5.6.4.1.2. 6 dB Bandwidth Frequency: 2437MHz




### Plot 5.6.4.1.3. 6 dB Bandwidth Frequency: 2462MHz


| Frequency (MHz) | 6 dB Bandwidth (MHz) |
|-----------------|----------------------|
| 2412            | 15.98                |
| 2437            | 16.28                |
| 2462            | 16.28                |

#### 5.6.4.2. OFDM Mode (802.11g mode, 54 Mbps data rate, 64QAM)


See the following plots for detailed measurements.

#### Plot 5.6.4.2.1. 6 dB Bandwidth Frequency: 2412 MHz





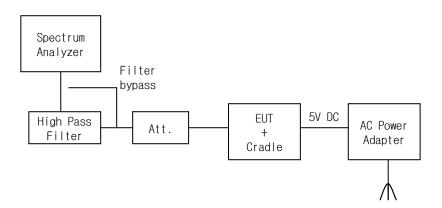
### Plot 5.6.4.2.2. 6 dB Bandwidth Frequency: 2437MHz



#### Plot 5.6.4.2.3. 6 dB Bandwidth Frequency: 2462MHz

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

# 5.7 PEAK OUTPUT POWER [§ 15.247(b)(1)]


### 5.7.1. Limits

FCC § 15.247(b)(3): For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

#### 5.7.2. Method of Measurements

Refer to FCC KDB Publication No. 558074, Power Option method 1 and ANSI C63.4 for measurement methods.

#### 5.7.3. Test Arrangement



#### 5.7.4. Test Data

#### 5.7.4.1. 802.11b mode

| Data Rate (Mbps) | Bandwidth Factor  | Peak Power Conducted (dBm) |                |                 |  |
|------------------|-------------------|----------------------------|----------------|-----------------|--|
|                  | Danuwiulii Facioi | 2412 MHz (CH1)             | 2437 MHz (CH6) | 2462 MHz (CH11) |  |
| 1 (BPSK)         | 0.40 dB           | 7.00                       | 9.72           | 10.69           |  |

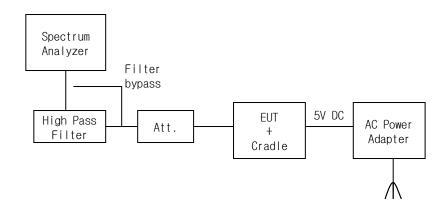
#### 5.7.4.2. 802.11g mode

| Data Rate (Mbps) | Bandwidth Factor  | Peak Power Conducted (dBm) |                |                 |
|------------------|-------------------|----------------------------|----------------|-----------------|
|                  | Danuwiulii Faclui | 2412 MHz (CH1)             | 2437 MHz (CH6) | 2462 MHz (CH11) |
| 64 (64QAM)       | 2.12 dB           | 15.58                      | 15.85          | 13.78           |

Bandwidth Factor:

- 1. 802.11b mode = 10 log (10.97 MHz / 10 MHz) = 0.40 dB
- 2. 802.11g mode = 10 log (16.28 MHz / 10 MHz) = 2.12 dB

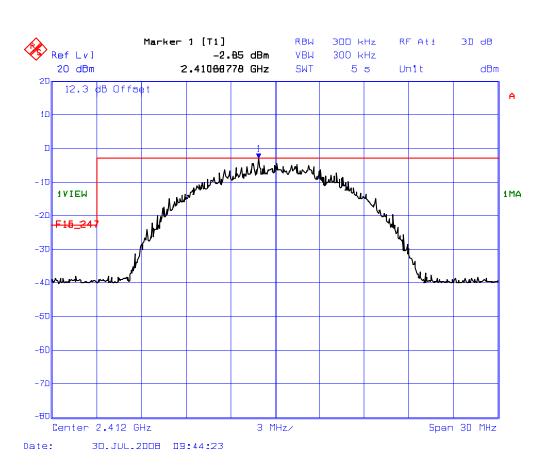
### 5.8 TRANSMITTER BAND-EDGE & SPURIOUS CONDUCTED EMISSIONS [§ 15.247(d)]

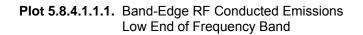

#### 5.8.1. Limit(s)

**§ 15.247 (d)**: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

#### 5.8.2. Method of Measurements

KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)


#### 5.8.3. Test Arrangement



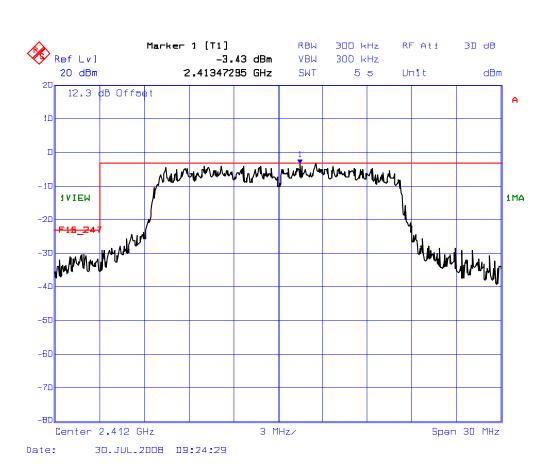


#### 5.8.4. Test Data

#### 5.8.4.1. Band-Edge RF Conducted Emissions

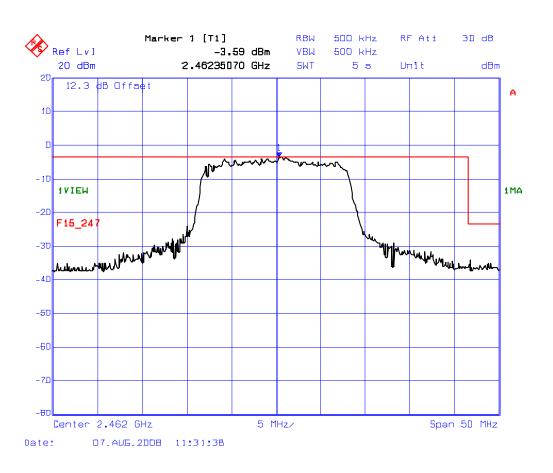
#### 802.11b mode, Data rate auto







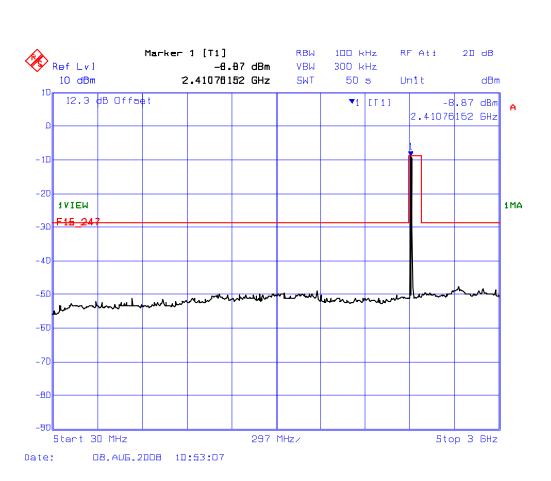

### Plot 5.8.4.1.1.2. Band-Edge RF Conducted Emissions High End of Frequency Band


ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

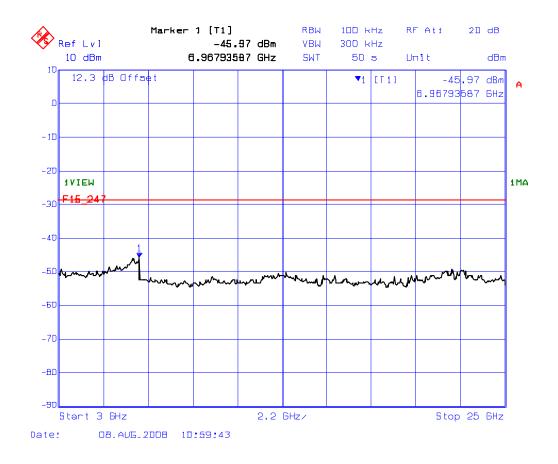
#### 802.11g mode, Data rate auto



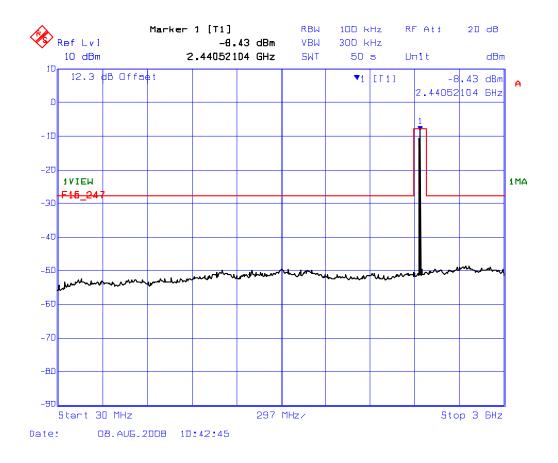
#### Plot 5.8.4.1.1.3. Band-Edge RF Conducted Emissions Low End of Frequency Band


ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

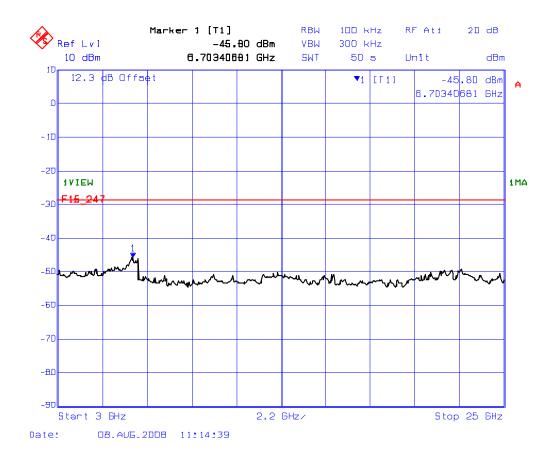



### Plot 5.8.4.1.1.4. Band-Edge RF Conducted Emissions High End of Frequency Band

#### 5.8.4.2. Spurious RF Conducted Emissions

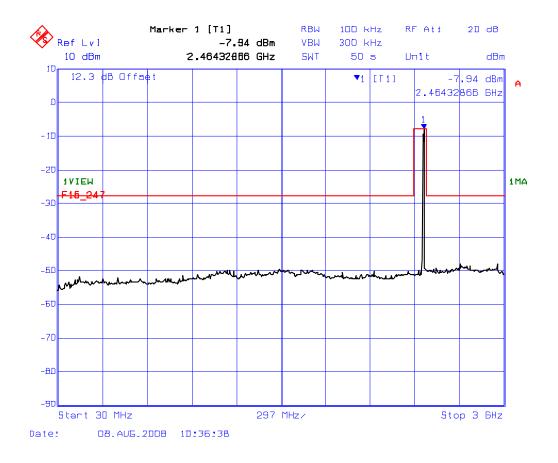

#### 802.11b mode, 11 Mbps data rate



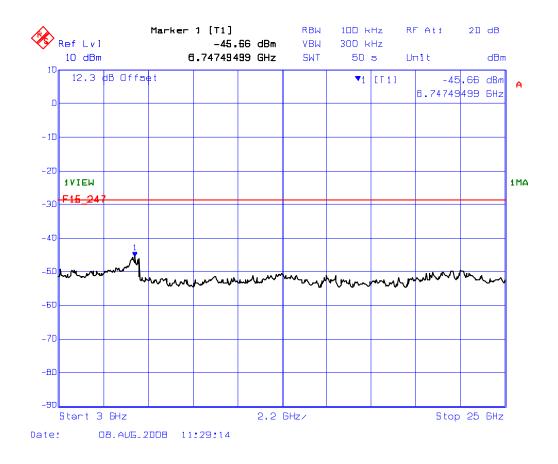

Plot 5.8.4.2.1.1. Spurious RF Conducted Emissions Transmitter Frequency: 2412 MHz



#### Plot 5.8.4.2.1.2. Spurious RF Conducted Emissions Transmitter Frequency: 2412 MHz



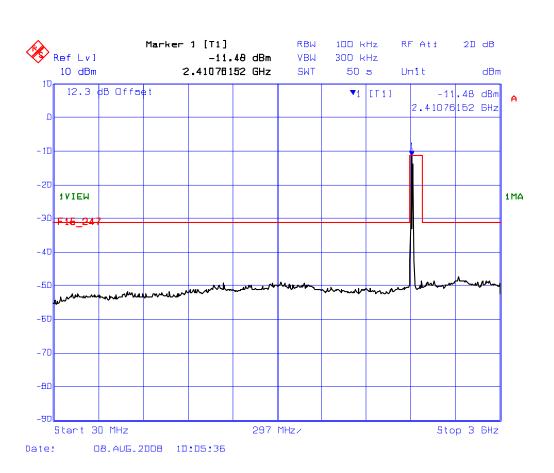

#### Plot 5.8.4.2.1.3. Spurious RF Conducted Emissions Transmitter Frequency: 2437 MHz



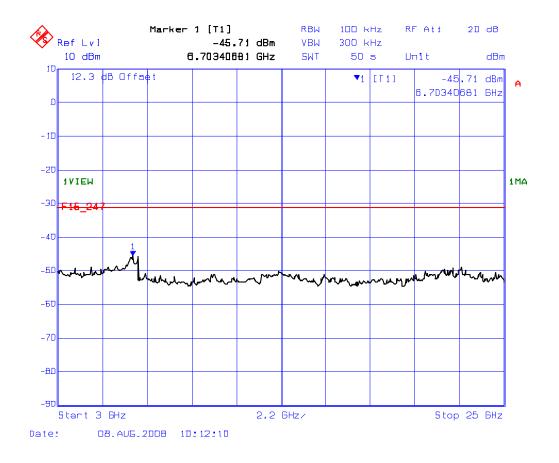

#### Plot 5.8.4.2.1.4. Spurious RF Conducted Emissions Transmitter Frequency: 2437 MHz

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

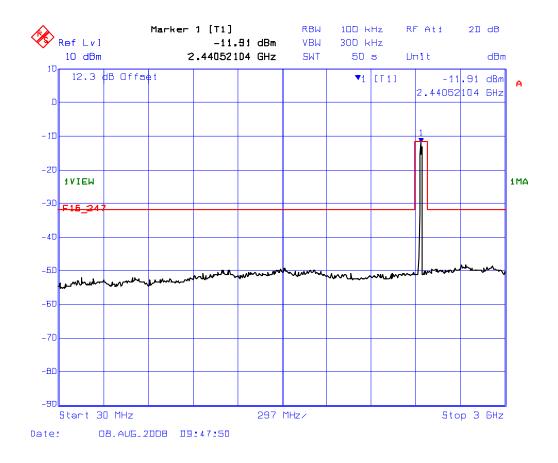



#### Plot 5.8.4.2.1.5. Spurious RF Conducted Emissions Transmitter Frequency: 2462 MHz

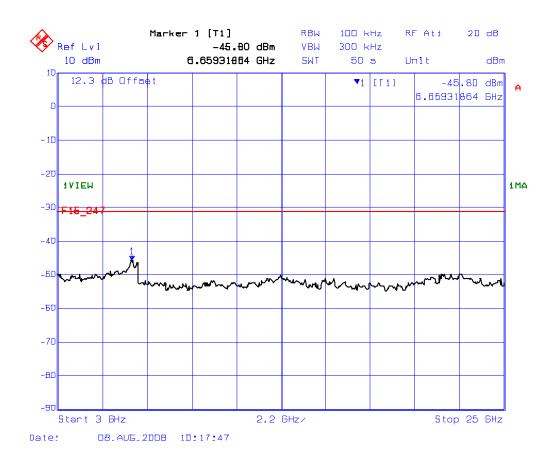



#### Plot 5.8.4.2.1.6. Spurious RF Conducted Emissions Transmitter Frequency: 2462 MHz

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com


#### 802.11g mode, 54 Mbps data rate, 64QAM



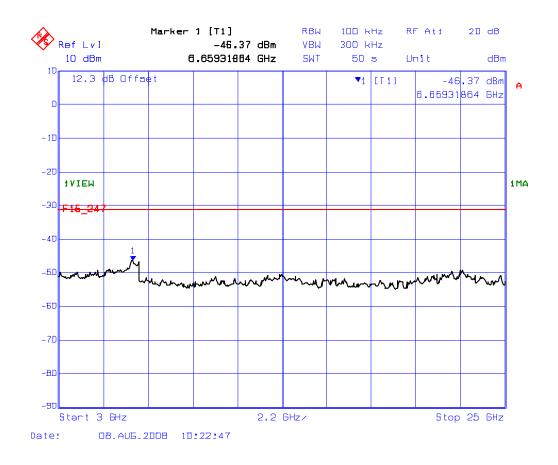

#### Plot 5.8.4.2.1.7. Spurious RF Conducted Emissions Transmitter Frequency: 2412 MHz



#### Plot 5.8.4.2.1.8. Spurious RF Conducted Emissions Transmitter Frequency: 2412 MHz



#### Plot 5.8.4.2.1.9. Spurious RF Conducted Emissions Transmitter Frequency: 2437 MHz




#### Plot 5.8.4.2.1.10. Spurious RF Conducted Emissions Transmitter Frequency: 2437 MHz

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com



#### Plot 5.8.4.2.1.11. Spurious RF Conducted Emissions Transmitter Frequency: 2462 MHz



#### Plot 5.8.4.2.1.12. Spurious RF Conducted Emissions Transmitter Frequency: 2462 MHz

# 5.9 RADIATED SPURIOUS EMISSIONS @ 3 METERS [§ 15.209 & § 15.247(d)]

#### 5.9.1. Limits

- FCC 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.
- FCC 15.209: In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

| 47 CFR 15.205(a) - Restricted Bands of Operation |                       |                 |               |  |  |  |
|--------------------------------------------------|-----------------------|-----------------|---------------|--|--|--|
| MHz                                              | MHz                   | MHz             | GHz           |  |  |  |
| 0.090 - 0.110                                    | 16.42 - 16.423        | 399.9 - 410     | 4.5 - 5.15    |  |  |  |
| <sup>1</sup> 0.495 - 0.505                       | 16.69475 - 16.69525   | 608 - 614       | 5.35 - 5.46   |  |  |  |
| 2.1735 - 2.1905                                  | 16.80425 - 16.80475   | 960 - 1240      | 7.25 - 7.75   |  |  |  |
| 4.125 - 4.128                                    | 25.5 - 25.67          | 1300 - 1427     | 8.025 - 8.5   |  |  |  |
| 4.17725 - 4.17775                                | 37.5 - 38.25          | 1435 - 1626.5   | 9.0 - 9.2     |  |  |  |
| 4.20725 - 4.20775                                | 73 - 74.6             | 1645.5 - 1646.5 | 9.3 - 9.5     |  |  |  |
| 6.215 - 6.218                                    | 74.8 - 75.2           | 1660 - 1710     | 10.6 - 12.7   |  |  |  |
| 6.26775 - 6.26825                                | 108 - 121.94          | 1718.8 - 1722.2 | 13.25 - 13.4  |  |  |  |
| 6.31175 - 6.31225                                | 123 - 138             | 2200 - 2300     | 14.47 - 14.5  |  |  |  |
| 8.291 - 8.294                                    | 149.9 - 150.05        | 2310 - 2390     | 15.35 - 16.2  |  |  |  |
| 8.362 - 8.366                                    | 156.52475 - 156.52525 | 2483.5 - 2500   | 17.7 - 21.4   |  |  |  |
| 8.37625 - 8.38675                                | 156.7 - 156.9         | 2690 - 2900     | 22.01 - 23.12 |  |  |  |
| 8.41425 - 8.41475                                | 162.0125 - 167.17     | 3260 - 3267     | 23.6 - 24.0   |  |  |  |
| 12.29 - 12.293                                   | 167.72 - 173.2        | 3332 - 3339     | 31.2 - 31.8   |  |  |  |
| 12.51975 - 12.52025                              | 240 - 285             | 3345.8 - 3358   | 36.43 - 36.5  |  |  |  |
| 12.57675 - 12.57725                              | 322 - 335.4           | 3600 - 4400     | (2)           |  |  |  |
| 13.36 - 13.41                                    |                       |                 |               |  |  |  |

#### 47 CFR 15.205(a) - Restricted Bands of Operation

<sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

<sup>2</sup> Above 38.6

| 47 <b>O</b> TR 10           | 47 OF K 10:205(a) - Kadiatea emission mints, general requirements |                                        |  |  |  |  |  |
|-----------------------------|-------------------------------------------------------------------|----------------------------------------|--|--|--|--|--|
| Frequency (MHz)             | Field Strength (microvolts                                        | /meter) Measurement Distance (meters)  |  |  |  |  |  |
| 0.009 - 0.490               | 2400/F(kHz)                                                       | 300                                    |  |  |  |  |  |
| 0.490 - 1.705               | 24000/F(kHz)                                                      | 30                                     |  |  |  |  |  |
| 1.705 - 30.0                | 30                                                                | 30                                     |  |  |  |  |  |
| 30 - 88                     | 100 **                                                            | 3                                      |  |  |  |  |  |
| 88 - 216                    | 150 **                                                            | 3                                      |  |  |  |  |  |
| 216 - 960                   | 200 **                                                            | 3                                      |  |  |  |  |  |
| Above 960                   | 500                                                               | 3                                      |  |  |  |  |  |
| ** Execution provided in pr | rearent (a) fundamental amiania                                   | ne from intentional redictors energing |  |  |  |  |  |

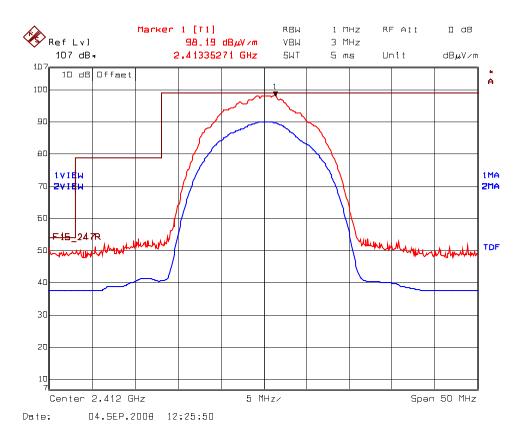
| 47 CFR 15.209(a) - Radiated emission limits, general requirements | 47 CFR 15.209(a) | <ul> <li>Radiated emission lin</li> </ul> | nits, general requirements |
|-------------------------------------------------------------------|------------------|-------------------------------------------|----------------------------|
|-------------------------------------------------------------------|------------------|-------------------------------------------|----------------------------|

\*\* Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

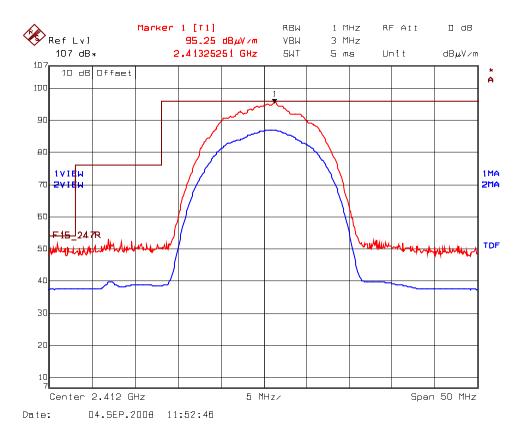
#### 5.9.2. Method of Measurements

KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)

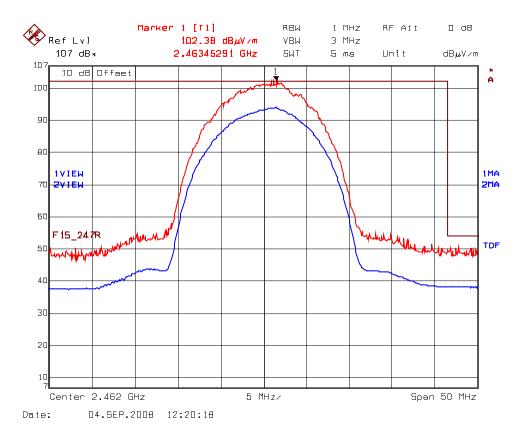
#### 5.9.3. Test Arrangement


Refer to Section 2.6 of this test report for test setup.

#### 5.9.4. Test Data

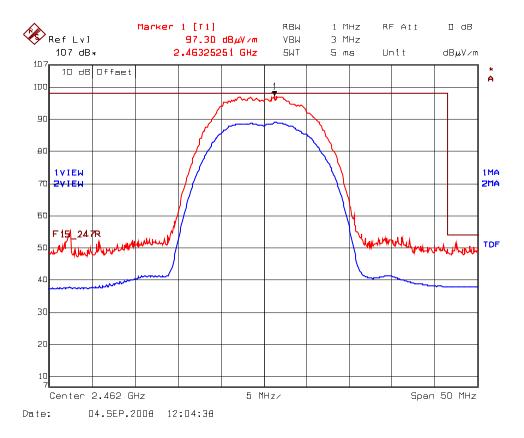

#### 5.9.4.1. Band-Edge RF Radiated Emissions @ 3m

802.11b mode, 11 Mbps data rate, CCK


Plot 5.9.4.1.1.1. Band-Edge RF Radiated Emissions @ 3 m Low End of Frequency Band Rx Antenna Orientation: Horizontal Trace 1: RBW= 1 MHz, VBW= 3 MHz Trace 2: RBW= 1 MHz, VBW= 10Hz

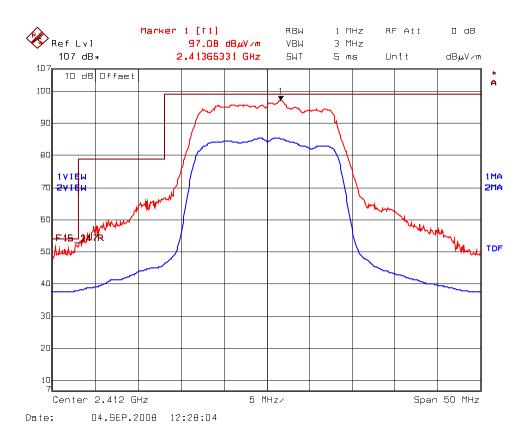


#### Plot 5.9.4.1.1.2. Band-Edge RF Radiated Emissions @ 3 m Low End of Frequency Band Rx Antenna Orientation: Vertical Trace 1: RBW= 1 MHz, VBW= 3 MHz Trace 2: RBW= 1 MHz, VBW= 10Hz

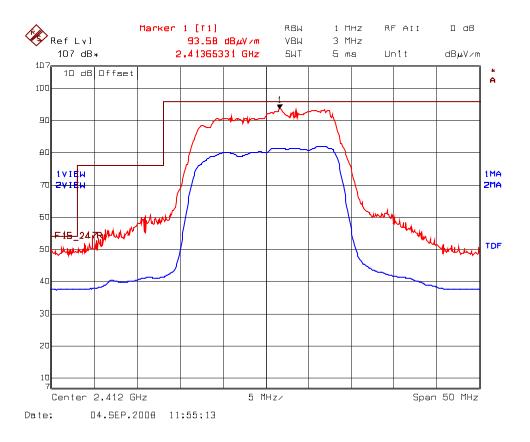



#### Plot 5.9.4.1.1.3. Band-Edge RF Radiated Emissions @ 3 m High End of Frequency Band Rx Antenna Orientation: Horizontal Trace 1: RBW= 1 MHz, VBW= 3 MHz Trace 2: RBW= 1 MHz, VBW= 10Hz



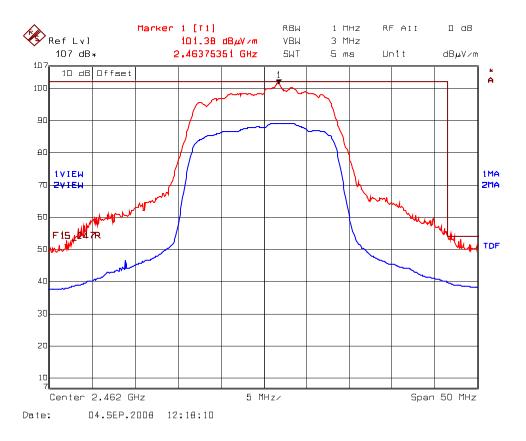

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com File #: MIS-083F15C247 September 8, 2008

#### Plot 5.9.4.1.1.4. Band-Edge RF Radiated Emissions @ 3 m High End of Frequency Band Rx Antenna Orientation: Vertical Trace 1: RBW= 1 MHz, VBW= 3 MHz Trace 2: RBW= 1 MHz, VBW= 10Hz

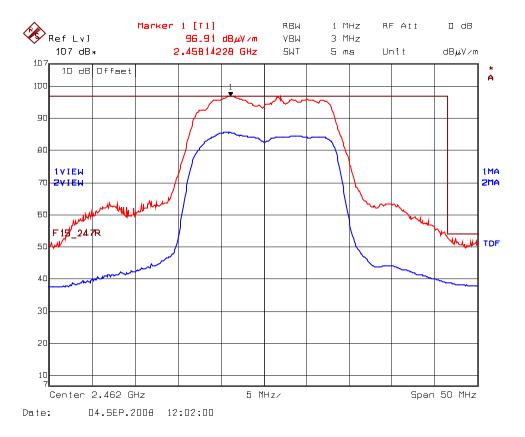



#### 802.11g mode, 54 Mbps data rate, 64QAM

#### Plot 5.9.4.1.1.5. Band-Edge RF Radiated Emissions @ 3 m Low End of Frequency Band Rx Antenna Orientation: Horizontal Trace 1: RBW= 1 MHz, VBW= 3 MHz Trace 2: RBW= 1 MHz, VBW= 10Hz




#### Plot 5.9.4.1.1.6. Band-Edge RF Radiated Emissions @ 3 m Low End of Frequency Band Rx Antenna Orientation: Vertical Trace 1: RBW= 1 MHz, VBW= 3 MHz Trace 2: RBW= 1 MHz, VBW= 10Hz




ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com File #: MIS-083F15C247 September 8, 2008

#### Plot 5.9.4.1.1.7. Band-Edge RF Radiated Emissions @ 3 m High End of Frequency Band Rx Antenna Orientation: Horizontal Trace 1: RBW= 1 MHz, VBW= 3 MHz Trace 2: RBW= 1 MHz, VBW= 10Hz



#### Plot 5.9.4.1.1.8. Band-Edge RF Radiated Emissions @ 3 m High End of Frequency Band Rx Antenna Orientation: Vertical Trace 1: RBW= 1 MHz, VBW= 3 MHz Trace 2: RBW= 1 MHz, VBW= 10Hz



### 5.9.4.2. Transmitter Radiated Spurious Emissions

#### **Remarks:**

- All spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- EUT is tested in normal position (Rx vertical) and vertical position (Rx horizontal).
- The following test results are the worst-case measurements in 802.11b mode. Level in 802.11g mode were found to be lower than that in 802.11b mode.
- The **Peak-Average correction factor** was obtained from the duty cycle calculation. See below for details.

| Fundamenta         | I Frequency:                 | 2412 MH:                                            | Z                         |                             |                             |                |               |
|--------------------|------------------------------|-----------------------------------------------------|---------------------------|-----------------------------|-----------------------------|----------------|---------------|
| Frequency T        | est Range:                   | 30 MHz –                                            | 25 GHz                    |                             |                             |                |               |
| Frequency<br>(MHz) | RF<br>Peak Level<br>(dBµV/m) | Avg Level<br>(Peak-Avg<br>correct. fac)<br>(dBµV/m) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dBµV/m) | Limit<br>15.247<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |
| 2412               | 95.25                        |                                                     | V                         |                             |                             |                |               |
| 2412               | 98.19                        |                                                     | Н                         |                             |                             |                |               |
| 4824               | 68.61                        | 28.61                                               | V                         | 54.00                       | 78.19                       | -25.39         | Pass*         |
| 4824               | 68.20                        | 28.20                                               | Н                         | 54.00                       | 78.19                       | -25.80         | Pass*         |

\*Field strength of emissions appearing within restricted frequency bands shall not exceed the limits shown in § 15.209.

|                    | I Frequency:                 |                                                     | 2437MHz<br>30 MHz – 25 GHz |                             |                             |                |               |  |
|--------------------|------------------------------|-----------------------------------------------------|----------------------------|-----------------------------|-----------------------------|----------------|---------------|--|
| Frequency T        | est Range:                   | 30 MHz –                                            | 25 GHz                     |                             |                             |                |               |  |
| Frequency<br>(MHz) | RF<br>Peak Level<br>(dBµV/m) | Avg Level<br>(Peak-Avg<br>correct. fac)<br>(dBµV/m) | Antenna<br>Plane<br>(H/V)  | Limit<br>15.209<br>(dBµV/m) | Limit<br>15.247<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |  |
| 2437               | 96.54                        |                                                     | V                          |                             |                             |                |               |  |
| 2437               | 100.71                       |                                                     | н                          |                             |                             |                |               |  |
| 4874               | 71.63                        | 31.63                                               | V                          | 54.00                       | 80.71                       | -22.37         | Pass*         |  |
| 4874               | 69.59                        | 29.59                                               | Н                          | 54.00                       | 80.71                       | -24.41         | Pass*         |  |

\*Field strength of emissions appearing within restricted frequency bands shall not exceed the limits shown in § 15.209.

| Fundamenta         | al Frequency:                | 2462MHz                                              | 2462MHz                   |                             |                             |                |               |
|--------------------|------------------------------|------------------------------------------------------|---------------------------|-----------------------------|-----------------------------|----------------|---------------|
| Frequency T        | Frequency Test Range:        |                                                      | 30 MHz – 25 GHz           |                             |                             |                |               |
| Frequency<br>(MHz) | RF<br>Peak Level<br>(dBµV/m) | Avg Level<br>(Peak-Avg<br>correct. fac)<br>(dBµV/m)) | Antenna<br>Plane<br>(H/V) | Limit<br>15.209<br>(dBµV/m) | Limit<br>15.247<br>(dBµV/m) | Margin<br>(dB) | Pass/<br>Fail |
| 2462               | 97.30                        |                                                      | V                         |                             |                             |                |               |
| 2462               | 102.38                       |                                                      | Н                         |                             |                             |                |               |
| 4924               | 72.16                        | 32.16                                                | V                         | 54.00                       | 82.38                       | -21.84         | Pass*         |
| 4024               |                              | 02.10                                                | •                         |                             |                             | -              |               |

\*Field strength of emissions appearing within restricted frequency bands shall not exceed the limits shown in § 15.209.

Duty Cycle: 1% max. as declared by the manufacturer

Peak-Average Correction factor: 20 log(Duty Cycle) = 20 log(0.01) = -40.0

#### ULTRATECH GROUP OF LABS

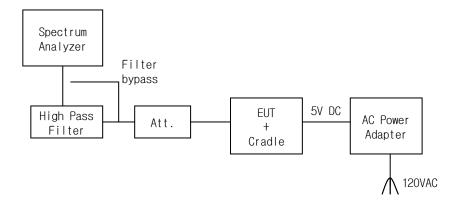
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: MIS-083F15C247 September 8, 2008

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

# 5.10 POWER SPECTRAL DENSITY [§ 15.247(e)]


#### 5.10.1. Limit(s)

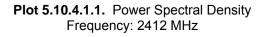
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

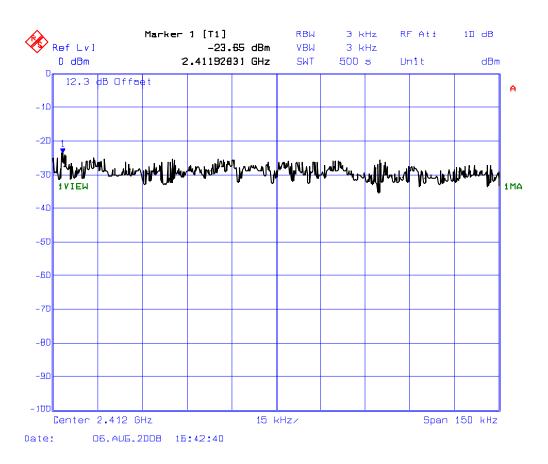
#### 5.10.2. Method of Measurements

KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247), PSD Option 1 method.

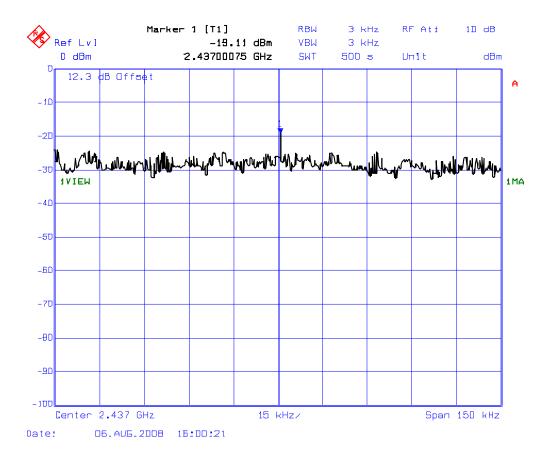
#### 5.10.3. Test Arrangement



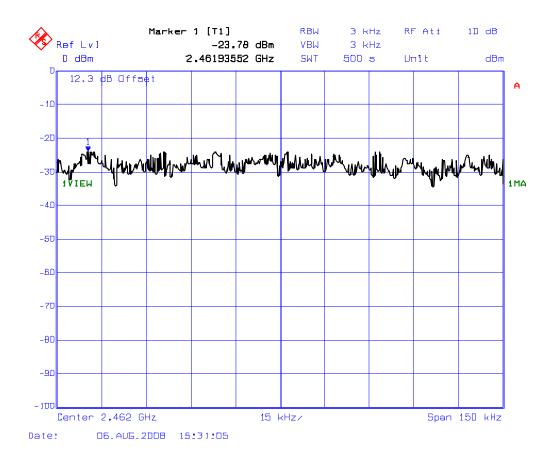

#### 5.10.4. Test Data


Remark: Measurement method: Power spectral density (PSD) Option 1.

| Frequency<br>(MHz) | *PSD<br>in 3 kHz BW<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Comments<br>(Pass/Fail) |
|--------------------|------------------------------|----------------|----------------|-------------------------|
| 2412               | -23.6                        | 8              | -31.6          | Pass                    |
| 2437               | -19.1                        | 8              | -27.1          | Pass                    |
| 2462               | -23.8                        | 8              | -31.8          | Pass                    |


#### 5.10.4.1. 802.11b mode, 11 Mbps, CCK

\*See the following plots for measurement details.

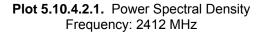


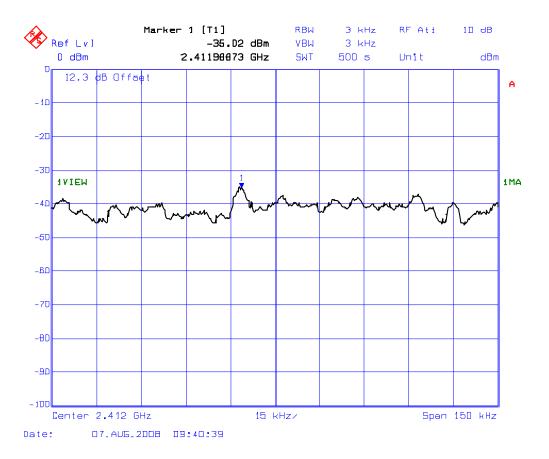


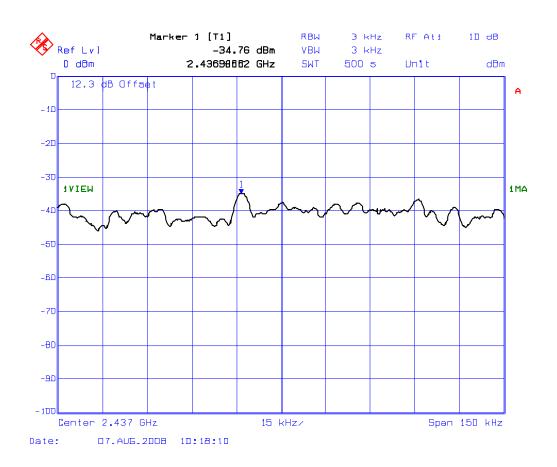

#### Plot 5.10.4.1.2. Power Spectral Density Frequency: 2437 MHz



ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com File #: MIS-083F15C247 September 8, 2008

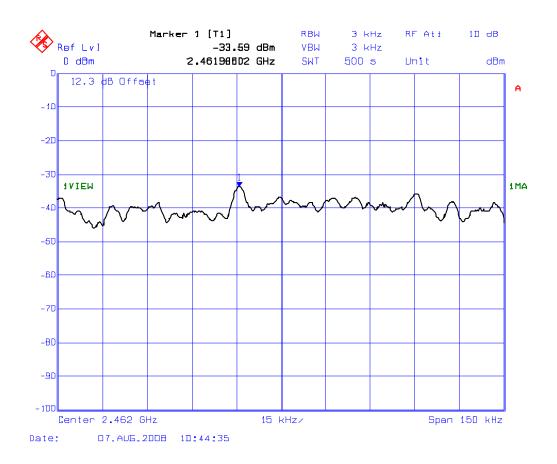




#### Plot 5.10.4.1.3. Power Spectral Density Frequency: 2462 MHz


### 5.10.4.2. 802.11g mode, 54 Mbps, 64QAM

| Frequency<br>(MHz) | *PSD<br>in 3 kHz BW<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Comments<br>(Pass/Fail) |
|--------------------|------------------------------|----------------|----------------|-------------------------|
| 2412               | -35.0                        | 8              | -43.0          | Pass                    |
| 2437               | -34.7                        | 8              | -42.7          | Pass                    |
| 2462               | -33.6                        | 8              | -41.6          | Pass                    |

\*See the following plots for measurement details.








#### Plot 5.10.4.2.2. Power Spectral Density Frequency: 2437 MHz

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com File #: MIS-083F15C247 September 8, 2008



#### Plot 5.10.4.2.3. Power Spectral Density Frequency: 2462 MHz

#### RF Exposure Requirement [§ 15.247 (i), 1.1310 & 2.1093] 5.11

#### 5.11.1. Limits

- § 15.247(i): Systems operating under provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See 1.1307(b)(1).
- § 1.1310:- The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b).

| Frequency range<br>(MHz)                                | Electric field<br>strength<br>(V/m) | strength strength       |                                          | Averaging time<br>(minutes) |  |  |  |  |
|---------------------------------------------------------|-------------------------------------|-------------------------|------------------------------------------|-----------------------------|--|--|--|--|
| (A) Limits for Occupational/Controlled Exposures        |                                     |                         |                                          |                             |  |  |  |  |
| 0.3–3.0<br>3.0–30<br>30–300<br>300–1500<br>1500–100,000 | 614<br>1842/f<br>61.4               | 1.63<br>4.89/f<br>0.163 | *(100)<br>*(900/f²)<br>1.0<br>f/300<br>5 | 6<br>6<br>6<br>6<br>6       |  |  |  |  |
| (B) Limits for General Population/Uncontrolled Exposure |                                     |                         |                                          |                             |  |  |  |  |

| TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE | (MPE) |
|-------------------------------------------------|-------|
|-------------------------------------------------|-------|

| (B) Limits for General Population/Uncontrolled Exposure |       |        |                        |    |  |  |  |
|---------------------------------------------------------|-------|--------|------------------------|----|--|--|--|
| 0.3–1.34                                                | 614   | 1.63   | *(100)                 | 30 |  |  |  |
| 1.34–30                                                 | 824/f | 2.19/f | *(180/f <sup>2</sup> ) | 30 |  |  |  |
| 30–300                                                  | 27.5  | 0.073  | 0.2                    | 30 |  |  |  |
| 300–1500                                                |       |        | f/1500                 | 30 |  |  |  |
| 1500–100,000                                            |       |        | 1.0                    | 30 |  |  |  |

f = frequency in MHz

 = Plane-wave equivalent power density
 NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occu-

pational/controlled limits apply provided he or she is made aware of the potential for exposure. NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

#### 5.11.2. Method of Measurements

Refer to Sections 1.1310, 2.1091.

Spread spectrum transmitters operating under section 15.247 are categorically excluded from routine environmental evaluation to demonstrating RF exposure compliance with respect to MPE and/or SAR limits. These devices are not exempted from compliance (As indicated in Section 15.247(b)(4), these transmitters are required to operate in a manner that ensures that exposure to public users and nearby persons) does not exceed the Commission's RF exposure guidelines (see Section 1.1307 and 2.1093). Unless a device operates at substantially low power levels, with a low gain antenna(s), supporting information is generally needed to establish the various potential operating configurations and exposure conditions of a transmitter and its antenna(s) in order to determine compliance with the RF exposure guidelines.

For portable transmitters (see Section 2.1093), or devices designed to operate next to a person's body, compliance is determined with respect to the SAR limit (define in the body tissues) for near-field exposure conditions. If the maximum average output power, operating condition configurations and exposure conditions are comparable to those of existing cellular and PCS phones, SAR evaluation may be required in order to determine if such a device complies with SAR limit. When SAR evaluation data is not available, and the additional supporting information cannot assure compliance, the Commission may request that an SAR evaluation be performed, as provided for in Section 1.1307(d)

#### 5.11.3. Test Data

Measured Total Peak Power = 15.85 dBm or 38.5 mW Max. Duty Cycle declared by applicant = 1% Duty cycle factor = 10 log(0.01) = - 20dB

Total Average power = Total Peak Power in dB – Duty Cycle factor (dB) = 15.85 dBm – 20 dB = -4.15 dBm or 0.4 mW

SAR is exempted as average power (0.4 mW) is below the low threshold value 24 mW.

Threshold Value = [60/f(GHz)] mW = (60/2.48) mW = 24 mW

# EXHIBIT 6 Test Equipment List

| Test Instruments  | Manufacturer    | Model No.              | Serial No. | Frequency Range                 |
|-------------------|-----------------|------------------------|------------|---------------------------------|
| Attenuator (10dB) | Narda           | 4768-20                | N/A        | DC – 40 GHz                     |
| Attenuator (10dB) | Narda           | 4768-10                | N/A        | DC – 40 GHz                     |
| Biconilog antenna | EMCO            | 3142C                  | 34792      | 26 - 3000 MHz                   |
| High Pass Filter  | K&L             | 11SH10-<br>4000/T12000 | 4          | Cut off 3.4 GHz                 |
| Horn Antenna      | EMCO            | 3155                   | 6570       | 1 – 18 GHz                      |
| Horn Antenna      | EMCO            | 3160-09                | 1007       | 18 – 26.5 GHz                   |
| L.I.S.N.          | Emco            | 3825/2                 | 8.9E+07    | 9 kHz- 200 MHz<br>(50ohms/50uH) |
| Peak Power Meter  | Hewlett Packard | 8900D                  | 2131A01044 | 0.1 - 18 GHz                    |
| Power Sensor      | Hewlett Packard | 84811A                 | 2551A01484 | 0.1 - 18 GHz                    |
| RF Amplifier      | Com-Power       | PA-103                 | 161057     | 1 - 1000 MHz                    |
| RF Amplifier      | Hewlett Packard | 8449B                  | 3008A00769 | 1 – 26.5 GHz                    |
| Spectrum Analyzer | Hewlett Packard | 8593EM                 | 3412A00103 | 9 kHz- 26.5 GHz                 |
| Spectrum Analyzer | Rohde & Schwarz | FSEK30                 | 100077     | 20 Hz – 40 GHz                  |
| Transient Limiter | Hewlett Packard | 11947A                 | 3.1E+08    | 9 kHz- 200 MHz (10dB)           |

# EXHIBIT 7 MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

# 7.1 LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

| CONTRIBUTION                                                                                                                                  | PROBABILITY    | UNCERTAINTY (dB) |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|---------------|
| (Line Conducted)                                                                                                                              | DISTRIBUTION   | 9-150 kHz        | 0.15-30 MHz   |
| EMI Receiver specification                                                                                                                    | Rectangular    | <u>+</u> 1.5     | <u>+</u> 1.5  |
| LISN coupling specification                                                                                                                   | Rectangular    | <u>+</u> 1.5     | <u>+</u> 1.5  |
| Cable and Input Transient Limiter calibration                                                                                                 | Normal (k=2)   | <u>+</u> 0.3     | <u>+</u> 0.5  |
| Mismatch: Receiver VRC $\Gamma_1$ = 0.03<br>LISN VRC $\Gamma_R$ = 0.8(9 kHz) 0.2 (30 MHz)<br>Uncertainty limits 20Log(1± $\Gamma_1\Gamma_R$ ) | U-Shaped       | <u>+</u> 0.2     | <u>+</u> 0.3  |
| System repeatability                                                                                                                          | Std. deviation | <u>+</u> 0.2     | <u>+</u> 0.05 |
| Repeatability of EUT                                                                                                                          |                |                  |               |
| Combined standard uncertainty                                                                                                                 | Normal         | <u>+</u> 1.25    | <u>+</u> 1.30 |
| Expanded uncertainty U                                                                                                                        | Normal (k=2)   | <u>+</u> 2.50    | <u>+</u> 2.60 |

Sample Calculation for Measurement Accuracy in 450 kHz to 30 MHz Band:

 $u_{c}(y) = \sqrt{\max_{i=1}^{m} \sum_{u_{i}^{2}(y)} (y)} = \pm \sqrt{(1.5^{2} + 1.5^{2})/3 + (0.5/2)^{2} + (0.05/2)^{2} + 0.35^{2}} = \pm 1.30 \text{ dB}$ 

 $U = 2u_c(y) = + 2.6 \text{ dB}$ 

# 7.2 RADIATED EMISSION MEASUREMENT UNCERTAINTY

| CONTRIBUTION                                                                                                                              | PROBABILITY    | UNCERTAINTY ( <u>+</u> dB) |               |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|---------------|
| (Radiated Emissions)                                                                                                                      | DISTRIBUTION   | 3 m                        | 10 m          |
| Antenna Factor Calibration                                                                                                                | Normal (k=2)   | <u>+</u> 1.0               | <u>+</u> 1.0  |
| Cable Loss Calibration                                                                                                                    | Normal (k=2)   | <u>+</u> 0.3               | <u>+</u> 0.5  |
| EMI Receiver specification                                                                                                                | Rectangular    | <u>+</u> 1.5               | <u>+</u> 1.5  |
| Antenna Directivity                                                                                                                       | Rectangular    | +0.5                       | +0.5          |
| Antenna factor variation with height                                                                                                      | Rectangular    | <u>+</u> 2.0               | <u>+</u> 0.5  |
| Antenna phase center variation                                                                                                            | Rectangular    | 0.0                        | <u>+</u> 0.2  |
| Antenna factor frequency interpolation                                                                                                    | Rectangular    | <u>+</u> 0.25              | <u>+</u> 0.25 |
| Measurement distance variation                                                                                                            | Rectangular    | <u>+</u> 0.6               | <u>+</u> 0.4  |
| Site imperfections                                                                                                                        | Rectangular    | <u>+</u> 2.0               | <u>+</u> 2.0  |
| Mismatch: Receiver VRC $\Gamma_1$ = 0.2<br>Antenna VRC $\Gamma_R$ = 0.67(Bi) 0.3 (Lp)<br>Uncertainty limits 20Log(1± $\Gamma_1\Gamma_R$ ) | U-Shaped       | +1.1<br>-1.25              | <u>+</u> 0.5  |
| System repeatability                                                                                                                      | Std. Deviation | <u>+</u> 0.5               | <u>+</u> 0.5  |
| Repeatability of EUT                                                                                                                      |                | -                          | -             |
| Combined standard uncertainty                                                                                                             | Normal         | +2.19 / -2.21              | +1.74 / -1.72 |
| Expanded uncertainty U                                                                                                                    | Normal (k=2)   | +4.38 / -4.42              | +3.48 / -3.44 |

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k = 2 is used:

 $U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$  And  $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$