ENGINEERING TEST REPORT

Wireless POS Terminal Model No.: NBS5700T001

FCC ID: O3JNBS5700

Applicant:

NBS Payment Solutions

703 Evans Ave., Suite 400 Toronto, Ontario Canada, M9C 5E9

In Accordance With

FEDERAL COMMUNICATIONS COMMISSION (FCC)
PART 15, SUBPART C, SECTION 15.247
Frequency Hopping (Bluetooth)
Operating in the Frequency Band 2402-2480 MHz

UltraTech's File No.: MIS-068F15C247 A

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs

Date: October 25, 2007

Report Prepared by: JaeWook Choi

Tested by: Hung Trinh, RFI Technologist

Issued Date: October 25, 2007 Test Dates: September 07, 10, 11 & 13, 2007

- The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.
- This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

 $ar{L}$

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4
Tel.: (905) 829-1570 Fax.: (905) 829-8050
Website: www.ultratech-labs.com Email: www.ultratech-labs.com Email: www.ultratech-labs.com Email: wic@ultratech-labs.com, Email: wic@ultratech-labs.com, Email: www.ultratech-labs.com

TABLE OF CONTENTS

EXHIBIT	1	INTRODUCTION	1
1.1 1.2 1.3	SC(REI NO	OPELATED SUBMITTAL(S)/GRANT(S)RMATIVE REFERENCES	1 1
		PERFORMANCE ASSESSMENT	
2.1 2.2 2.3 2.4 2.5 2.6	EQ EU LIS AN	ENT INFORMATION UIPMENT UNDER TEST (EUT) INFORMATION	3 3
EXHIBIT	Г3	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	5
3.1	OP	ERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	5
EXHIBIT	Г4	SUMMARY OF TEST RESULTS	6
4.1 4.2 4.3	API	CATION OF TESTSPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTSDIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	6
EXHIBIT	Г 5	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	7
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	ME CO CH NU PE	ST PROCEDURES	7 7 8 . 13 . 21
EXHIBIT		MEASUREMENT UNCERTAINTY	
6.1 6.2		E CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	

EXHIBIT 1 INTRODUCTION

1.1 SCOPE

Reference:	Part 15, Subpart C, Section 15.247
Title:	Telecommunication - Code of Federal Regulations, CFR 47, Part 15
Purpose of Test:	To gain FCC Equipment Authorization for Frequency Hopping (Bluetooth) Operating in the Frequency Band 2402-2480 MHz.
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	Commercial, light industry & heavy industry

1.2 RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3 NORMATIVE REFERENCES

Publication	Year	Title		
FCC 47CFR Parts 0-19	2006	Code of Federal Regulations, Title 47 – Telecommunication		
ANSI C63.4	2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz		
CISPR 22 +A1 EN 55022	2003-04-10 2004-10-14 2003	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment		
CISPR 16-1-1	2003	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus		
CISPR 16-2-1	2003	Specification for radio disturbance and immunity measuring apparatus and methods. Part 2-1: Conducted disturbance measurement		
CISPR 16-2-3	2003	Specification for radio disturbance and immunity measuring apparatus and methods. Part 2-3: Radiated disturbance measurement		
FCC Public Notice DA 00- 705	2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems		
KDB Publication No. 558074	2005	Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)		

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: MIS-068F15C247_A October 25, 2007

EXHIBIT 2 PERFORMANCE ASSESSMENT

2.1 CLIENT INFORMATION

APPLICANT:	
Name:	NBS Payment Solutions
Address:	703 Evans Ave., Suite 400 Toronto, ON Canada, M9C 5E9
Contact Person:	Mr. Dragoslav Jovanovic Phone #: 905-812-6200 (3358) Fax #: 905-812-6301 Email Address: djovanovic@nbsps.com

MANUFACTURER:		
Name:	SAGEM Monetel	
Address:	1, Rue Claude Chappe – BP346 Guilherand-Granges France, 07503	
Contact Person:	Clement Lormeau, Customer Service Phone #: +33.4.75.81.40.47 Fax #: +33.4.75.81.41.57 Email Address: clement.lormeau@sagem.com	

2.2 EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

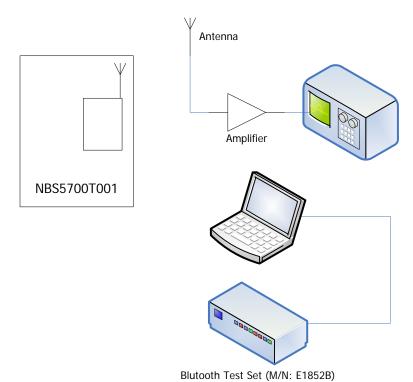
Brand Name:	NBS Payment Solutions
Product Name:	Wireless POS Terminal
Model Name or Number:	NBS5700T001
Serial Number:	10221334
Type of Equipment:	Bluetooth (FHSS)
Input Power Supply Type:	3.6V DC Battery
Primary User Functions of EUT:	Financial Transactions

October 25, 2007

2.3 EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER				
Equipment Type:	Portable			
Intended Operating Environment:	Commercial, light inc	dustry & heavy industry		
Power Supply Requirement:	3.6V DC battery			
RF Output Power Rating:	17.62 dBm peak cor	nducted		
Operating Frequency Range:	2402-2480 MHz			
RF Output Impedance:	50 Ω			
Channel Spacing:	1 MHz			
Duty Cycle:	100%			
Modulation Type:	ion Type: Bluetooth (FHSS)			
Antenna Connector Type:	Connector Type: U.FL-R-SMT (internal)			
Antenna Description:	Manufacturer: Type: Model No.: Frequency Range:	SAGEM Monetel Bluetooth 25160390AC 2.4 – 2.5 GHz		

2.4 LIST OF EUT'S PORTS


Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	USB port	1	Mini USB Type B	Shielded
2	USB port	1	Mini USB Type B	Shielded

2.5 ANCILLARY EQUIPMENT

	Description	Manufacturer	Model Number	Serial Number
1	Bluetooth Test Set	Agilent	E1852B	DK42050131
2	Laptop	Toshiba	160SCDS/43	1027387CU

Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

TEST SETUP BLOCK DIAGRAM 2.6

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

EXHIBIT 3 EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1 OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	Each of lowest, middle and highest channel frequencies transmits continuously for emissions measurements. The EUT operates in frequency hopping mode and direct sequence or digital modulation mode.
Special Test Software:	Special software is provided by the applicant to put the EUT into the test mode and Bluetooth test set was used to select and operate the EUT at each channel frequency continuously and mode of operation such as frequency hopping and direct sequence or digital modulation for testing purpose.
Special Hardware Used:	N/A
Transmitter Test Antenna:	The EUT is tested with the antenna fitted in a manner typical of normal intended use as integral antenna equipment.

Transmitter Test Signals	
Frequency Band(s):	2402 - 2480 MHz
Frequency(ies) Tested:	2402, 2441 & 2480 MHz.
(Near lowest, near middle & near highest frequencies in the frequency range of operation.)	
RF Power Output:	17.62 dBm peak conducted
Normal Test Modulation:	Bluetooth (FHSS)
Modulating Signal Source:	Internal

Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

EXHIBIT 4 SUMMARY OF TEST RESULTS

4.1 LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).

Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049A-2). Last Date of Site Calibration: June 20, 2006.

4.2 APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Section(s)	Test Requirements	Compliance (Yes/No)
15.107(a) /15.207(a)	AC Power Conducted Emissions	N/A
15.109(a)	Class B Radiated Emissions	Yes (Note 1)
15.247(a)(1)	Channel Separation & 20dB Bandwidth	Yes
15.247(a)(1)(iii)	Number of Hopping Channel & Average Time of Occupancy	Yes
15.247(b)(1)	Peak Output Power	Yes
15.247(d), 15.209 & 15.205	Spurious Radiated Emissions	Yes
15.247(d)	Spurious Conducted Emissions	Yes
15.247(i), 1.1310 & 2.1091	RF Exposure	Yes (Note 2)

Notes:

- (1) A separate engineering test report for compliance with FCC Part 15, Subpart B Class B Unintentional Radiators will be provided upon request.
- (2) See the separate SAR test report for compliance with RF exposure requirement.

4.3 MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES None.

File #: MIS-068F15C247_A October 25, 2007

EXHIBIT 5 MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1 TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.4; KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247); FCC Public Notice DA 00-705: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

5.2 MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document LAB 34 with a confidence level of 95%. Please refer to Exhibit 6 for Measurement Uncertainties.

5.3 MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1.

5.4 COMPLIANCE WITH FCC PART 15 – GENERAL TECHNICAL REQUIREMENTS

FCC Section	FCC Rules	
15.203	Described how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.	The integral antenna is permanently mounted on the printed circuit board and located inside the enclosure
	The exception is in those cases where EUT must be professionally installed. In order to demonstrate that professional installation is required, the following 3 points must be addressed:	
	 The application (or intended use) of the EUT The installation requirements of the EUT The method by which the EUT will be marketed 	
15.204	Provided the information for every antenna proposed for use with the EUT: (a) type (e.g. Yagi, patch, grid, dish, etc), (b) manufacturer and model number (c) gain with reference to an isotropic radiator	Manufacturer: TAIYO YUDEN Co., LTD Type: 2.4GHz Multilayer Antenna Model No.: AH 104F2450S1 Frequency Range: 2.4 – 2.5 GHz Gain: > 0 dBi

October 25, 2007

File #: MIS-068F15C247 A

Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

5.5 CHANNEL SEPARATION & 20 DB BANDWIDTH [§15.247(a)(1)]

5.5.1. Limits

§15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.5.2. Method of Measurements

Refer to FCC Public Notice DA 00-705, KDB Publication No. 558074 and ANSI C63.4 for measurement methods.

5.5.3. Test Arrangement

See Section 2.6 of this test report.

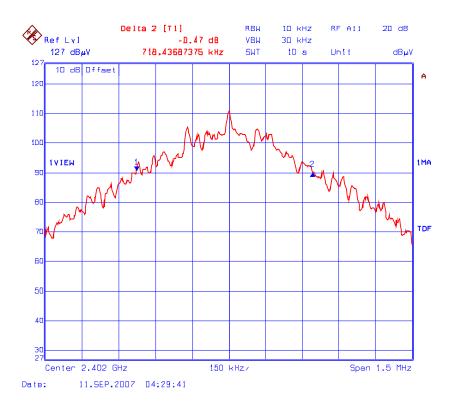
5.5.4. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schwarz	FSEK30	100077	20 Hz – 40 GHz
Amplifier	Hewlett Packard	8449B	3008A00769	1 GHz – 26.5 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz
Biconilog Antenna	EMCO	3143	1029	20 MHz – 2 GHz

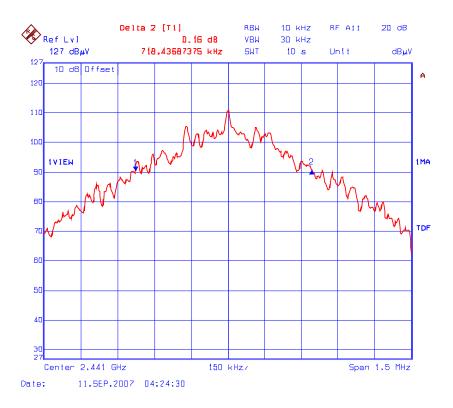
5.5.5. Test Data

Note: Bandwidth measurements were done using the built-in auto function of the analyzer.

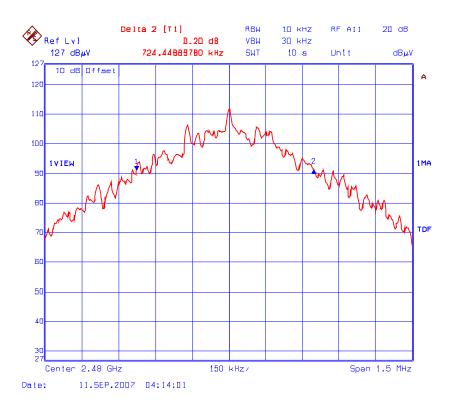
5.5.5.1. For Frequency Hopping Spread Spectrum Mode

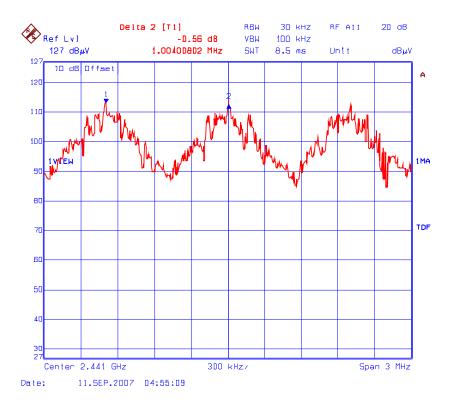

Frequency (MHz)	20 dB Bandwidth (kHz)	
2402	718.44	
2441	718.44	
2480	724.44	

See the following plots for detailed measurements.


Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

File #: MIS-068F15C247_A October 25, 2007

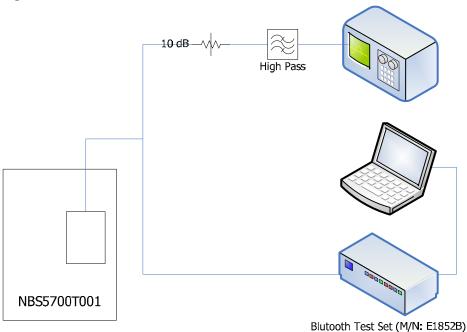

Plot 5.5.5.1.1.: 20 dB Bandwidth 2402 MHz, Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)


Plot 5.5.5.1.2.: 20 dB Bandwidth 2441 MHz, Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)

Plot 5.5.5.1.3.: 20 dB Bandwidth 2480 MHz, Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)

Plot 5.5.5.1.4.: Channel Separation
Packet Type: DH1, Random Modulation: SPSR (Static Pseudo), Hopping mode

5.6 NUMBER OF HOPPING CHANNEL & AVERAGE TIME OF OCCUPANCY [§ 15.247(a)(1)(iii)]


5.6.1. Limits

FCC 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

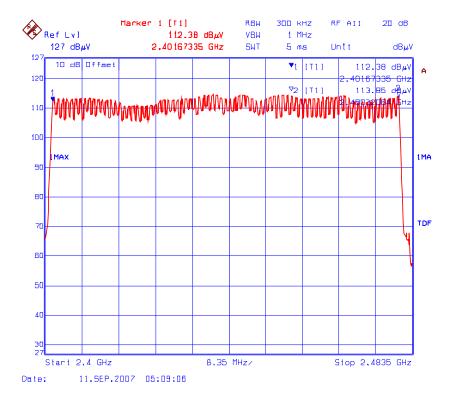
5.6.2. Method of Measurements

Refer to FCC Public Notice DA 00-705, KDB Publication No. 558074 and ANSI C63.4 for measurement methods.

5.6.3. Test Arrangement

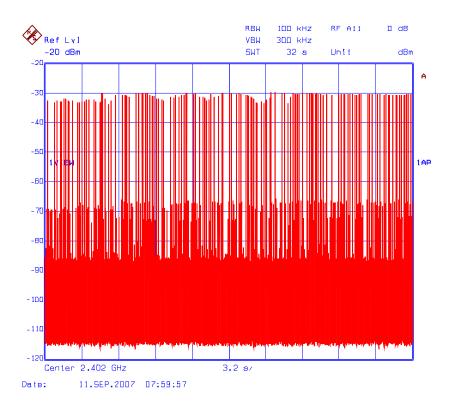
5.6.4. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schwarz	FSEK30	100077	20 Hz – 40 GHz
Attenuator	Narda	4768-10	0702	DC – 40 GHz
High Pass Filter	K&L	11SH10-4000	T12000	DC – 26 GHz

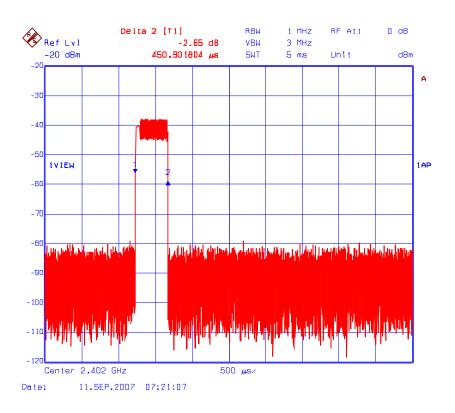

October 25, 2007

File #: MIS-068F15C247_A

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

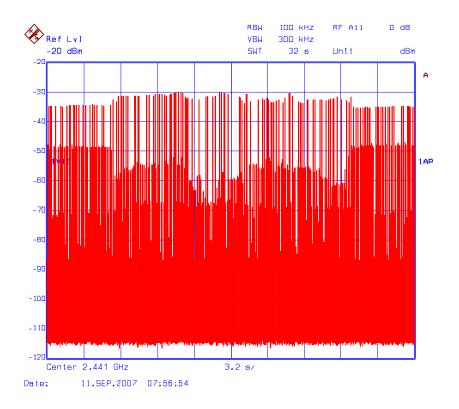

5.6.5. Test Data

Plot 5.6.5.1.: Number of hopping channel Packet Type: DH1, Random Modulation: SPSR (Static Pseudo), Hopping mode - 79 channels

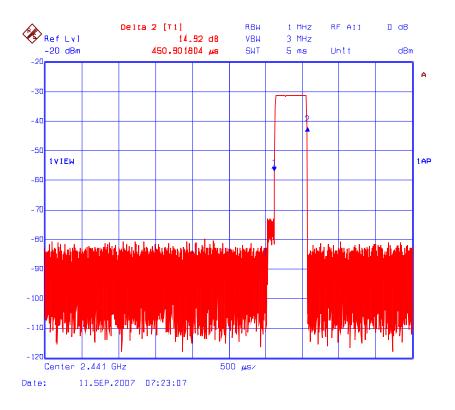


October 25, 2007

Plot 5.6.5.2.: Time of Occupancy at 2402 MHz #1
Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)
115 * 450.90us= 51.85ms < 400ms within 31.6s (0.4s * 79)

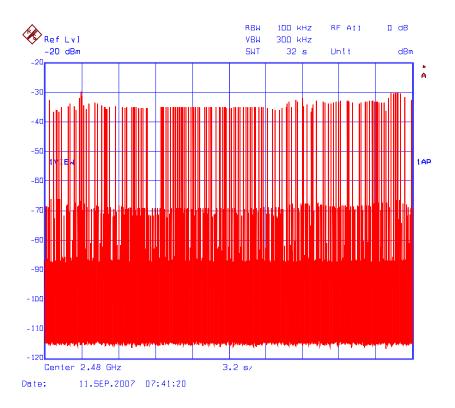


Plot 5.6.5.3.: Time of Occupancy at 2402 MHz #2 Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)

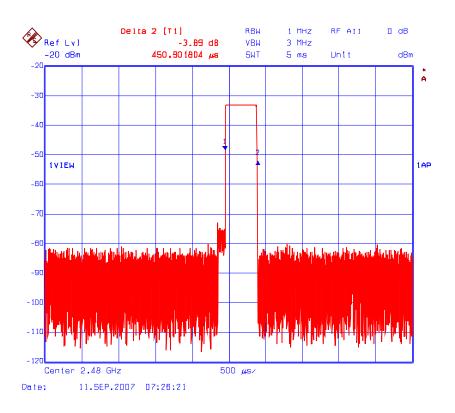


Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Plot 5.6.5.4.: Time of Occupancy at 2441Hz #1 Packet Type: DH1, Random Modulation: SPSR (Static Pseudo) 115 * 450.90us= 51.85ms < 400ms within 31.6s (0.4s * 79)



Plot 5.6.5.5.: Time of Occupancy at 2441Hz #2 Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)

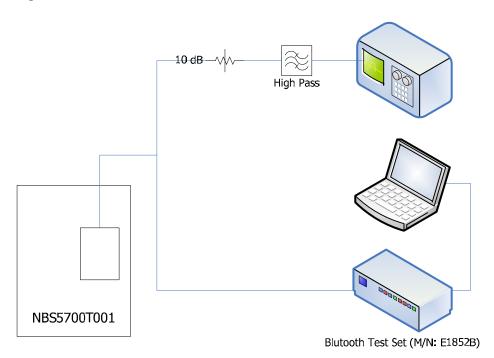


Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Plot 5.6.5.6.: Time of Occupancy at 2480 MHz #1
Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)
115 * 450.90us= 51.85ms < 400ms within 31.6s (0.4s * 79)

Plot 5.6.5.7.: Time of Occupancy at 2480 MHz #2 Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)

5.7 PEAK OUTPUT POWER [§§ 15.247(b)(1)]


5.7.1. Limits

• FCC 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

5.7.2. Method of Measurements

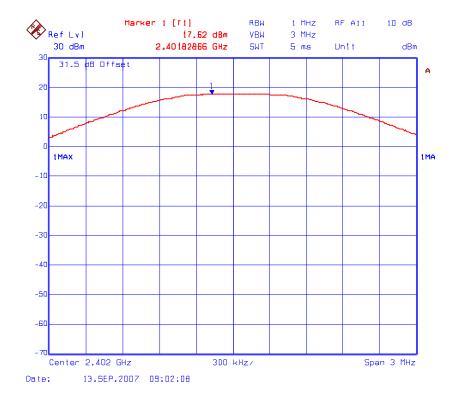
Refer to FCC Public Notice DA 00-705, KDB Publication No. 558074 and ANSI C63.4 for measurement methods.

5.7.3. Test Arrangement

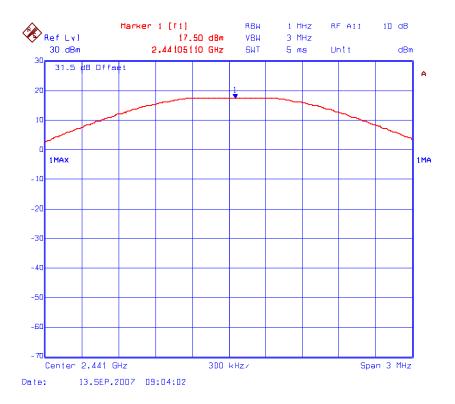
5.7.4. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schwarz	FSEK30	100077	20 Hz – 40 GHz
Attenuator	Narda	4768-10	0702	DC – 40 GHz
High Pass Filter	K&L	11SH10-4000	T12000	DC – 26 GHz

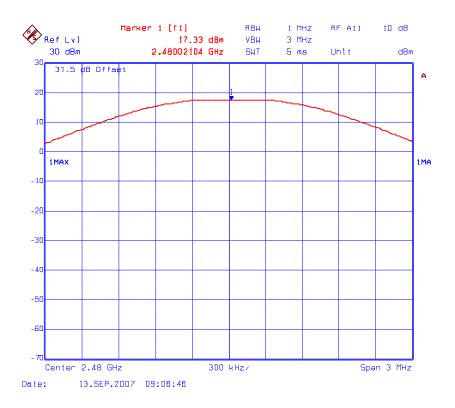
October 25, 2007


Page 22

Wireless POS Terminal FCC ID: O3JNBS5700


5.7.5. Test Data

Frequency (MHz)	Peak Output Power Conducted (dBm)	Limit (dBm)	Margin (dB)
2402	17.62	30	-12.38
2441	17.50	30	-12.50
2480	17.33	30	-12.67


Plot 5.7.5.1.: Peak Power Output at 2402 MHz Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)

Plot 5.7.5.2.: Peak Power Output at 2441 MHz Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)

Plot 5.7.5.3.: Peak Power Output at 2480 MHz Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)

5.8 SPURIOUS RADIATED EMISSIONS @ 3 METERS [§ 15.209 & § 15.247(d)]

5.8.1. Limits

- FCC 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.
- FCC 15.209: In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

47 CFR 15.205(a) - Restricted Bands of Operation

47 CFK 15.205(a) - Restricted Barids of Operation					
MHz	MHz	MHz	GHz		
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15		
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46		
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75		
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5		
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2		
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5		
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7		
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4		
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5		
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2		
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4		
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12		
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0		
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8		
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5		
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)		
13.36 - 13.41					

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

October 25, 2007

² Above 38.6

Page 26

Wireless POS Terminal FCC ID: O3JNBS5700

47 CFR 15.209(a) - Radiated emission limits, general requirements

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 - 1.705	24000/F(kHz)	30	
1.705 - 30.0	30	30	
30 - 88	100 **	3	
88 - 216	150 **	3	
216 - 960	200 **	3	
Above 960	500	3	

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

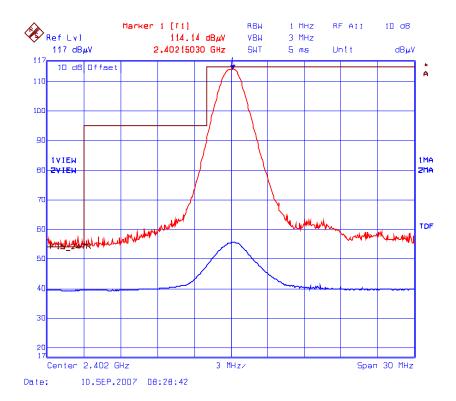
5.8.2. Method of Measurements

Refer to Ultratech Test Procedures, Files # ULTR P002-2004 or ULTR P003-2004 and ANSI C63.4 for measurement methods

5.8.3. Test Arrangement

Refer to Section 2.6 of this test report for test setup.

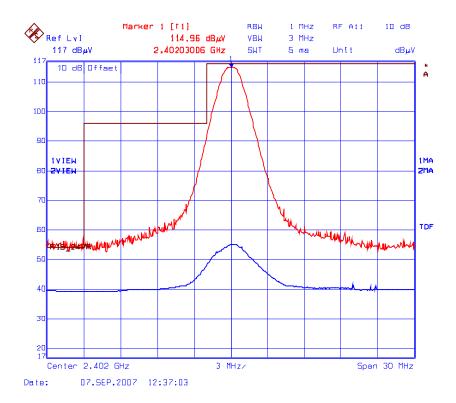
5.8.4. Test Equipment List

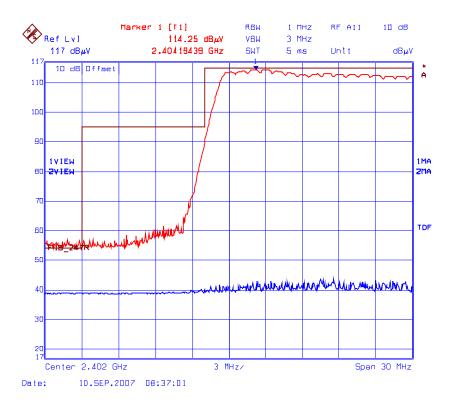

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schwarz	FSEK30	100077	20 Hz – 40 GHz
Amplifier	Hewlett Packard	8449B	3008A00769	1 GHz – 26.5 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz
Biconilog Antenna	EMCO	3143	1029	20 MHz – 2 GHz

October 25, 2007

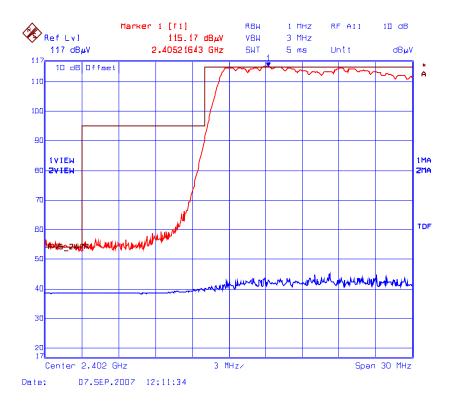
5.8.5. Test Data

5.8.5.1. **Band-edge Radiated Emissions**

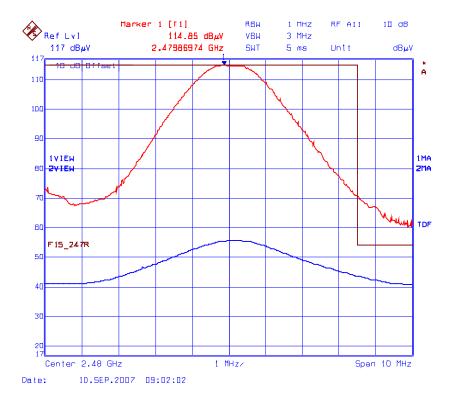

Plot 5.8.5.1.1.: Band-Edge Radiated Emissions @ 3 meters 2402MHz, Lower Band-Edge Radiated Emissions Vertical Polarization, Continuous Packet Type: DH1, Random Modulation: SPSR (Static Pseudo), EUT lay flat Trace 1: RBW= 1MHz, VBW= 3MHz (Peak) Trace 2: RBW= 1MHz, VBW= 10Hz (Average)

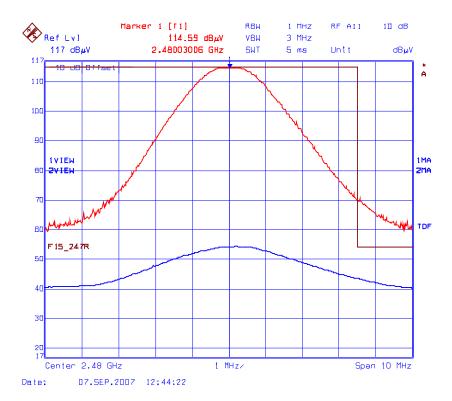

File #: MIS-068F15C247_A

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

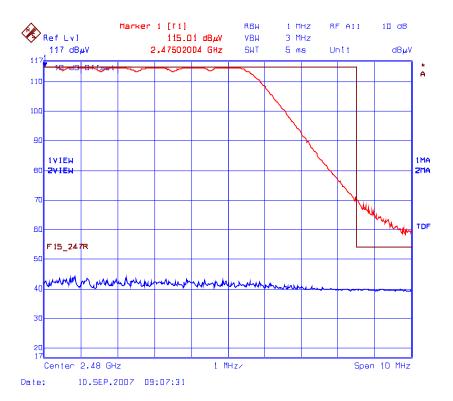

Plot 5.8.5.1.2.: Band-Edge Radiated Emissions @ 3 meters 2402MHz, Lower Band-Edge Radiated Emissions Horizontal Polarization, Continuous Packet Type: DH1, Random Modulation: SPSR (Static Pseudo), EUT Left side down Trace 1: RBW= 1MHz, VBW= 3MHz (Peak)
Trace 2: RBW= 1MHz, VBW= 10Hz (Average)

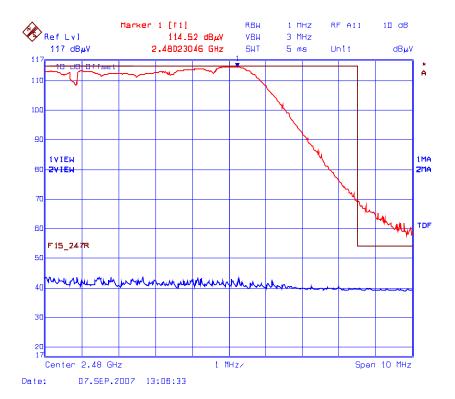
Plot 5.8.5.1.3.: Band-Edge Radiated Emissions @ 3 meters, 2402MHz, Lower Band-Edge Radiated Emissions Vertical Polarization, Hopping Packet Type: DH1, Random Modulation: SPSR (Static Pseudo), EUT lay flat Trace 1: RBW= 1MHz, VBW= 3MHz (Peak)
Trace 2: RBW= 1MHz, VBW= 10Hz (Average)


Plot 5.8.5.1.4.: Band-Edge Radiated Emissions @ 3 meters 2402MHz, Lower Band-Edge Radiated Emissions Horizontal Polarization, Hopping Packet Type: DH1, Random Modulation: SPSR (Static Pseudo), EUT Right side down Trace 1: RBW= 1MHz, VBW= 3MHz (Peak)
Trace 2: RBW= 1MHz, VBW= 10Hz (Average)


Plot 5.8.5.1.5.: Band-Edge Radiated Emissions @ 3 meters 2480MHz, Upper Band-Edge Radiated Emissions Vertical Polarization, Continuous Packet Type: DH1, Random Modulation: SPSR (Static Pseudo), EUT lay flat

Trace 1: RBW= 1MHz, VBW= 3MHz (Peak)


Trace 2: RBW= 1MHz, VBW= 10Hz (Average)


Plot 5.8.5.1.6.: Band-Edge Radiated Emissions @ 3 meters 2480MHz, Upper Band-Edge Radiated Emissions Horizontal Polarization, Continuous Packet Type: DH1, Random Modulation: SPSR (Static Pseudo), EUT Left side down Trace 1: RBW= 1MHz, VBW= 3MHz (Peak)
Trace 2: RBW= 1MHz, VBW= 10Hz (Average)

Plot 5.8.5.1.7.: Band-Edge Radiated Emissions @ 3 meters 2480MHz, Upper Band-Edge Radiated Emissions Vertical Polarization, Hopping Packet Type: DH1, Random Modulation: SPSR (Static Pseudo), EUT lay flat Trace 1: RBW= 1MHz, VBW= 3MHz (Peak)
Trace 2: RBW= 1MHz, VBW= 10Hz (Average)

Plot 5.8.5.1.8.: Band-Edge Radiated Emissions @ 3 meters 2480MHz, Upper Band-Edge Radiated Emissions Horizontal Polarization, Hopping Packet Type: DH1, Random Modulation: SPSR (Static Pseudo), EUT Left side down Trace 1: RBW= 1MHz, VBW= 3MHz (Peak)
Trace 2: RBW= 1MHz, VBW= 10Hz (Average)

5.8.5.2. Transmitter Spurious Radiated Emissions

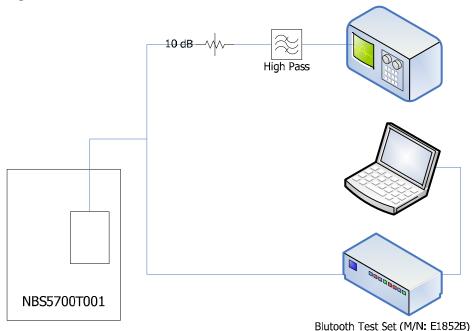
The emissions were scanned from 30 MHz to 25 GHz; all signals within 20 dB below the permissible limit were recorded in the table below.

Frequency		RF Avg Level	Antenna Plane	Limit 15.209	Limit 15.247	Margin	Pass/ Fail
(MHz)	(dBµV/m)	(dBµV/m)	(H/V)	(dBµV/m)	(dBµV/m)	(dB)	Fall
	Fundamental Frequency: 2402 MHz						
2402	114.25	-	V	-	-	-	-
2402	115.17	-	Н	-	-	-	-
4804	57.03	37.29	V	54.0	95.17	-16.71	Pass*
4804	55.23	36.95	Н	54.0	95.17	-17.05	Pass*
7206	57.35	38.03	V	54.0	95.17	-57.14	Pass
7206	56.31	38.22	Н	54.0	95.17	-56.95	Pass
9608	61.50	42.26	V	54.0	95.17	-52.91	Pass
9608	54.94	40.97	Н	54.0	95.17	-54.20	Pass
12010	56.92	42.74	V	54.0	95.17	-11.26	Pass*
12010	56.92	42.06	Н	54.0	95.17	-11.94	Pass*
	Fundamental Frequency: 2441 MHz						
2441	114.84	-	V	-	-	-	-
2441	114.68	-	Н	-	-	-	-
4882	53.34	35.99	V	54.0	94.84	-18.01	Pass*
4882	49.72	35.51	Н	54.0	94.84	-18.49	Pass*
7323	57.26	38.35	V	54.0	94.84	-15.65	Pass*
7323	58.08	38.36	Н	54.0	94.84	-15.64	Pass*
9764	58.70	42.08	V	54.0	94.84	-52.76	Pass
9764	56.81	41.44	Н	54.0	94.84	-53.40	Pass
12205	57.41	42.69	V	54.0	94.84	-11.31	Pass*
12205	57.05	42.12	Н	54.0	94.84	-11.88	Pass*
Fundamental Frequency: 2480 MHz							
2480	115.01	-	V	-	-	-	-
2480	114.59	-	Н	-	-	-	_
4960	58.70	37.73	V	54.0	95.01	-16.27	Pass*
4960	55.37	37.37	Н	54.0	95.01	-16.63	Pass*
7440	59.25	39.07	V	54.0	95.01	-14.93	Pass*
7440	58.92	39.10	H	54.0	95.01	-14.90	Pass*
9920	60.62	42.98	V	54.0	95.01	-52.03	Pass
9920	59.68	42.63	H	54.0	95.01	-52.38	Pass
12400	57.72	42.56	V	54.0	95.01	-11.44	Pass*
12400	57.41	42.20	H	54.0	95.01	-11.80	Pass*

^{*} Emission in restricted bands.

October 25, 2007

5.9 SPURIOUS CONDUCTED EMISSIONS [§ 15.247(d)]


5.9.1. Limits

FCC 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

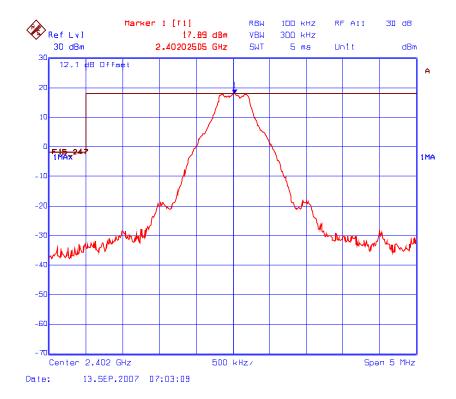
5.9.2. Method of Measurements

KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247), using Alternative Test Procedures.

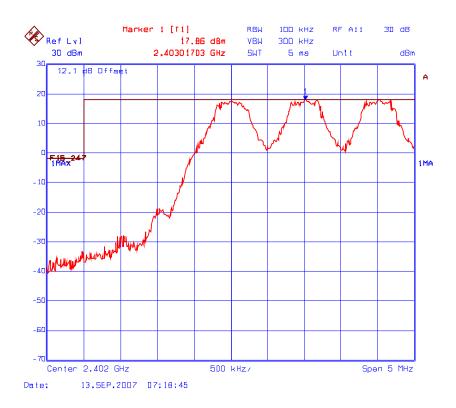
5.9.3. Test Arrangement

5.9.4. Test Equipment List

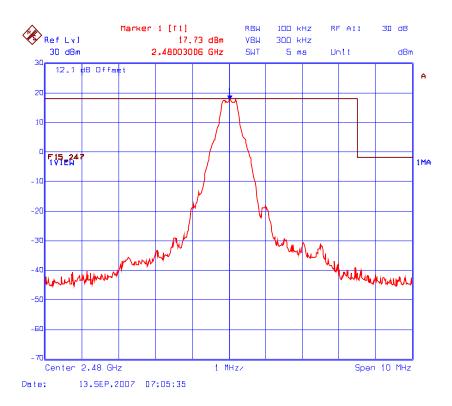
Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/ EMI Receiver	Rohde & Schwarz	FSEK30	100077	20 Hz – 40 GHz
Attenuator	Narda	4768-10	0702	DC – 40 GHz
High Pass Filter	K&L	11SH10-4000	T12000	DC – 26 GHz

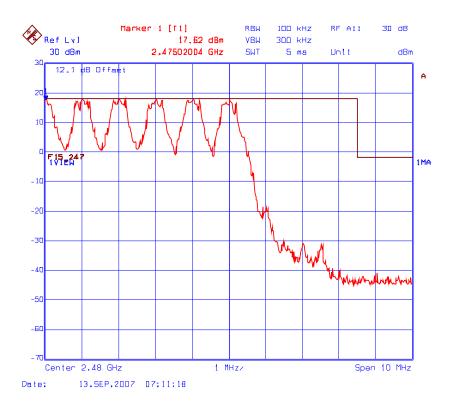

File #: MIS-068F15C247 A

October 25, 2007

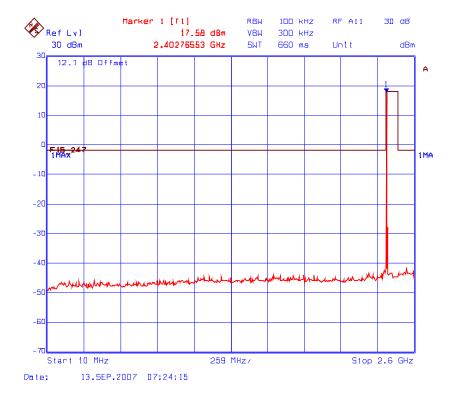

5.9.5. Test Data

5.9.5.1. Band-edge Conducted Emissions

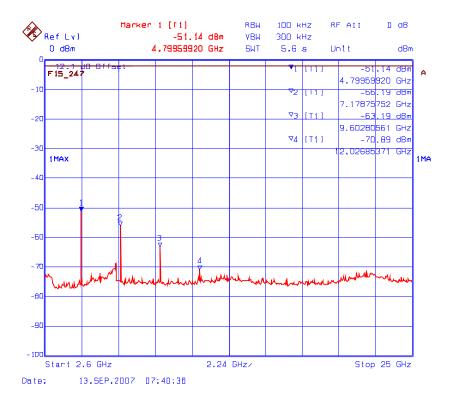

Plot 5.9.5.1.1.: Band-Edge Conducted Emissions 2402MHz, Lower Band-Edge Conducted Emissions, Continuous Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)


Plot 5.9.5.1.2.: Band-Edge Conducted Emissions 2402MHz, Lower Band-Edge Conducted Emissions, Hopping Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)

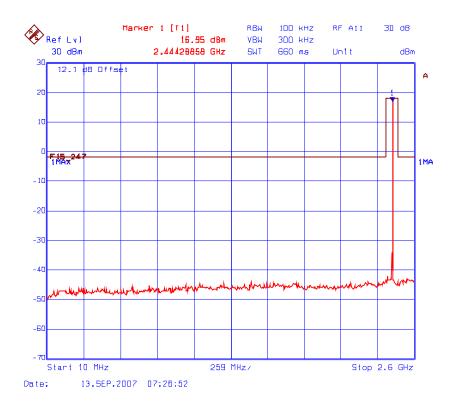
Plot 5.9.5.1.3.: Band-Edge Conducted Emissions 2480MHz, Upper Band-Edge Conducted Emissions, Continuous Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)


Plot 5.9.5.1.4.: Band-Edge Conducted Emissions 2480MHz, Upper Band-Edge Conducted Emissions, Hopping Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)

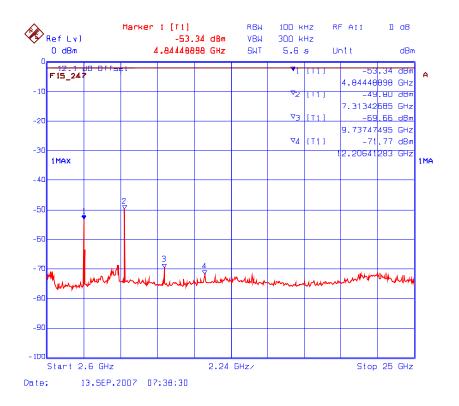
Transmitter Spurious Conducted Emissions 5.9.5.2.

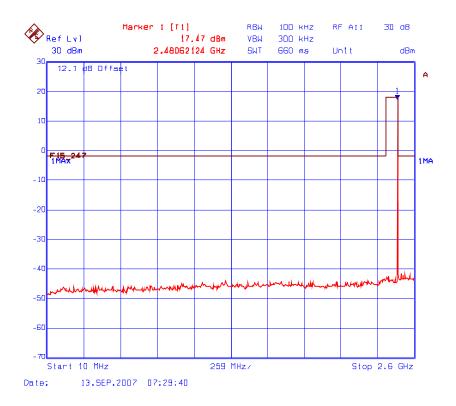

The emissions were scanned from 10 MHz to 25 GHz; all signals within 20 dB below the permissible limit were recorded in the table.

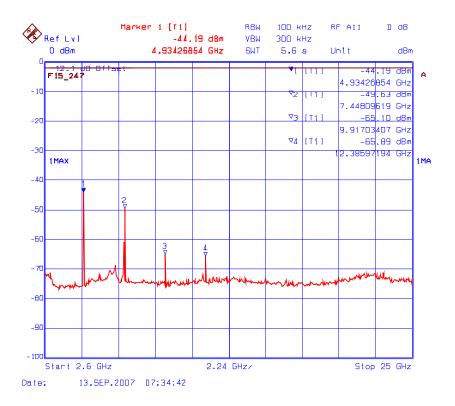
Plot 5.9.5.2.1.: Spurious Conducted Emissions at 2402 MHz #1 Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)



Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com


Plot 5.9.5.2.2.: Spurious Conducted Emissions at 2402 MHz #1 Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)


Plot 5.9.5.2.3.: Spurious Conducted Emissions at 2441 MHz #1 Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)


Plot 5.9.5.2.4.: Spurious Conducted Emissions at 2441 MHz #1 Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)

Plot 5.9.5.2.5.: Spurious Conducted Emissions at 2480 MHz #1 Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)

Plot 5.9.5.2.6.: Spurious Conducted Emissions at 2480 MHz #1 Packet Type: DH1, Random Modulation: SPSR (Static Pseudo)

Tel. #: 905-829-1570, Fax. #: 905-829-8050 Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

EXHIBIT 6 MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

6.1 LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (dB)		
(Line Conducted)	DISTRIBUTION	9-150 kHz	0.15-30 MHz	
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
LISN coupling specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
Cable and Input Transient Limiter calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5	
Mismatch: Receiver VRC Γ_1 = 0.03 LISN VRC Γ_R = 0.8(9 kHz) 0.2 (30 MHz) Uncertainty limits 20Log(1± $\Gamma_1\Gamma_R$)	U-Shaped	<u>+</u> 0.2	<u>+</u> 0.3	
System repeatability	Std. deviation	<u>+</u> 0.2	<u>+</u> 0.05	
Repeatability of EUT				
Combined standard uncertainty	Normal	<u>+</u> 1.25	<u>+</u> 1.30	
Expanded uncertainty U	Normal (k=2)	<u>+</u> 2.50	<u>+</u> 2.60	

Sample Calculation for Measurement Accuracy in 450 kHz to 30 MHz Band:

$$\begin{split} &u_c(y) = \sqrt{\underset{l=1}{^{m}} \sum u_i^2(y)} = ~ \underline{+} ~ \overline{\sqrt{(1.5^2 + 1.5^2)/3 + (0.5/2)^2 + (0.05/2)^2 + 0.35^2}} ~ = ~ \underline{+} ~ 1.30 ~ dB \\ &U = 2u_c(y) = \underline{+} ~ 2.6 ~ dB \end{split}$$

October 25, 2007

FCC ID: O3JNBS5700

6.2 RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (<u>+</u> dB)		
(Radiated Emissions)	DISTRIBUTION	3 m	10 m	
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0	
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5	
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
Antenna Directivity	Rectangular	+0.5	+0.5	
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5	
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2	
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25	
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4	
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0	
Mismatch: Receiver VRC Γ_1 = 0.2 Antenna VRC Γ_R = 0.67(Bi) 0.3 (Lp) Uncertainty limits 20Log(1± $\Gamma_1\Gamma_R$)	U-Shaped	+1.1 -1.25	<u>+</u> 0.5	
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5	
Repeatability of EUT		-	-	
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72	
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44	

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k = 2 is used:

$$U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$$
 And $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$

 $\textbf{Tel. \#: 905-829-1570, Fax. \#: 905-829-8050, Email: } \underline{\textit{vic@ultratech-labs.com}}, \textbf{ Website: http://www.ultratech-labs.com}, \textbf{ Website: http://www.$