Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton (Auden) Accreditation No.: SCS 108 Certificate No: D835V2-499_Mar10 ## **CALIBRATION CERTIFICATE** Object Calibration procedure(s) QA CAL-05.v7 Calibration procedure for dipole validation kits Calibration date: March 22, 2010 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|--| | Power meter EPM-442A | GB37480704 | 06-Oct-09 (No. 217-01086) | . Oct-10 | | Power sensor HP 8481A | US37292783 | 06-Oct-09 (No. 217-01086) | Oct-10 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 31-Mar-09 (No. 217-01025) | Mar-10 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 31-Mar-09 (No. 217-01029) | Mar-10 | | Reference Probe ES3DV3 | SN: 3205 | 26-Jun-09 (No. ES3-3205_Jun09) | Jun-10 | | DAE4 | SN: 601 | 02-Mar-10 (No. DAE4-601_Mar10) | Mar-11 | | Secondary Standards | 10 # | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-09) | In house check: Oct-11 | | RF generator R&S SMT-06 | 100005 | 4-Aug-99 (in house check Oct-09) | In house check: Oct-11 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-09) | In house check: Oct-10 | | | Name | Function | Signature | | Calibrated by: | Dimce Illev | Laboratory Technician | O. Will | | A | V. a. B. J. | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | Approved by: | Katja Pokovic | Technical Manager | SCAS | | | | | | Issued: March 22, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D835V2-499_Mar10 Page 2 of 9 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V5.2 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V4.9 | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.9 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature during test | (22.0 ± 0.2) °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.43 mW / g | | SAR normalized | normalized to 1W | 9.72 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.71 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.58 mW / g | | SAR normalized | normalized to 1W | 6.32 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.31 mW /g ± 16.5 % (k=2) | Certificate No: D835V2-499_Mar10 **Body TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.3 ± 6 % | 1.01 mho/m ± 6 % | | Body TSL temperature during test | (22.0 ± 0.2) °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.53 mW / g | | SAR normalized | normalized to 1W | 10.1 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.82 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.66 mW / g | | SAR normalized | normalized to 1W | 6.64 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.49 mW / g ± 16.5 % (k=2) | Certificate No: D835V2-499_Mar10 #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.2 Ω - 3.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.4 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.1 Ω - 5.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.7 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.391 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 10, 2003 | Certificate No: D835V2-499_Mar10 #### **DASY5 Validation Report for Head TSL** Date/Time: 22.03.2010 10:17:58 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL900 Medium parameters used: f = 835 MHz; $\sigma = 0.91 \text{ mho/m}$; $\varepsilon_r = 42.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 26.06.2009 • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.03.2010 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • Measurement SW: DASY5,
V5.2 Build 157; SEMCAD X Version 14.0 Build 57 #### Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.5 V/m; Power Drift = 0.00691 dB Peak SAR (extrapolated) = 3.63 W/kg SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.58 mW/g Maximum value of SAR (measured) = 2.84 mW/g 0 dB = 2.84 mW/g ### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body** Date/Time: 22.03.2010 14:07:53 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL900 Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 55.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 26.06.2009 • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.03.2010 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57 #### Pin250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.6 V/m; Power Drift = 0.011 dB Peak SAR (extrapolated) = 3.73 W/kg SAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.66 mW/g Maximum value of SAR (measured) = 2.94 mW/g 0 dB = 2.94 mW/g #### Impedance Measurement Plot for Body TSL #### D835V2, serial no. 499 Extended Dipole Calibrations Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | | D 835 V2 – serial no. 499 | | | | | | | | | | | | |------------------------|---|-------|----------------------------|----------------|---------------------------------|----------------|----------------------|--------------|----------------------------|----------------|---------------------------|----------------| | | | | 835 Hea | ad | | | | | 835 B | ody | | | | Date of
Measurement | Return-Loss
(dB) | Delta | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | Return-Los
s (dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 3.22.2010 | -28.352 | | 52.17 | | -3.2461 | | -24.664 | | 50.066 | | -5.8652 | | | 3.22.2011 | -28.323 | 0.102 | 51.095 | 1.075 | -3.5773 | 0.331 | -24.665 | -0.004 | 50.685 | -0.619 | -1.477 | -4.388 | Therefore the verification result should support extended calibration. # <Dipole Verification Data> - D835 V2, serial no. 499 (Date of Measurement : 3.22.2011) 835 MHz - Head #### 835 MHz - Body #### SPORTON INTERNATIONAL INC. #### D835V2, serial no. 499 Extended Dipole Calibrations Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | | | | | | D 835 V2 – | serial no | . 499 | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|---------------------------|----------------|----------------------|--------------|----------------------------|----------------|---------------------------|----------------| | | | | 835 Hea | ad | | | | | 835 B | ody | | | | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | Return-Los
s (dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 3.22.2010 | -28.352 | | 52.17 | | -3.2461 | | -24.664 | | 50.066 | | -5.8652 | | | 3.22.2011 | -28.323 | 0.102 | 51.095 | 1.075 | -3.5773 | 0.331 | -24.665 | -0.004 | 50.685 | -0.619 | -1.477 | -4.388 | | 3.22.2012 | -28.265 | 0.307 | 50.685 | 1.485 | -3.2627 | 0.0166 | -23.821 | 3.42 | 50.977 | -0.911 | -3.2487 | -2.6165 | Therefore the verification result should support extended calibration. ## <Dipole Verification Data> - D835 V2, serial no. 499 (Date of Measurement : 3.22.2012) 835 MHz - Head #### 835 MHz - Body #### SPORTON INTERNATIONAL INC. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Client Sporton (Auden) Certificate No: D1900V2-5d041 Mar10 # CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d041 Calibration procedure(s) QA CAL-05.v7 Calibration procedure for dipole validation kits Calibration date: March This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|------------------------------------|--| | Power meter EPM-442A | GB37480704 | 06-Oct-09 (No. 217-01086) | Oct-10 | | Power sensor HP 8481A | US37292783 | 06-Oct-09 (No. 217-01086) | Oct-10 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 31-Mar-09 (No. 217-01025) | Mar-10 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 31-Mar-09 (No. 217-01029) | Mar-10 | | Reference Probe ES3DV3 | SN: 3205 | 26-Jun-09 (No. ES3-3205_Jun09) | Jun-10 | | DAE4 | SN: 601 | 02-Mar-10 (No. DAE4-601_Mar10) | Mar-11 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-09) | In house check: Oct-11 | | RF generator R&S SMT-06 | 100005 | 4-Aug-99 (in house check Oct-09) | In house check: Oct-11 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-09). | In house check; Oct-10 | | | Name | Function | Signature | | Calibrated by: | Dimce Illev | Laboratory Technician | D'Ilile | | Approved by: | Katja Pokovic | 4.2 | | | Approved by: | naya Fukuvic | Technical Manager | JA MG | | | | | The state of s | Issued: March 23, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D1900V2-5d041_Mar10 Page 2 of 9 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V5.2 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 1.45 mho/m ± 6 % | | Head TSL temperature during test | (21.5 ± 0.2) °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 10.1 mW / g | | SAR normalized | normalized to 1W | 40.4 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 39.8 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.25 mW / g | | SAR normalized | normalized to 1W | 21.0 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.9 mW /g ± 16.5 % (k=2) | Certificate No: D1900V2-5d041_Mar10 Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.9 ± 6 % | 1.58 mho/m ± 6 % | | Body TSL temperature during test | (21.5 ± 0.2) °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 10.4 mW / g | | SAR normalized | normalized to 1W | 41.6 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 40.0 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.57 mW / g | | SAR normalized | normalized to 1W | 22.3 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 22.1 mW / g ± 16.5 % (k=2) | Certificate No: D1900V2-5d041_Mar10 #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.9 Ω + 5.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.6 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.3 Ω + 5.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.1 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.202 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | | |-----------------|---------------|--|--| | Manufactured on | July 04, 2003 | | | Certificate No: D1900V2-5d041_Mar10 #### **DASY5 Validation Report for Head TSL** Date/Time: 23.03.2010 12:03:30 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 26.06.2009 Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.03.2010 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57 #### Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.8 V/m; Power Drift = 0.040 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.25 mW/g Maximum value of SAR (measured) = 12.7 mW/g 0 dB = 12.7 mW/g ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body** Date/Time: 17.03.2010 12:43:32 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U11 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.58 \text{ mho/m}$; $\varepsilon_r = 55$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 26.06.2009 • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.03.2010 • Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57 #### Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.1 V/m; Power Drift = 0.017 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.57 mW/g Maximum value of SAR (measured) = 13.1 mW/g 0 dB = 13.1 mW/g #### Impedance Measurement Plot for Body TSL #### D1900V2, serial no. 5D041 Extended Dipole Calibrations Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | | D 1900 V2 – serial no. 5D041 | | | | | | | | | | | | |------------------------|--|-------|----------------------------|--------|----------------------------------|---------------|----------------------|-------|----------------------------|----------------|--------------------------------------|----------------| | 1900 Head | | | | | | 1900 B | ody | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta | Real
Impedance
(ohm) | Delta | Imaginary
Impedanc
e (ohm) | Delta | Return-Los
s (dB) | Delta | Real
Impedance
(ohm) | Delta
(ohm) | Imaginar
y
Impedan
ce (ohm) | Delta
(ohm) | | 3.23.2010 | -24.549 | | 50.896 | | 5.9141 | | -23.108 | | 46.342 | | 5.669 | | | 3.23.2011 | -24.489 | 0.244 | 50.921 | -0.025 | 5.9588 | -0.045 | -23.022 | 0.372 | 48.808 | -2.466 | 6.991 | -1.322 | Therefore the verification result should support extended calibration. # <Dipole Verification Data> - D1900 V2, serial no. 5D041 (Date of Measurement : 3.23.2011) 1900 MHz - Head #### 1900 MHz - Body #### SPORTON INTERNATIONAL INC. #### D1900V2, serial no. 5D041 Extended Dipole Calibrations Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.
<Justification of the extended calibration> | | D 1900 V2 − serial no. 5D041 | | | | | | | | | | | | |------------------------|--|-----------|----------------------------|--------|----------------------------------|--------|----------------------|-------|----------------------------|----------------|--------------------------------------|----------------| | 1900 Head | | | | | 1900 B | ody | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta | Imaginary
Impedanc
e (ohm) | Delta | Return-Los
s (dB) | Delta | Real
Impedance
(ohm) | Delta
(ohm) | Imaginar
y
Impedan
ce (ohm) | Delta
(ohm) | | 3.23.2010 | -24.549 | | 50.896 | | 5.9141 | | -23.108 | | 46.342 | | 5.669 | | | 3.23.2011 | -24.489 | 0.244 | 50.921 | -0.025 | 5.9588 | -0.045 | -23.022 | 0.372 | 48.808 | -2.466 | 6.991 | -1.322 | | 3.23.2012 | -26.159 | 6.56 | 50.159 | 0.737 | 5.7824 | 0.1317 | -24.341 | 5.33 | 47.059 | -0.707 | 4.8668 | 0.8022 | # <Dipole Verification Data> - D1900 V2, serial no. 5D041 (Date of Measurement : 3.23.2012) 1900 MHz - Head SPORTON INTERNATIONAL INC. #### 1900 MHz - Body #### SPORTON INTERNATIONAL INC. #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton (Auden) Accreditation No.: SCS 108 Certificate No: D2450V2-736_Jul11 #### **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 736 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: July 25, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 06-Oct-10 (No. 217-01266) | Oct-11 | | Power sensor HP 8481A | US37292783 | 06-Oct-10 (No. 217-01266) | Oct-11 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 29-Mar-11 (No. 217-01367) | Apr-12 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 29-Mar-11 (No. 217-01371) | Apr-12 | | Reference Probe ES3DV3 | SN: 3205 | 29-Apr-11 (No. ES3-3205_Apr11) | Apr-12 | | DAE4 | SN: 601 | 04-Jul-11 (No. DAE4-601_Jul11) | Jul-12 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-09) | In house check: Oct-11 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-09) | In house check: Oct-11 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-10) | In house check: Oct-11 | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | lah | | Approved by: | Katja Pokovic | Technical Manager | al le | | | | | | Issued: July 25, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: **TSL** tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.6.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | _ | | Phantom | Modular Flat Phantom | _ | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.85 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.9 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 54.8 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.44 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 25.6 mW /g ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.7 ± 6 % | 2.00 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 13.3 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 52.3 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | _ | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 6.18 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.5 mW / g ± 16.5 % (k=2) | Certificate No: D2450V2-736_Jul11 #### **Appendix** #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.4 Ω + 1.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.0 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.8 Ω + 2.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.7 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.159 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might
bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 26, 2003 | Certificate No: D2450V2-736_Jul11 #### **DASY5 Validation Report for Head TSL** Date: 25.07.2011 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 736 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ mho/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011 • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.095 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 28.615 W/kg SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.44 mW/g Maximum value of SAR (measured) = 18.121 mW/g Certificate No: D2450V2-736_Jul11 #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 25.07.2011 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 736 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2 \text{ mho/m}$; $\varepsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) # DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 29.04.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.550 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.432 W/kg SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.18 mW/g Maximum value of SAR (measured) = 17.294 mW/g Certificate No: D2450V2-736_Jul11 # Impedance Measurement Plot for Body TSL ## D2450V2, serial no. 736 Extended Dipole Calibrations Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | | D 2450 V2 – serial no. 736 | | | | | | | | | | | | |------------------------|--|--------------|----------------------------|----------------|---------------------------|----------------|---------------------|--------------|----------------------------|----------------|---------------------------|----------------| | | | | 2450 Hea | d | | | | | 2450 Bo | dy | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 7.25.2011 | -27.042 | | 54.398 | | 1.4805 | | -30.696 | | 50.812 | | 2.8262 | | | 7.25.2012 | -27.950 | -3.365 | 52.541 | 1.857 | 0.77343 | 0.707 | -31.781 | -3.535 | 50.572 | 0.24 | 1.5953 | 1.2309 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - D2450 V2, serial no. 736 (Date of Measurement : 7.25.2012) 2450 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 #### 2450 MHz - Body TEL: 886-3-327-3456 FAX: 886-3-328-4978 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton (Auden) Accreditation No.: SCS 108 Certificate No: D5GHzV2-1006 Jan12 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1006 Calibration procedure(s) **QA CAL-22.V1** Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: January 18, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 29-Mar-11 (No. 217-01368) | Apr-12 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 29-Mar-11 (No. 217-01371) | Apr-12 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-11 (No. EX3-3503_Dec11) | Dec-12 | | DAE4 | SN: 601 | 04-Jul-11 (No. DAE4-601_Jul11) | Jul-12 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | | | | | | | | Name | Function | Signature | | | | | 1 0 | | Calibrated by: | Jeton Kastrati | Laboratory Technician | [In | Issued: January 18, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland S Schwelzerischer Kalibrierdienst Service suisse d'étalonnage Servizlo svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.0 | |------------------------------|--------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5500 MHz ± 1 MHz | | | | 5800 MHz ± 1 MHz | | # Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------
------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.3 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 7.91 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 79.2 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 2.26 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 mW /g ± 16.5 % (k=2) | # Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.8 ± 6 % | 4.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | | |---|--------------------|----------------------------|--| | SAR measured | 100 mW input power | 8.52 mW / g | | | SAR for nominal Head TSL parameters | normalized to 1W | 85.2 mW / g ± 17.0 % (k=2) | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.42 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.2 mW / g ± 16.5 % (k=2) | Certificate No: D5GHzV2-1006_Jan12 # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.3 ± 6 % | 5.22 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.90 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 79.0 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.24 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 22.4 mW / g ± 16.5 % (k=2) | # Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 49.2 ± 6 % | 5.46 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.25 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 72.6 mW / g ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.04 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.5 mW / g ± 17.6 % (k=2) | # Body TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.6 | 5.65 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.7 ± 6 % | 5.86 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.86 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 78.8 mW / g ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.19 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.9 mW / g ± 17.6 % (k=2) | # Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.2 ± 6 % | 6.28 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | -446 | # SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.30 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 73.1 mW / g ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.03 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.3 mW / g ± 17.6 % (k=2) | Certificate No: D5GHzV2-1006_Jan12 #### **Appendix** #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 52.3 Ω - 9.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.3 dB | #### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 50.8 Ω - 2.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.7 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 58.1 Ω + 1.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.4 dB | | ### Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 52.7 Ω - 9.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.7 dB | | # Antenna Parameters with Body TSL at 5500 MHz | Impedance, transformed to feed point | $48.9 \Omega + 0.1 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 39.3 dB | #### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 60.1 Ω - 1.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.7 dB | | # **General Antenna Parameters and Design** | 1.104 ns | |----------| | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 28, 2003 | Certificate No: D5GHzV2-1006_Jan12 # **DASY5 Validation Report for Head TSL** Date: 17.01.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1006 Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.6$ mho/m; $\epsilon_r = 36.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.9$ mho/m; $\epsilon_r = 35.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.22$ mho/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.826 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 29.2570 SAR(1 g) = 7.91 mW/g; SAR(10 g) = 2.26 mW/g Maximum
value of SAR (measured) = 17.937 mW/g Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan. dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.861 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 33.9880 SAR(1 g) = 8.52 mW/g; SAR(10 g) = 2.42 mW/g Maximum value of SAR (measured) = 19.922 mW/g Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan. dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.585 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 33.3960 SAR(1 g) = 7.9 mW/g; SAR(10 g) = 2.24 mW/g Maximum value of SAR (measured) = 18.961 mW/g # Impedance Measurement Plot for Head TSL # **DASY5 Validation Report for Body TSL** Date: 18.01.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1006 Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.46$ mho/m; $\varepsilon_r = 49.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.86$ mho/m; $\varepsilon_r = 48.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.28$ mho/m; $\varepsilon_r = 48.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.43, 4.43, 4.43), ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 04.07.2011 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.0(692); SEMCAD X 14.6.4(4989) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.425 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 28.4360 SAR(1 g) = 7.25 mW/g; SAR(10 g) = 2.04 mW/g Maximum value of SAR (measured) = 17.037 mW/g # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.904 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 33.5870 SAR(1 g) = 7.86 mW/g; SAR(10 g) = 2.19 mW/g Maximum value of SAR (measured) = 19.044 mW/g #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.193 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 33.8240 SAR(1 g) = 7.3 mW/g; SAR(10 g) = 2.03 mW/g Maximum value of SAR (measured) = 18.191 mW/g # Impedance Measurement Plot for Body TSL # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton (Auden) Accreditation No.: SCS 108 Certificate No: DAE4-1279_May12 | CALIBRATION CERTIFICATE | | | | | |---------------------------------------|-------------------------------------|--|------------------------|--| | Object | DAE4 - SD 000 D | 04 BJ - SN: 1279 | | | | Calibration procedure(s) | QA CAL-06.v24
Calibration proced | QA CAL-06.v24 Calibration procedure for the data acquisition electronics (DAE) | | | | Calibration date: | May 03, 2012 | | | | | | | | | | | | • | onal standards, which realize the physical units
obability are given on the following pages and a | • • | | | All calibrations have been conduct | ed in the closed laboratory | y facility: environment temperature (22 ± 3)°C a | and humidity < 70%. | | | Calibration Equipment used (M&TI | E critical for calibration) | | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | Keithley Multimeter Type 2001 | SN: 0810278 | 28-Sep-11 (No:11450) | Sep-12 | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | Calibrator Box V2.1 | SE UWS 053 AA 1001 | 05-Jan-12 (in house check) | In house check: Jan-13 | | | | | | | | | | | | | | | | Name | Function | Signature | | | Calibrated by: | Dominique Steffen | Technician | | | | Approved by: | Fin Bomholt | R&D Director | V. Bo June | | | This calibration contificate shall no | at he reproduced except in | full without written approval of the laboratory | Issued: May 3, 2012 | | Certificate No: DAE4-1279_May12 Page 1 of 5 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-1279_May12 Page 2 of 5 # **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = LSB = $6.1\mu V$, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | x | Y | Z | |---------------------|----------------------|----------------------|----------------------| | High Range | 405.179 ± 0.1% (k=2) | 404.974 ± 0.1% (k=2) | 404.316 ± 0.1% (k=2) | | Low Range | 3.98658 ± 0.7% (k=2) | 3.98731 ± 0.7% (k=2) | 3.99734 ± 0.7% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 117.0 ° ± 1 ° | |---|---------------| Certificate No: DAE4-1279_May12 Page 3 of 5 # **Appendix** 1. DC Voltage Linearity | High Range | - | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 199991.33 | -3.98 | -0.00 | | Channel X | + Input | 20000.42 | 1.05 | 0.01 | | Channel X | - Input | -20000.99 | 0.62 | -0.00 | | Channel Y | + Input | 199992.57 | -2.48 | -0.00 | | Channel Y | + Input | 20000.37 | 1.13 | 0.01 | | Channel Y | - Input | -20001.77 | -0.06 | 0.00 | | Channel Z | + Input | 199995.61 | 0.39 | 0.00 | | Channel Z | + Input | 19999.27 | 0.00 | 0.00 | | Channel Z | - Input | -20002.85 | -1.22 | 0.01 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 1999.48 | -0.32 | -0.02 | | Channel X | + Input | 200.41 | 0.23 | 0.11 | | Channel X | - Input | -199.28 | 0.50 | -0.25 | | Channel Y | + Input | 2000.24 | 0.55 | 0.03 | | Channel Y | + Input | 200.58 | 0.44 | 0.22 | | Channel Y | - Input | -199.75 | -0.01 | 0.00 | | Channel Z | + Input | 1998.83 | -0.82 | -0.04 | | Channel Z | + Input | 198.55 | -1.51 | -0.75 | | Channel Z | - Input | -201.15 | -1.30 | 0.65 | # 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 17.08 | 15.93 | | | - 200 | -15.69 | -16.88 | | Channel Y | 200 | 8.48 | 8.38 | | | - 200 | -9.22 | -9.58 | | Channel Z | 200 | -0.67 | -0.84 | | | - 200 | -0.62 | -0.65 | # 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 3.17 | -3.15 | | Channel Y | 200 | 7.76 | - | 3.57 | |
Channel Z | 200 | 8.98 | 6.44 | - | # 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15658 | 14778 | | Channel Y | 16426 | 15731 | | Channel Z | 15918 | 15544 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | 0.78 | -0.61 | 2.27 | 0.58 | | Channel Y | 0.16 | -1.45 | 2.45 | 0.76 | | Channel Z | -0.63 | -2.21 | 0.54 | 0.54 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | |----------------|-------------------| | Supply (+ Vcc) | +7.9 | | Supply (- Vcc) | -7.6 | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: DAE3-577_Jun12 Accreditation No.: SCS 108 # CALIBRATION CERTIFICATE Object DAE3 - SD 000 D03 AA - SN: 577 Calibration procedure(s) QA CAL-06.v24 Calibration procedure for the data acquisition electronics (DAE) Calibration date: June 06, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 28-Sep-11 (No:11450) | Sep-12 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Calibrator Box V2.1 | SE UWS 053 AA 1001 | 05-Jan-12 (in house check) | In house check: Jan-13 | Name Function Signature Dominique Steffen Technician Approved by: Fin Bomholt R&D Director Issued: June 6, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE3-577_Jun12 Calibrated by: Page 1 of 5 # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates # Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE3-577_Jun12 Page 2 of 5 # **DC Voltage Measurement** A/D - Converter Resolution nominal 1LSB = High Range: 6.1μV , full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Y | Z | |---------------------|----------------------|----------------------|----------------------| | High Range | 404.058 ± 0.1% (k=2) | 403.945 ± 0.1% (k=2) | 404.061 ± 0.1% (k=2) | | Low Range | 3.93352 ± 0.7% (k=2) | 3.95384 ± 0.7% (k=2) | 3.95036 ± 0.7% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 111.5 ° ± 1 ° | |---|---------------| Certificate No: DAE3-577_Jun12 # **Appendix** 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 199995.54 | -0.89 | -0.00 | | Channel X | + Input | 20002.00 | 1.99 | 0.01 | | Channel X | - Input | -19998.81 | 2.31 | -0.01 | | Channel Y | + Input | 199996.22 | -0.29 | -0.00 | | Channel Y | + Input | 19999.47 | -0.49 | -0.00 | | Channel Y | - Input | -20001.10 | 0.06 | -0.00 | | Channel Z | + Input | 199994.90 | -1.65 | -0.00 | | Channel Z | + Input | 20001.77 | 1.80 | 0.01 | | Channel Z | - Input | -19999.69 | 1.56 | -0.01 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2000.56 | 0.24 | 0.01 | | Channel X + Input | 200.49 | -0.28 | -0.14 | | Channel X - Input | -198.35 | 0.69 | -0.35 | | Channel Y + Input | 2000.53 | 0.31 | 0.02 | | Channel Y + Input | 200.35 | -0.44 | -0.22 | | Channel Y - Input | -199.12 | 0.17 | -0.08 | | Channel Z + Input | 1999.73 | -0.51 | -0.03 | | Channel Z + Input | 199.96 | -0.76 | -0.38 | | Channel Z - Input | -200.14 | -0.91 | 0.46 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -8.13 | -11.22 | | | - 200 | 12.49 | 10.42 | | Channel Y | 200 | 10.28 | 10.45 | | | - 200 | -12.29 | -11.56 | | Channel Z | 200 | 7.71 | 8.46 | | | - 200 | -10.39 | -10.87 | 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | -0.16 | -3.68 | | Channel Y | 200 | 6.63 | - | 0.62 | | Channel Z | 200 | 5.48 | 4.85 | - | # 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16237 | 16308 | | Channel Y | 16451 | 16683 | | Channel Z | 15995 | 16468 | ### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | -0.65 | -2.12 | 0.66 | 0.54 | | Channel Y | 0.02 | -1.35 | 1.15 | 0.59 | | Channel Z | -2.84 | -3.96 | -1.77 | 0.47 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------
-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE3-577_Jun12 Page 5 of 5 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Amphenol (Auden) Accreditation No.: SCS 108 Certificate No: DAE3-495_Apr12 | CALIBRATION CERTIFICAT | IE | |------------------------|----| |------------------------|----| Object DAE3 - SD 000 D03 AD - SN: 495 Calibration procedure(s) QA CAL-06.v24 Calibration procedure for the data acquisition electronics (DAE) Calibration date: April 23, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|---------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 28-Sep-11 (No:11450) | Sep-12 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Calibrator Box V2.1 | CE LIME DES AA 1001 | 05-Jan-12 (in house check) | In house check: Jan-13 | Name Function Signature Calibrated by: Eric Hainfeld Technician Approved by: Fin Bomholt R&D Director Issued: April 23, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### **Glossary** DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. # DC Voltage Measurement A/D - Converter Resolution nominal 1LSB = High Range: 6.1μV , full range = -100...+300 mV Low Range: 1LSB = 61nV , full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Υ | Z | |---------------------|----------------------|----------------------|----------------------| | High Range | 404.352 ± 0.1% (k=2) | 405.327 ± 0.1% (k=2) | 405.654 ± 0.1% (k=2) | | Low Range | 3.95463 ± 0.7% (k=2) | 3.99214 ± 0.7% (k=2) | 3.96716 ± 0.7% (k=2) | # **Connector Angle** | Connector Angle to be used in DASY system | 147.5 ° ± 1 ° | |---|---------------| |---|---------------| Certificate No: DAE3-495_Apr12 Page 3 of 5 # **Appendix** 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 199997.08 | -0.41 | -0.00 | | Channel X | + Input | 20003.46 | 2.34 | 0.01 | | Channel X | - Input | -19997.49 | 2.47 | -0.01 | | Channel Y | + Input | 199999.33 | 2.06 | 0.00 | | Channel Y | + Input | 20001.56 | 0.65 | 0.00 | | Channel Y | - Input | -19999.50 | 0.75 | -0.00 | | Channel Z | + Input | 199996.88 | -0.61 | -0.00 | | Channel Z | + Input | 20002.89 | 1.96 | 0.01 | | Channel Z | - Input | -19998.27 | 1.91 | -0.01 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2003.09 | 1.65 | 0.08 | | Channel X | + Input | 202.47 | 0.71 | 0.35 | | Channel X | - Input | -197.92 | 0.18 | -0.09 | | Channel Y | + Input | 2001.21 | 0.06 | 0.00 | | Channel Y | + Input | 201.12 | -0.45 | -0.22 | | Channel Y | - Input | -199.11 | -0.70 | 0.35 | | Channel Z | + Input | 2002.44 | 1.11 | 0.06 | | Channel Z | + Input | 200.50 | -1.13 | -0.56 | | Channel Z | - Input | -198.21 | -0.02 | 0.01 | # 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 3.65 | 2.03 | | | - 200 | -1.07 | -2.24 | | Channel Y | 200 | -0.86 | -1.37 | | | - 200 | 0.62 | 0.64 | | Channel Z | 200 | 1.94 | 1.92 | | | - 200 | -2.48 | -2.59 | # 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | . | -2.83 | -1.94 | | Channel Y | 200 | 4.87 | - | -5.00 | | Channel Z | 200 | 14.63 | -0.87 | - | # 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15807 | 16448 | | Channel Y | 15754 | 16462 | | Channel Z | 15889 | 15649 | # 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | -0.14 | -1.77 | 1.06 | 0.51 | | Channel Y | 0.58 | -1.02 | 2.16 | 0.57 | | Channel Z | -0.65 | -2.31 | 1.22 | 0.68 | ### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | |----------------|-------------------| | Supply (+ Vcc) | +7.9 | | Supply (- Vcc) | -7.6 | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | | |----------------|-------------------|---------------|-------------------|--| | Supply (+ Vcc) | +0.01 | +6 | +14 | | | Supply (- Vcc) | -0.01 | -8 | -9 | | # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton - TW (Auden) Accreditation No.: SCS 108 Certificate No: DAE4-1338_Jun12 # **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BJ - SN: 1338 Calibration procedure(s) QA CAL-06.v24 Calibration procedure for the data acquisition electronics (DAE) Calibration date: June 12, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled
Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 28-Sep-11 (No:11450) | Sep-12 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Calibrator Box V2.1 | SE UWS 053 AA 1001 | 05-Jan-12 (in house check) | In house check; Jan-13 | Name Function Signature Calibrated by: Eric Hainfeld Technician Approved by: Fin Bomholt R&D Director Issued: June 12, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1338_Jun12 Page 1 of 5