

Radio Satellite Communication Untertürkheimer Straße 6-10 . D-66117 Saarbrücken Telefon: +49 (0)681 598-0 Telefax: -9075

Test report No.: 4-1209-01-03/04

This test report consists of 109 pages Page 1 (109)

Accredited BluetoothTM Test Facility (BQTF)

Test report no.: 4_1209-01-03/03 FCC Part 24/22/15 Nurit 8010US-Mxx FCC ID: O2SNURIT8000SSG

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 2 (109)

Table of Contents

- **1** General information
- 1.1 Notes
- **1.2** Testing laboratory
- **1.3 Details of applicant**
- 1.4 Application details
- 1.5 Test item
- 1.6 Test standards
- 2 Technical test
- 2.1 Summary of test results
- 2.2 Test report
- **1** General information
- 1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

1.2 Testing laboratory

CETECOM ICT Services GmbH Untertürkheimer Straße 6 - 10 66117 Saarbrücken Germany Telefone : + 49 681 598 - 9100 Telefax : + 49 681 598 - 9075 E-mail : info@ict.cetecom.de Internet : www.cetecom-ict.de

Accredited testing laboratory The test laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025. DAR registration number: TTI-P-G-081/94-D0 Listed by : Federal Communications Commission (FCC) Identification/Registration No : 90462 Accredited BluetoothTM Test Facility (BQTF) BLUETOOTHTM is a trademark owned by Bluetooth SIG, Inc. and licensed to CETECOM

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 3 (109)

1.3 Details of applicant

Name : Street : City : Country : Telephon : Telefax : Contact : Telephone : e-mail :	Lipman Electronics Engineering LTD 11 Haamal Street 48092 Park Afek Rosh Haayin Israel +972-3-9029730 +972-3-9029722 Mr. Arie Geller +972-3-9029730 purchas@lipman.co.il
1.4 Application details Date of test	: 2004-02-18-20
1.5 Test item	
Type of equipment Type designation Manufacturer Street City	Tripple Band 850/1800/1900 MHz PoS Terminal Applicant
Country Serial numbers Additional information:	: : IMEI :004999.00.273656.01, Ser Nr. 273056
Frequency Type of modulation Number of channels	 1850.2 - 1909.8 MHz and 824.2 - 848.8 MHz 300KGXW / 300KG7W 300 (PCS1900) and 125 (PCS850)
Antenna Power supply (AC)	 Integrated antenna 100 - 240V (50/60Hz)
Output power GSM 850 Output power GSM 1900	
Type of equipment FCC – ID IC	EIRP: 31.7 dBm (Burst) : Temperature range : -30°C - +60°C : O2SNURIT8000SSG :
Hardware Software	: S30880-S8365-A100(B1) : 026
1.6 Test standards:	FCC Part 24, 22
	FCC Part 15

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 4 (109)

2 Technical test

For Part 24/22 we use the substitution method (TIA/EIA 603).

All measurements in this report are done in GSM mode. Device is able to transmit data in GPRS mode also. But because the current measurements are performed in PEAK mode no other results from GPRS mode are possible. The only different is the modulation average power, which is 3 dB higher (by using 2 timeslots in the Up-link (GPRS mode 10)).

Remarks:

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

FINAL VERDICT: PASS

Technical responsibility for area of testing :

2004-02-24

Date

Name

Gillmann D.

RSC 8431

Section

Signature

Technical responsibility for area of testing :

2004-02-24RSC8412Hausknecht D.DateDateSectionNameSignature

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 5 (109)

2.2 Test report

TEST REPORT

Test report no. : 4-1209-01-02/04

Test report no: 4-1209-01-03/04	Date: 2004.02.24	Page 6 (109)	
TEST REPORT REFERENCE			
LIST OF MEASUREMENTS			
PARAMETER TO BE MEASURED			PAGE
<u>Part PCS 1900</u>			
POWER OUTPUT	SUBCLAUSE § 2	4.232	7
FREQUENCY STABILITY	SUBCLAUSE § 2	4.235	9
AFC FREQ ERROR vs. VOLTAGE			12
AFC FREQ ERROR vs. TEMPERATU	RE		13
EMISSIONS LIMITS	SUBCLAUSE §2	4.238	12
RECEIVER SPURIOUS RADIATION	SUBCLAUSE § 1	15.109	21
CONDUCTED SPURIOUS EMISSION	S		26
BLOCK EDGE COMPLIANCE FOR B	BLOCK A AND C		35
OCCUPIED BANDWIDTH	SUBCLAUSE §2.	1049	37
PART PCS 850			
POWER OUTPUT	SUBCLAUSE § 2	2.913	44
FREQUENCY STABILITY	SUBCLAUSE § 2	2.355	46
AFC FREQ ERROR vs. VOLTAGE			49
AFC FREQ ERROR vs. TEMPERATU	RE		50
EMISSIONS LIMITS	SUBCLAUSE §2	2.917	49
RECEIVER SPURIOUS RADIATION	SUBCLAUSE § 1	15.109	58
CONDUCTED SPURIOUS EMISSION	S		62
BLOCK EDGE REQUIREMENTS			71
OCCUPIED BANDWIDTH	SUBCLAUSE §2	.1049	73
EMISSION LIMITATIONS FOR CELL	LULAR SUBCLAUSE §	22.917(F)	80
TEST EQUIPMENT AND ANCILLAR	IES USED FOR TESTS		89
Test site			95

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 7 (109)

POWER OUTPUT SUBCLAUSE § 24.232

Summary:

This paragraph contains both average , peak output powers and EIRP measurements for the mobile station.

In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation. The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average) This measurements were done at 3 frequencies, 1850,2 MHz, 1880,0 MHz and 1909,8 MHz (bottom, middle and top of operational frequency range)

Limits:

Power Step	Nominal Peak Output Power (dBm)	Tolerance (dB)
0	+30	± 2

Power Measurements:

Conducted:

Frequency (MHz)	Power Step	Peak Output Power (dBm)	Average in the burst Output Power (dBm)
1850.2	0	29.3	29.2
1880.0	0	29.0	28.9
1909.8	0	28.8	28.7
Measuremen	Measurement uncertainty		5 dB

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 8 (109)

EIRP Measurements

Description: This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Method of Measurement:

1. In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference center of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.

2. A "reference path loss" is established as Pin + 2.1 - Pr.

3. The EUT is substituted for the dipole at the reference centre of the chamber. The EUT is put into CW test mode and a scan is performed to obtain the radiation pattern.

4. From the radiation pattern, the co-ordinates where the maximum antenna gain occurs is identified.

5. The EUT is then put into pulse mode at its maximum power level (Power Step 0).

6. "Gated mode" power measurements are performed with the receiving antenna placed at the co-ordinates determined in Step 3 to determine the output power as defined in FCC Rule 24.232 (b) and (c). The "reference path loss" from Step 1 is added to this result.

7. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.1 dBi) and known input power (Pin).

8. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi.

Limits:

Power Step	Burst PEAK EIRP (dBm)
0	<33

		BURST PEAK EIRP		MODULATION AVERAGE	
Frequency	Power Step	(d]	(dBm)		Bm)
(MHz)		EIRP	ERP	EIRP	ERP
1850.2	0	31.7	29.55	22.7	20.55
1880.0	0	31.5	29.35	22.5	20.35
1909.8	0	31.4	29.25	22.4	20.25
Measurement unce	Measurement uncertainty		±.	3 dB	

Power Measurements (Radiated)

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 9 (109)

FREQUENCY STABILITY

SUBCLAUSE § 24.235

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER..

1. Measure the carrier frequency at room temperature.

2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with 85 Volts, connected to the CMU 200 and in a simulated call on channel 661 (centre channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

5. Re-measure carrier frequency at room temperature with nominal 110 Volts. Vary supply voltage from minimum 85 Volts to maximum 135 Volts, in 12 steps re-measuring carrier frequency at each voltage. Pause at 110 V dc Volts for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.

6. Subject the mobile station to overnight soak at +60 C.

7. With the mobile station, powered with 110 Volts, connected to the CMU 200 and in a simulated call on channel 661(center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.

8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

9. At all temperature levels hold the temperature to +/-0.5 C during the measurement procedure.

Measurement Limit:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.. This transceiver is specified to operate with an input voltage of between 85 V dc and 135 V dc, with a nominal voltage of 110 V dc.

Test report no ..: 4-1209-01-03/04

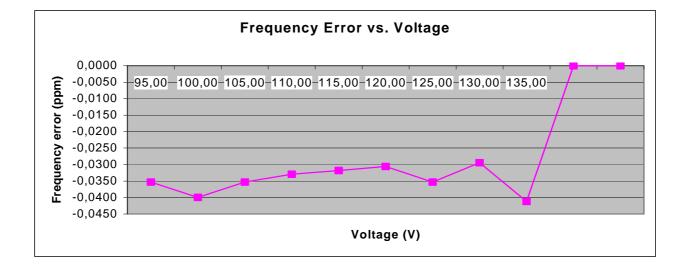
Date: 2004.02.24

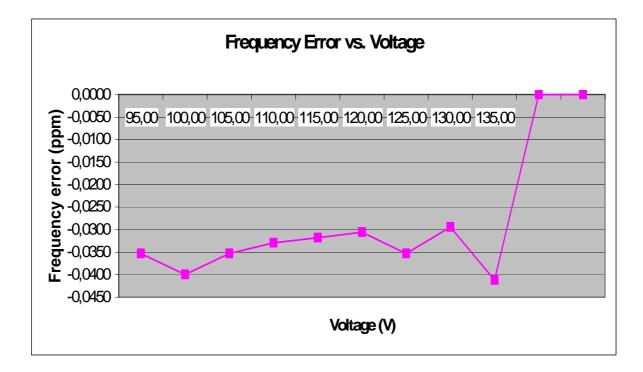
Page 10 (109)

AFC FREQ ERROR VS. VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
85,00	-30	-0,0000353	-0,0353
90,00	-27	-0,00000318	-0,0318
95,00	-30	-0,00000353	-0,0353
100,00	-34	-0,0000400	-0,0400
105,00	-30	-0,0000353	-0,0353
110,00	-28	-0,0000329	-0,0329
115,00	-27	-0,0000318	-0,0318
120,00	-26	-0,0000306	-0,0306
125,00	-30	-0,0000353	-0,0353
130,00	-25	-0,0000294	-0,0294
135,00	-35	-0,00000412	-0,0412

AFC FREQ ERROR vs. TEMPERATURE


TEMPERATURE (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	-34	-0,00000400	-0,0400
-20	-29	-0,00000341	-0,0341
-10	-35	-0,00000412	-0,0412
±0.0	-21	-0,00000247	-0,0247
+10	-23	-0,0000271	-0,0271
+20	-28	-0,00000329	-0,0329
+30	-36	-0,00000424	-0,0424
+40	-27	-0,00000318	-0,0318
+50	-26	-0,0000306	-0,0306
+60	-23	-0,00000271	-0,0271



Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 11 (109)

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 12 (109)

AFC FREQ ERROR VS. VOLTAGE

EMISSIONS LIMITS §24.238

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4 – 1992 requirements and is recognised by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load.

c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 13 (109)

Measurement Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (1850.2 MHz, 1879.8 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

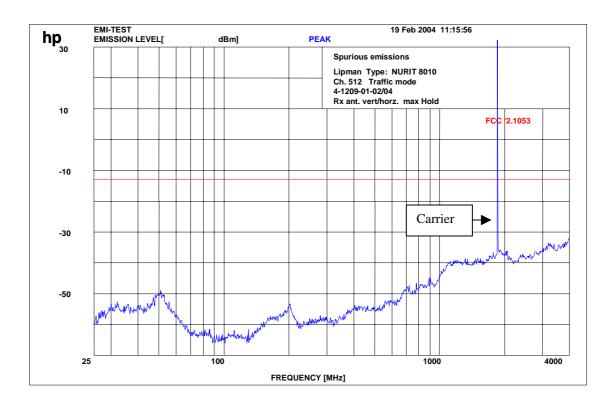
RESULTS OF OPEN FIELD RADIATED TEST FOR FCC-24:

The final open field radiated levels are presented on the next pages.

<u>All measurements were done in horizontal and vertical polarization, the plots show the worst case.</u> As can be seen from this data, the emissions from the test item were within the specification limit.

RESULTS OF OPEN FIELD RADIATED TEST FOR FCC-24:

	EMIS	SSION LIMITAT	IONS	
f (MHz)	amplitude of emission (dBm)	limit max. allowed emission power (dBm)	actual attenuation below frequency of operation (dBc)	results
		CH 512		
1 850.2	31.7	-13.0		carrier
5 550.6	- 43.5	(44.7 dBc)	75.2	complies
		CH 661		
1 880.0	31.5	-13.0 (44.5 dBc)		carrier
		CH 810		
1 909.8	31.4	-13.0		carrier
5 729.4	- 41.8	(44.4 dBc)	73.2	complies
Measurement u	ncertainty		± 0.5dB	



Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 14 (109)

Channel 512 (up to 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz

 $f \ge 1$ GHz : RBW / VBW 1 MHz

Carrier suppressed with a rejection filter

Test report no..: 4-1209-01-03/04

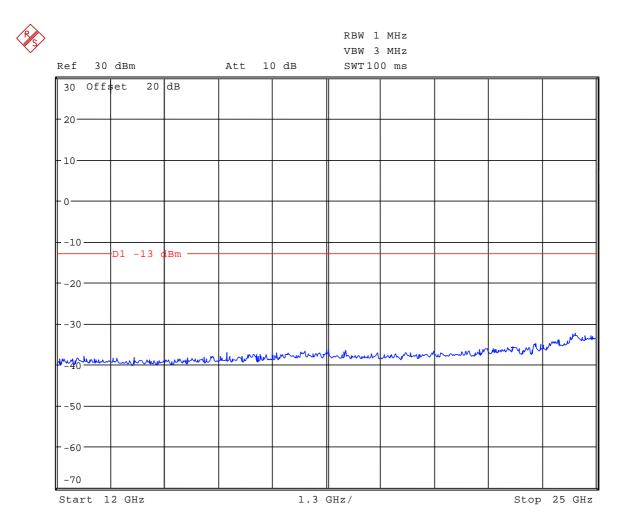
Date: 2004.02.24

Page 15 (109)

Channel 512 (up to 12 GHz)

f < 1 GHz : RBW/VBW: 100 kHz

 $f \ge 1$ GHz : RBW / VBW 1 MHz

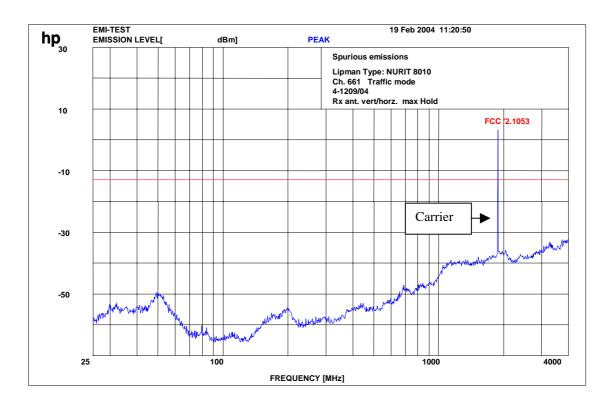


Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 16 (109)

Channel 512 :- 25 GHz valid for all three channels



Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 17 (109)

Channel 661 (up to 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz

 $f \ge 1$ GHz : RBW / VBW 1 MHz

Carrier suppressed with a rejection filter.

Test report no..: 4-1209-01-03/04

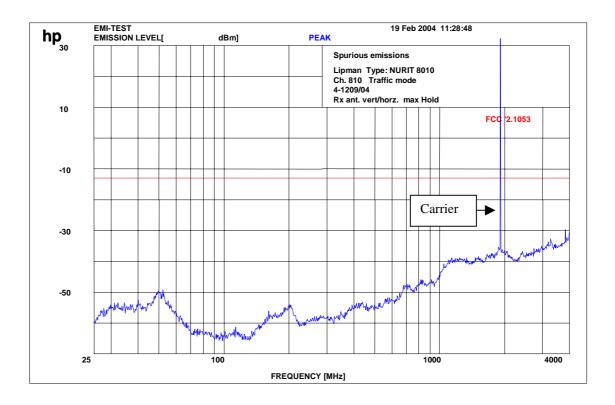
Date: 2004.02.24

Page 18 (109)

Channel 661 (up to 12 GHz)

f < 1 GHz : RBW/VBW: 100 kHz

 $f \ge 1$ GHz : RBW / VBW 1 MHz



Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

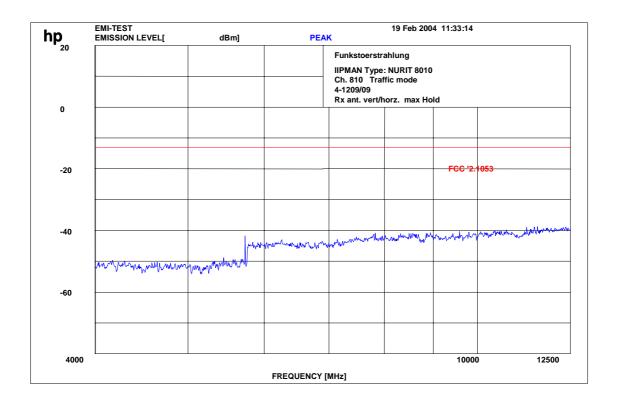
Page 19 (109)

Channel 810 up to 4 GHz

f < 1 GHz: RBW/VBW: 100 kHz

 $f \ge 1$ GHz : RBW / VBW 1 MHz

Carrier suppressed with a rejection filter



Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 20 (109)

Channel 810 up to 12 GHz

f < 1 GHz : RBW/VBW: 100 kHz

 $f \ge 1$ GHz : RBW/VBW 1 MHz

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 21 (109)

RECEIVER SPURIOUS RADIATION Radiated

§ 15.109

	SPURIOUS EMISSIONS LEVEL (µV/m)							
(СН 512,661,81	.0						
f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)
no	peaks	found						
Measu	irement unce	rtainty			±3	dB		
f < 1 GHz :	RBW/VBW:	100 kHz	f ≥1	GHz:RBW/	VBW: 1 MHz	Z		

f < 1 GHz : RBW/VBW: 100 kHz H = Horizontal ; V= Vertical

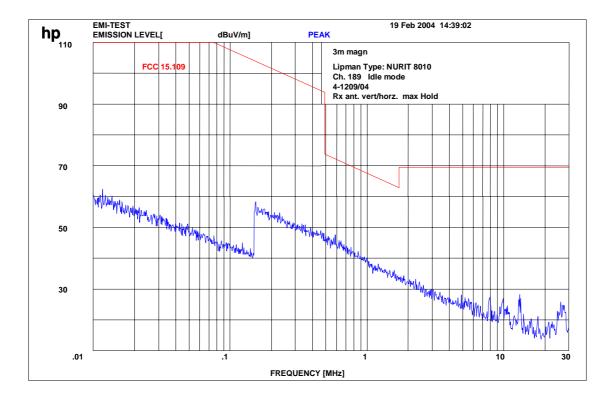
Measurement distance see table

Limits

SUBCLAUSE § 15.109

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3

Test report no ..: 4-1209-01-03/04


Date: 2004.02.24

Page 22 (109)

Part15 Spurious radiation from 9 kHz to 30 MHz

Idle Mode (this is valid for PCS 850 and PCS 1900 up to 30 MHz)

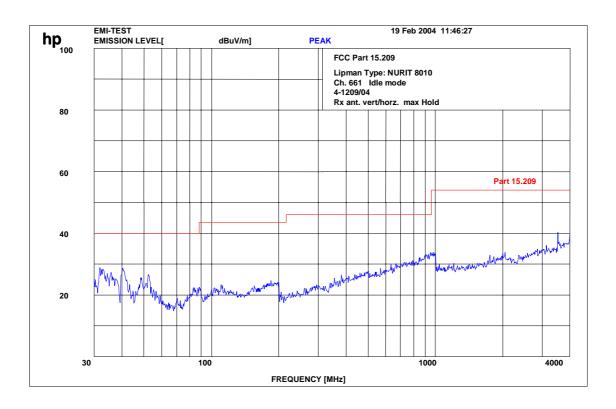
Recalculated from 300m or 30m to 3m with 40db/decade according FCC rules.

For peak measurement we use 100 kHz RBW/VBW For CISPR QP measurement we use 200 Hz from 9 kHz to 150kHz 9 kHz for 150 kHz to 30 MHz

Limits

SUBCLAUSE § 15.109

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30 / 29.5 dBµV/m	30



Test report no..: 4-1209-01-03/04

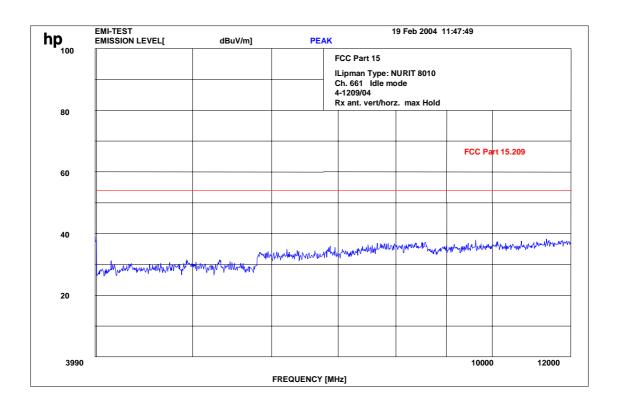
Date: 2004.02.24

Page 23 (109)

Idle-Mode (up to 4 GHz)

f < 1 GHz: RBW/VBW: 100 kHz

 $f \ge 1$ GHz : RBW/VBW 1 MHz



Test report no..: 4-1209-01-03/04

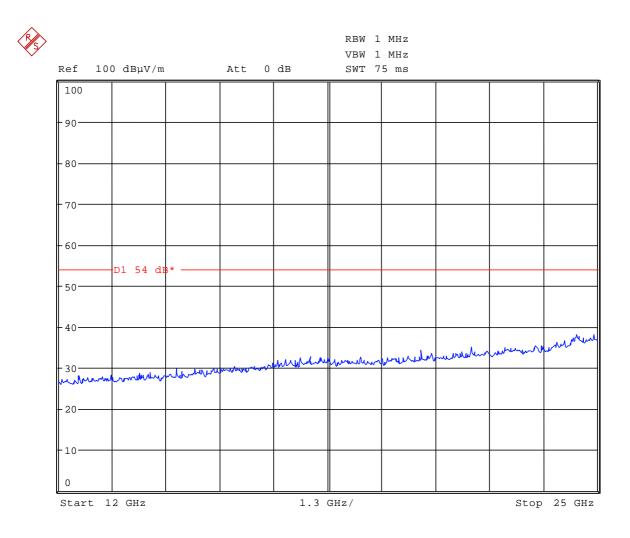
Date: 2004.02.24

Page 24 (109)

Idle-Mode (this is valid up to 12 GHz)

f < 1 GHz : RBW/VBW: 100 kHz

 $f \ge 1$ GHz : RBW/VBW 1 MHz



Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 25 (109)

Idle-Mode (this is valid up to 25 GHz)

For this measurement we used a special wideband horn antenna and a low noise preamp.

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 26 (109)

CONDUCTED SPURIOUS EMISSIONS

Measurement Procedure:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.

For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.

2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

USPCS Transmitter

Channel Frequency 512 1850.2 MHz

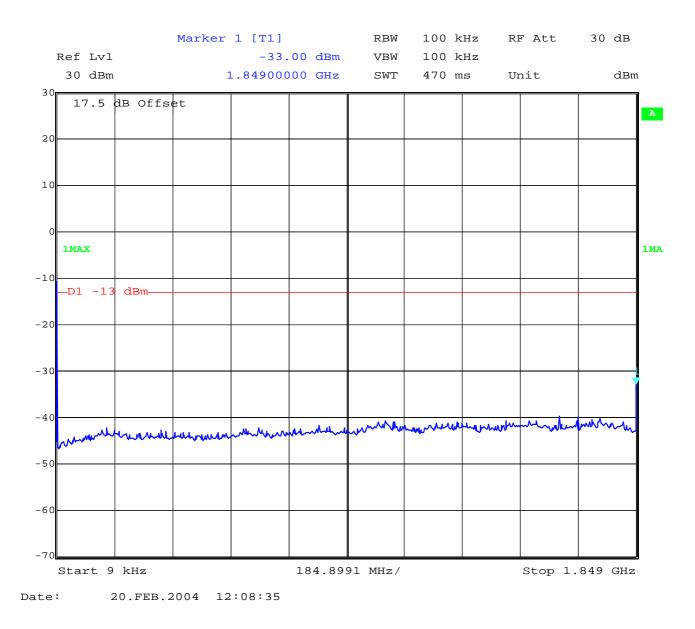
661 1880.0 MHz 810 1909.8 MHz

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

	EMIS	SSION LIMITAT	IONS	
f (MHz)	Amplitude of emission (dBm)	limit max. allowed emission power (dBm)	actual attenuation below frequency of operation (dBc)	results
		CH 512		
1850.2	29.3	-13.0		carrier
1849.99	-16.29	(42.3 dBc)	44.99	complies
		CH 661		
1880.0	29.0	-13.0 (42.0 dBc)		carrier
		CH 810		
1909.8	28.8	-13.0		carrier
1910.00	-14.76	(41.8 dBc)	43.22	complies
Measurement u	ncertainty	± 0.5dB		

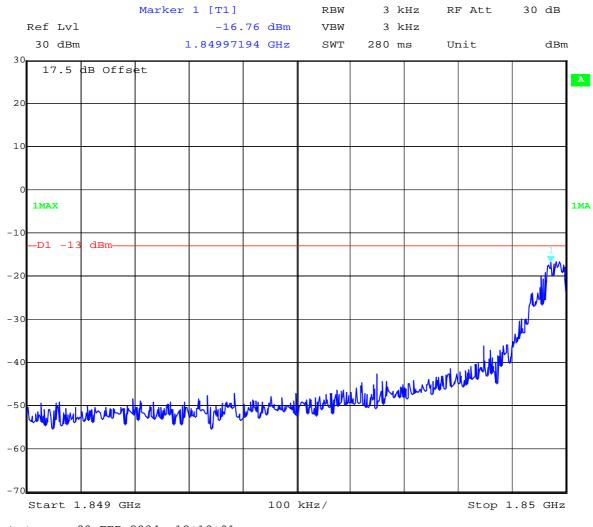

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 27 (109)

Measurements:

Channel: 512

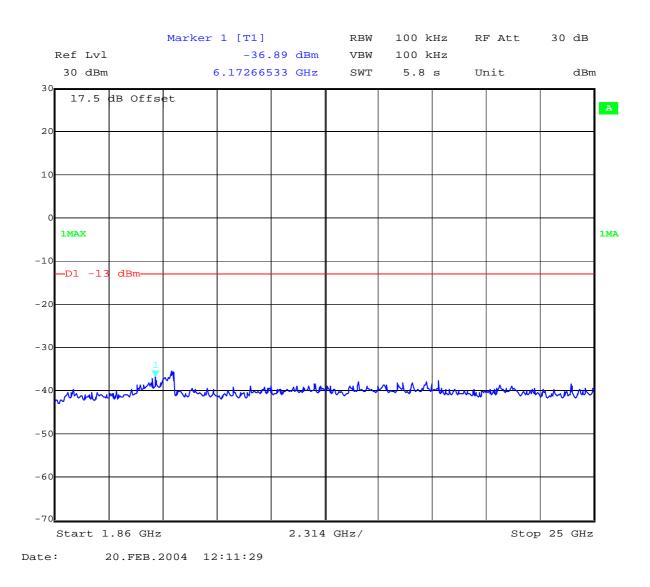


Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 28 (109)

Channel 512


Date:

20.FEB.2004 12:10:01

Test report no..: 4-1209-01-03/04 Date: 2004.02.24 Page 29 (109)

Channel 512

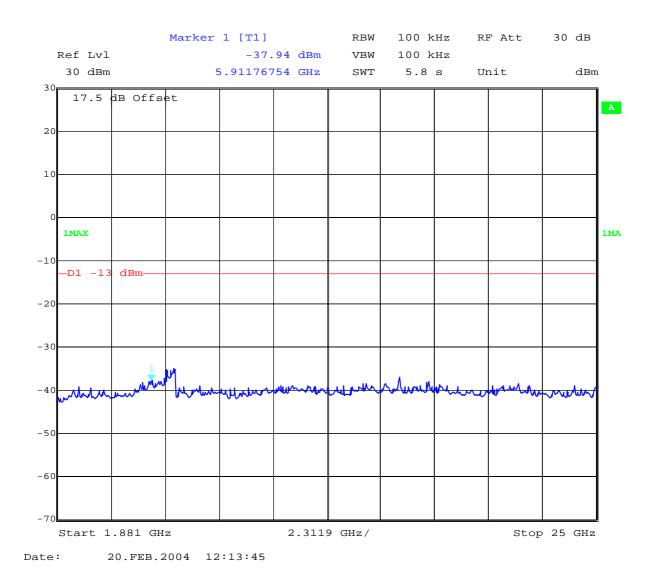
Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 30 (109)

GETEGOM

Channel 661

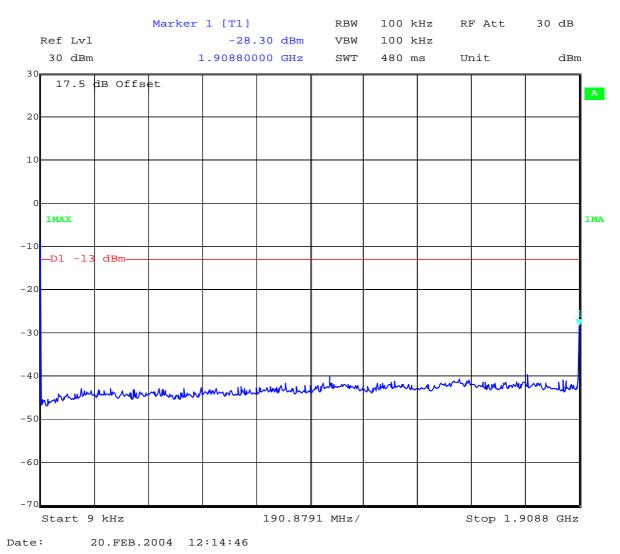

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 31 (109)

GETEGON

Channel 661

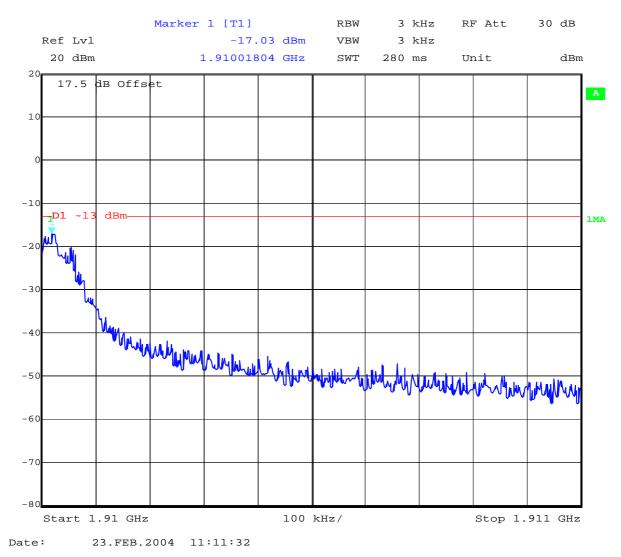

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 32 (109)

GETEGOM

Channel 810

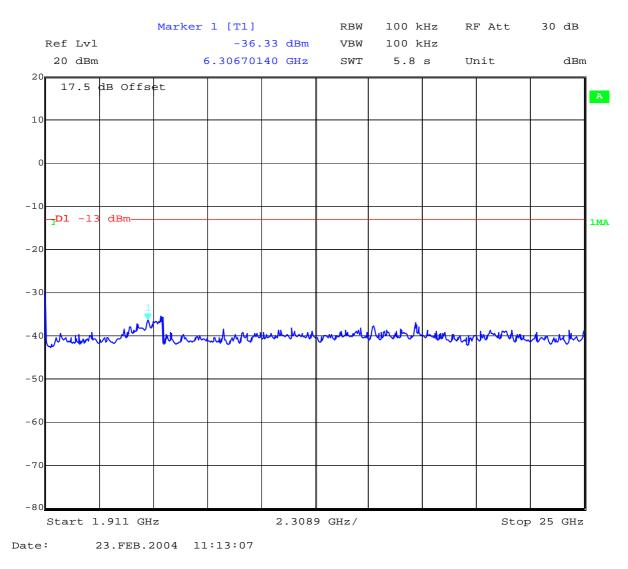


Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 33 (109)

Channel 810



Test report no..: 4-1209-01-03/04

Date: 2004.02.24

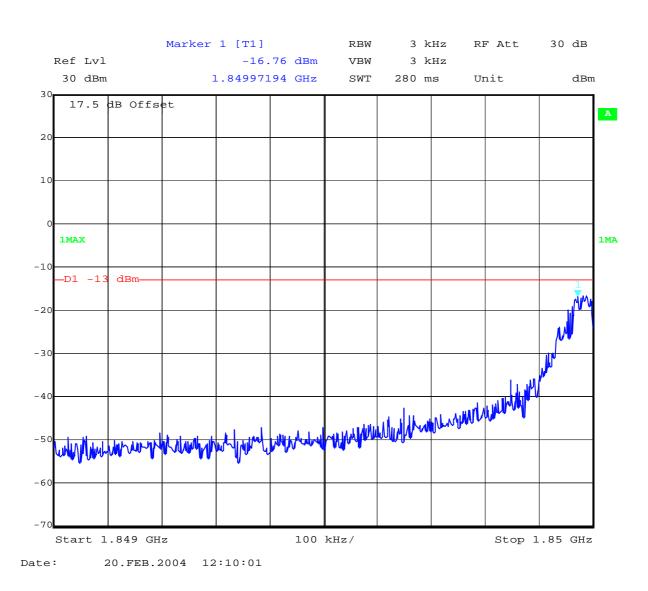
Page 34 (109)

Channel 810

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 35 (109)

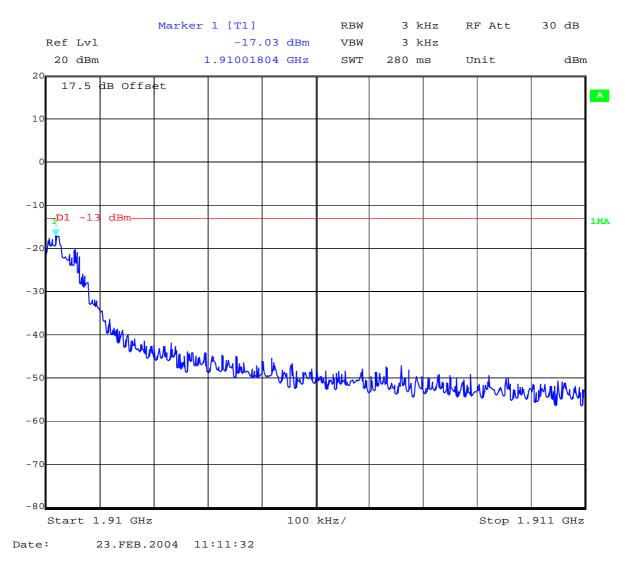

BLOCK EDGE COMPLIANCE FOR BLOCK A AND C

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Measurements: Block A Channel 512



Date: 2004.02.24

Page 36 (109)

Block C Channel 810

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 37 (109)

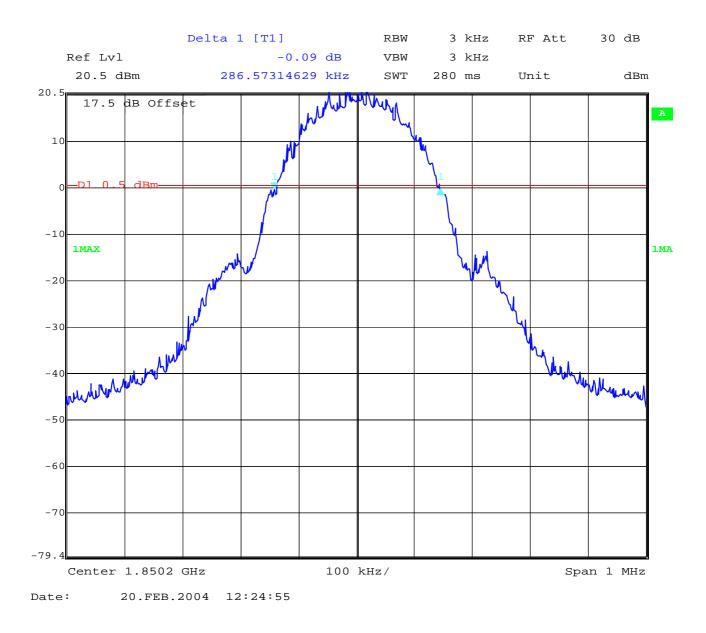
OCCUPIED BANDWIDTH §2.989

Occupied Bandwidth Results

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table 8.2 below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Frequency	99% Occupied Bandwidth	-26 dBc Bandwidth
1850.2 MHz	286.573	320.641
1880.0 MHz	278.557	318.637
1909.8 MHz	286.573	320.641

Part 24.238 (a) requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 299.7 kHz, this equates to a resolution bandwidth of at least 3.0 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

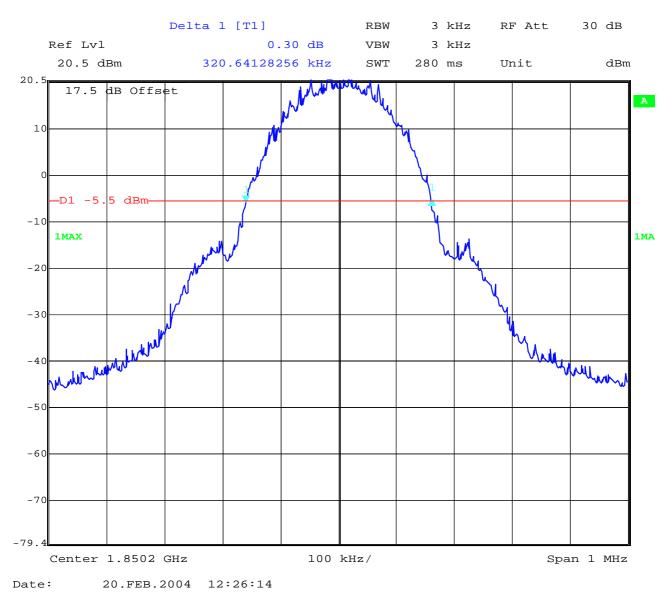


Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 38 (109)

Channel 512 99% Occupied Bandwidth

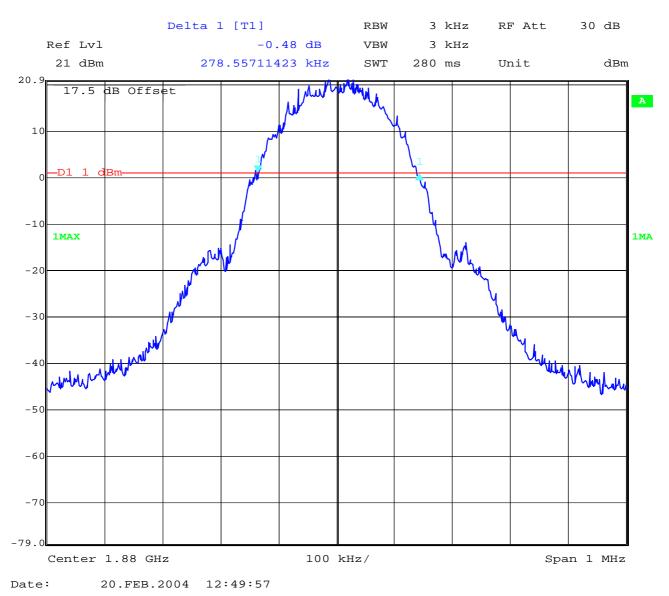


Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 39 (109)

Channel 512 -26 dBc Bandwidth

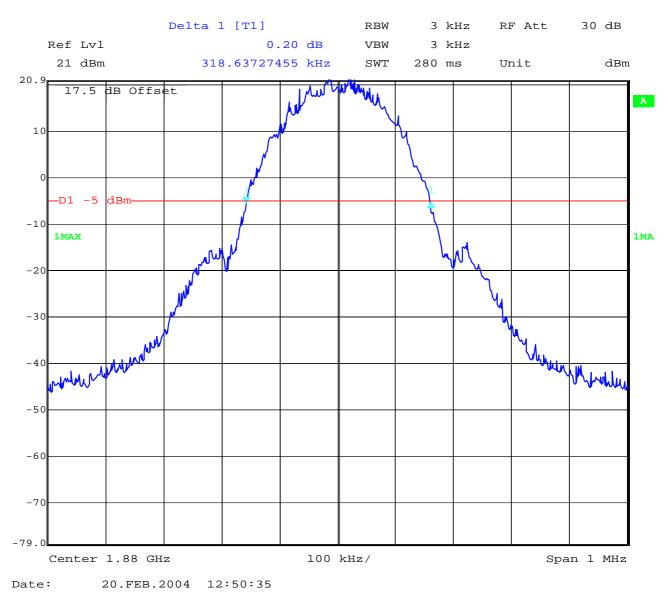


Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 40 (109)

Channel 661 99% Occupied Bandwidth

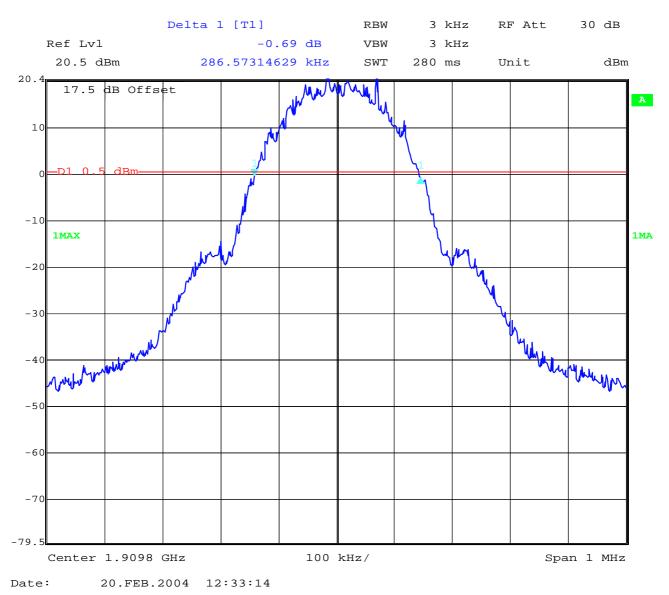


Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 41 (109)

Channel 661 -26 dBc Bandwidth

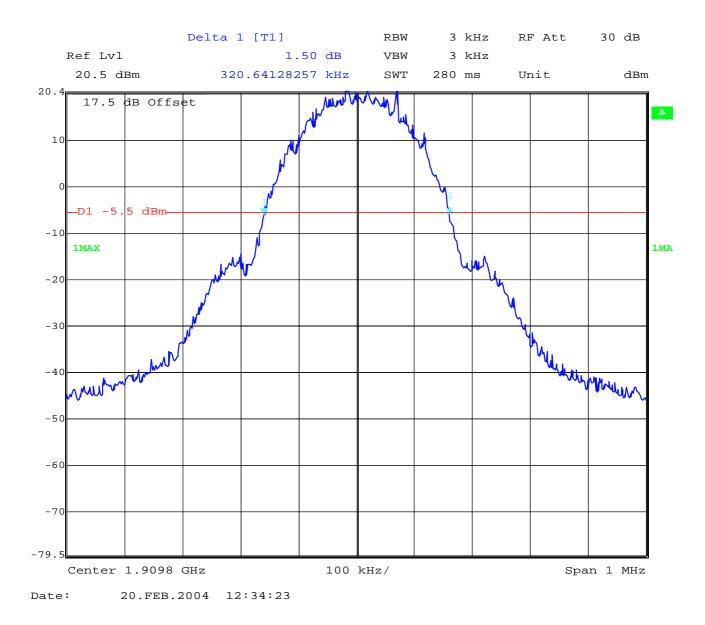


Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 42 (109)

Channel 810 99% Occupied Bandwidth



Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 43 (109)

Channel 810 -26 dBc Bandwidth

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 44 (109)

PART PCS 850

POWER OUTPUT

SUBCLAUSE § 22.913

Summery:

This paragraph contains both average , peak output powers and EIRP measurements for the mobile station.

In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation. The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average) This measurements were done at 3 frequencies, 824.2 MHz, 836.2 MHz and 848.8 MHz (bottom, middle and top of operational frequency range)

Limits:

Power Step	Nominal Peak Output Power (dBm)	Tolerance (dB)
5	+33	± 2

Power Measurements:

Conducted:

Frequency (MHz)	Power Step	Peak Output Power (dBm)	Average Output Power (dBm)
824.2	5	32.8	32.7
836.4	5	32.7	32.6
848.8	5	32.6	32.5
Measuremen	t uncertainty	±0.5	5 dB

REFERENCE NUMBER(S) OF TEST EQUIPMENT USED (for reference numbers see test equipment listing) 17 - 24; 64

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 45 (109)

ERP Measurements

Description: This is the test for the maximum radiated power from the phone.

Rule Part 22.913 specifies that "Mobile/portable stations are limited to 7 watts ERP.

Method of Measurement:

1. In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference center of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.

2. A "reference path loss" is established as Pin + 2.1 - Pr.

3. The EUT is substituted for the dipole at the reference centre of the chamber. The EUT is put into CW test mode and a scan is performed to obtain the radiation pattern.

4. From the radiation pattern, the co-ordinates where the maximum antenna gain occurs is identified.

5. The EUT is then put into pulse mode at its maximum power level (Power Step 5).

6. "Gated mode" power measurements are performed with the receiving antenna placed at the co-ordinates determined in Step 3 to determine the output power as defined in FCC Rule 22.913 (a). The "reference path loss" from Step 1 is added to this result.

7. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.1 dBi) and known input power (Pin).

8. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi.

Limits:

Power Step	Burst Peak (dBm)	
0	<33	

Power Measurements (Radiated)

Frequency (MHz)	Power Step	BURST Peak (dBm)		AVE	LATION RAGE Bm)
		EIRP	ERP	EIRP	ERP
824.2	5	26.45	24.3	17.45	15.3
836.4	5	26.05	23.9	17.05	14.9
848.8	5	25.75	23.6	16.75	14.6
Measurement unce	ertainty	±3 dB			

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 46 (109)

FREQUENCY STABILITY

SUBCLAUSE § 22.355

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER..

1. Measure the carrier frequency at room temperature.

2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with 85 Volts, connected to the CMU 200 and in a simulated call on channel 661 (centre channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

5. Re-measure carrier frequency at room temperature with nominal 85 Volts. Vary supply voltage from minimum 85 Volts to maximum 135 Volts, in 13 steps re-measuring carrier frequency at each voltage. Pause at 110 V ac Volts for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.
6. Subject the mobile station to overnight soak at +60 C.

7. With the mobile station, powered with 110 Volts, connected to the CMU 200 and in a simulated call on channel

661(center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.

8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

9. At all temperature levels hold the temperature to ± -0.5 C during the measurement procedure.

Measurement Limit:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 22.355, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.. This transceiver is specified to operate with an input voltage of between 85 V dc and 135 V dc, with a nominal voltage of 110 V dc.

Test report no ..: 4-1209-01-03/04

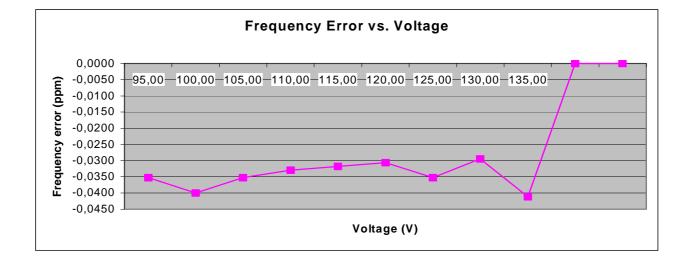
Date: 2004.02.24

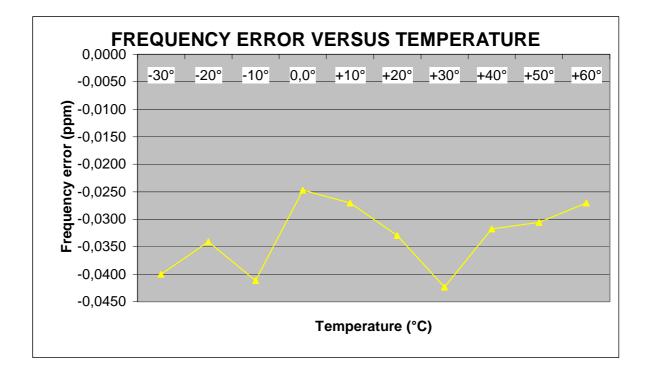
Page 47 (109)

AFC FREQ ERROR VS. VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
85,00	-30	-0,0000353	-0,0353
90,00	-27	-0,0000318	-0,0318
95,00	-30	-0,0000353	-0,0353
100,00	-34	-0,00000400	-0,0400
105,00	-30	-0,0000353	-0,0353
110,00	-28	-0,0000329	-0,0329
115,00	-27	-0,0000318	-0,0318
120,00	-26	-0,0000306	-0,0306
125,00	-30	-0,0000353	-0,0353
130,00	-25	-0,0000294	-0,0294
135,00	-35	-0,00000412	-0,0412

AFC FREQ ERROR vs. TEMPERATURE


TEMPERATURE (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	-34	-0,0000400	-0,0400
-20	-29	-0,0000341	-0,0341
-10	-35	-0,00000412	-0,0412
±0.0	-21	-0,0000247	-0,0247
+10	-23	-0,0000271	-0,0271
+20	-28	-0,0000329	-0,0329
+30	-36	-0,00000424	-0,0424
+40	-27	-0,0000318	-0,0318
+50	-26	-0,0000306	-0,0306
+60	-23	-0,0000271	-0,0271



Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 48 (109)

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 49 (109)

EMISSIONS LIMITS §22.917

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4 – 1992 requirements and is recognized by the FCC to be in compliance for a 3 and a10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0. 8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load.

c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters using the equation shown below:

e)Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603 .

Measurement Limit:

Sec. 22.917 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 50 (109)

Measurement Results:

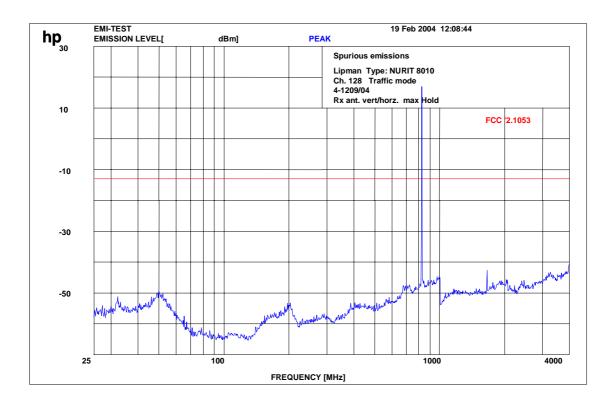
Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (824.2 MHz, 836.2 MHz and 848.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

RESULTS OF OPEN FIELD RADIATED TEST FOR FCC-22:

The final open field radiated levels are presented on the next pages.

<u>All measurements were done in horizontal and vertical polarization, the plots shows the worst case.</u> As can be seen from this data, the emissions from the test item were within the specification limit.

	EMIS	SSION LIMITAT	IONS	
f (MHz)	amplitude of emission ERP (dBm)	limit max. allowed emission power (dBm)	actual attenuation below frequency of operation (dBc)	results
		CH 128		
824.2	24.3	-13.0		carrier
1 648.4	- 42.1	(37.3 dBc)	66.4	
		CH 189		
836.4	23.9	-13.0		carrier
1 672.8	- 38.0	(36.9 dBc)	61.9	
		CH 251		
848.8	23.6	-13.0		carrier
1 697.6	- 22.2	(36.6 dBc)	45.8	
Measurement u	incertainty		± 0.5dB	



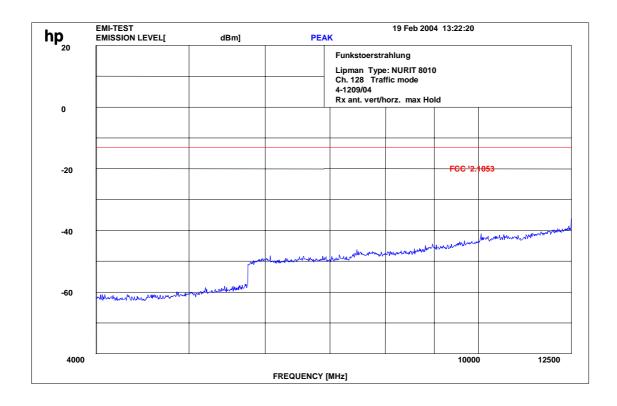
Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 51 (109)

Channel 128 (up to 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter



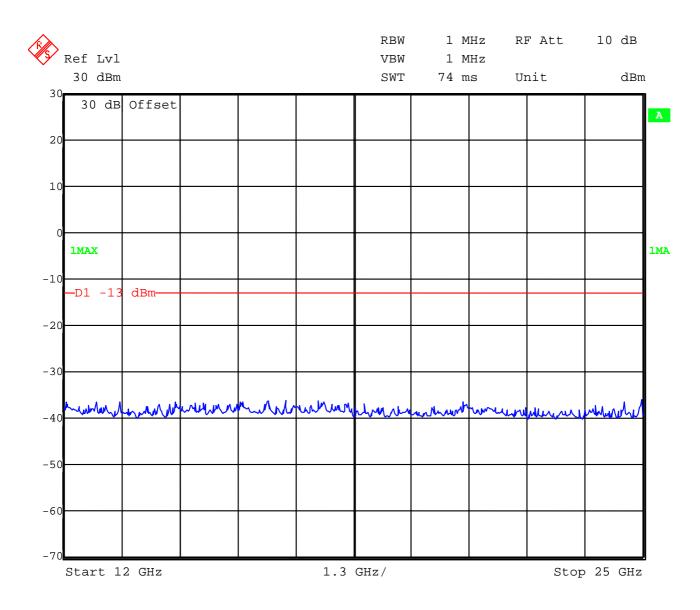
Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 52 (109)

Channel 128 (up to 12 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter

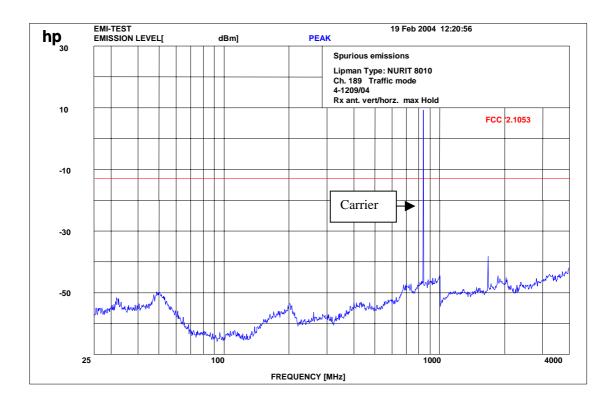


Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 53 (109)

Channel 128 :- 25 GHz (valid for all three channels)



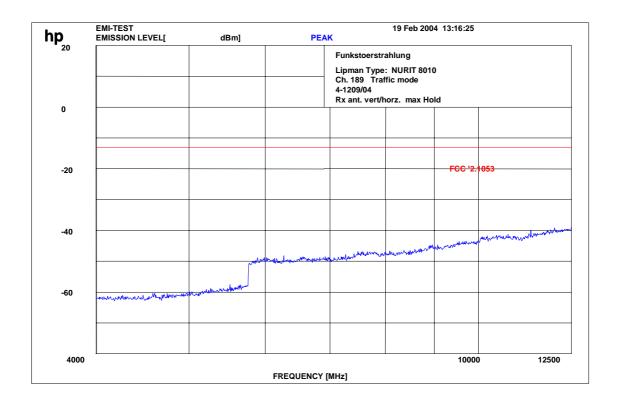
Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 54 (109)

Channel 189 (up to 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter



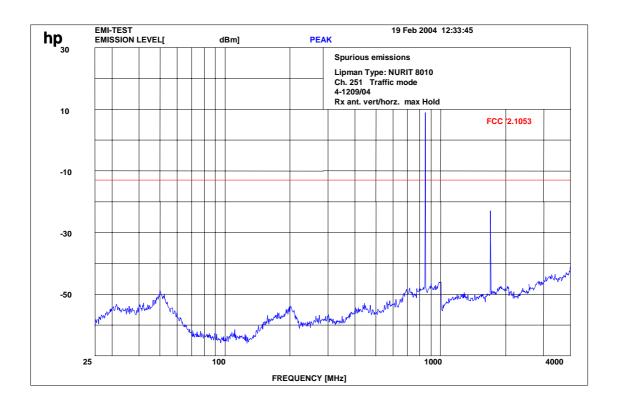
Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 55 (109)

Channel 189 (up to 12 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter



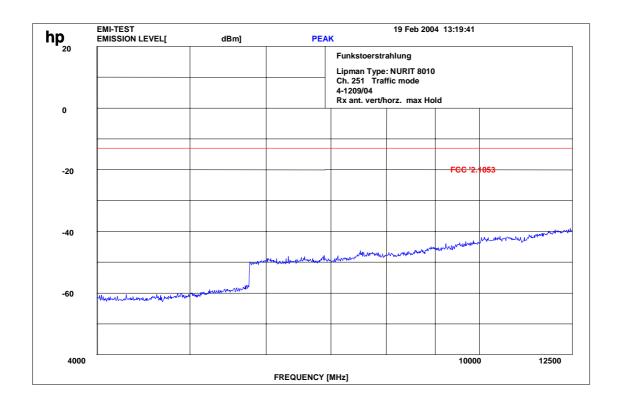
Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 56 (109)

Channel 251 up to 4 GHz

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter



Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 57 (109)

Channel 251 up to 12 GHz

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 58 (109)

RECEIVER SPURIOUS RADIATION

§ 15.109

Radiated

		S	PURIOUS I	EMISSIONS	LEVEL (µV/r	n)		
(СН 128,189,25	51						
f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)
no	peaks	found						
	peums	Tound						
Measu	irement unce	rtainty			±3 (1B		

 $f \ge 1$ GHz : RBW/VBW: 1 MHz

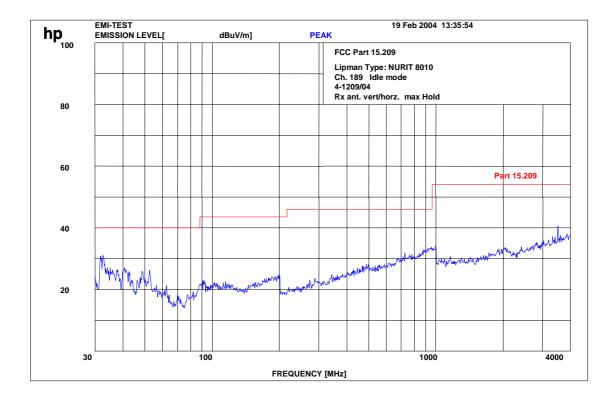
f < 1 GHz : RBW/VBW: 100 kHz H = Horizontal ; V= Vertical

Measurement distance see table

Limits

SUBCLAUSE § 15.109

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3



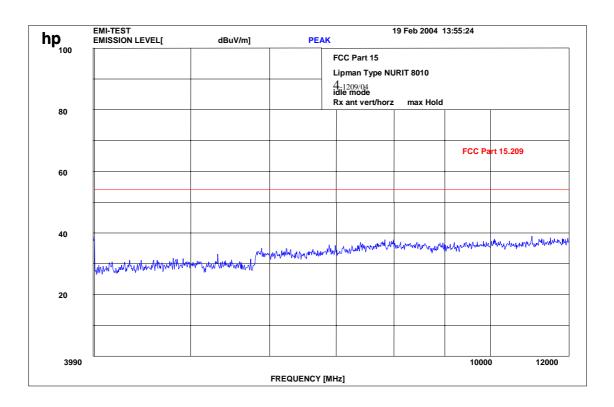
Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 59 (109)

Idle-Mode (this is valid for all channels and up to 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz

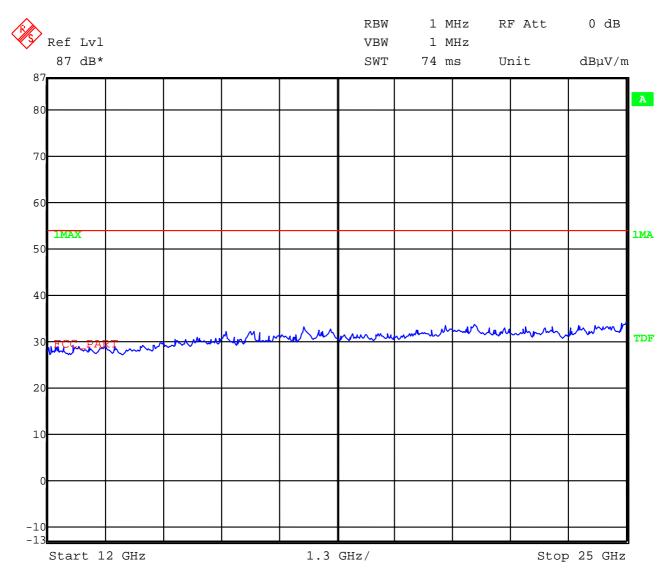


Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 60 (109)

Idle-Mode (this is valid for all channels and up to 12 GHz)


f < 1 GHz : RBW/VBW: 100 kHz

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 61 (109)

this is valid for all 3 channels and up to $\mathbf{25}\ \mathbf{GHz}$

REFERENCE NUMBER(S) OF TEST EQUIPMENT USED (for reference numbers see test equipment listing) 17 – 24, 64

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 62 (109)

CONDUCTED SPURIOUS EMISSIONS

Measurement Procedure:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.

For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.

2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

USPCS Transmitter

Channel Frequency

128 824.2 MHz

189 836.2 MHz

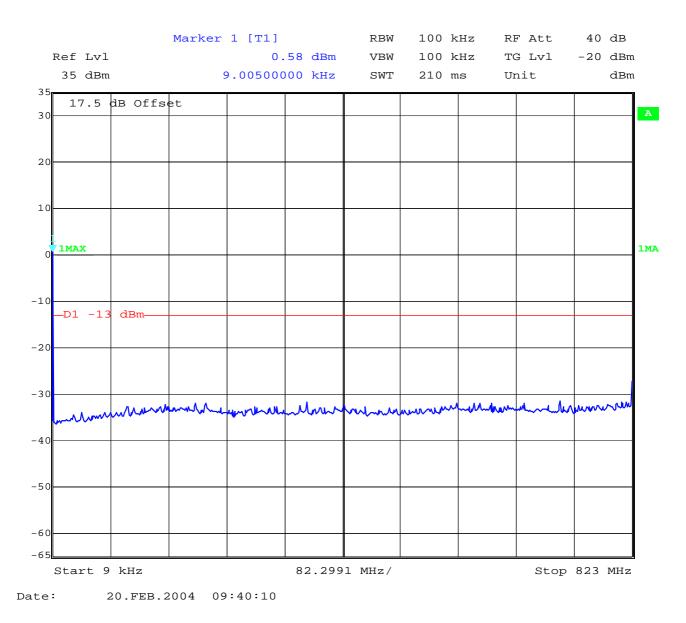
251 848.8 MHz

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

	EMISSION LIMITATIONS					
	amplitude of	limit max. allowed	actual attenuation			
f	emission	emission power	below	results		
(MHz)	(dBm)	(dBm)	frequency of			
			operation (dBc)			
		CH 128				
824.200	32.8	-13.0		carrier		
823.987	- 13.1	(45.8 dBc)	45.9	carrier		
6 251.052	- 27.3		60.1	complies		
		CH 189				
836.4	32.7	-13.0		carrier		
6 211.9	- 26.8	(45.7 dBc)	59.5	complies		
		CH 251				
848.800	32.6	-13.0		carrier		
849.022	- 13.2	(45.6 dBc)	45.8	carrier		
6 028.457	- 28.7		61.3	complies		
Measurement un	Measurement uncertainty ± 0.5dB					

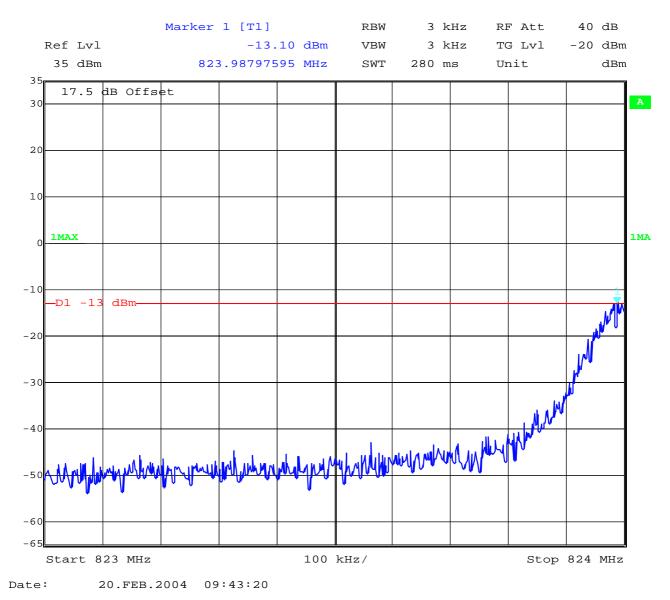


Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 63 (109)

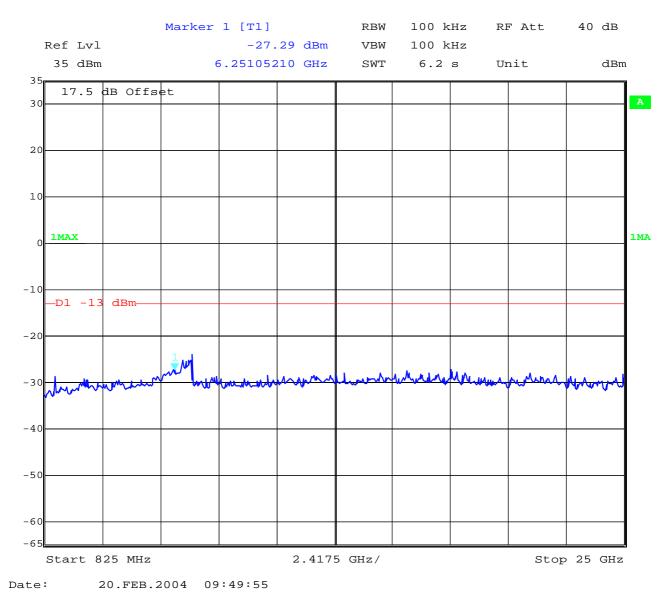
Measurements:



Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

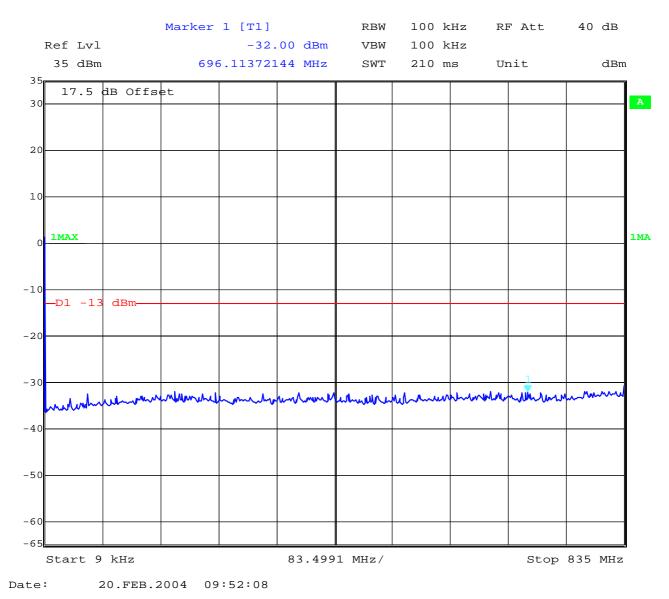
Page 64 (109)



Test report no..: 4-1209-01-03/04

Date: 2004.02.24

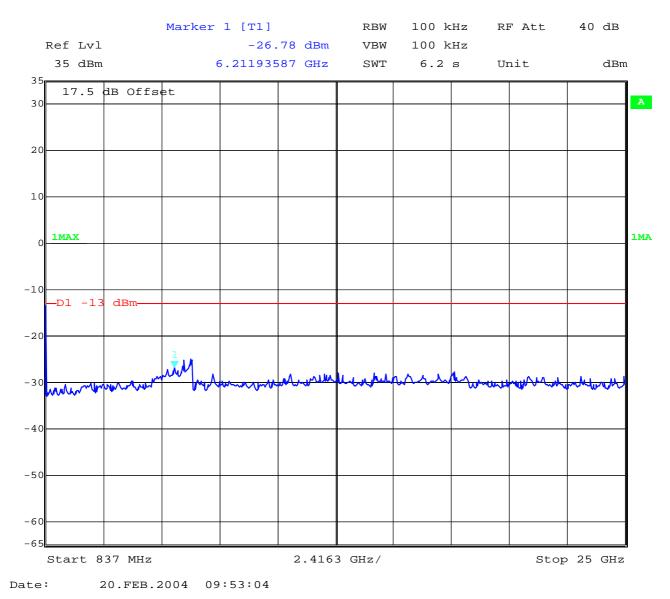
Page 65 (109)



Test report no..: 4-1209-01-03/04

Date: 2004.02.24

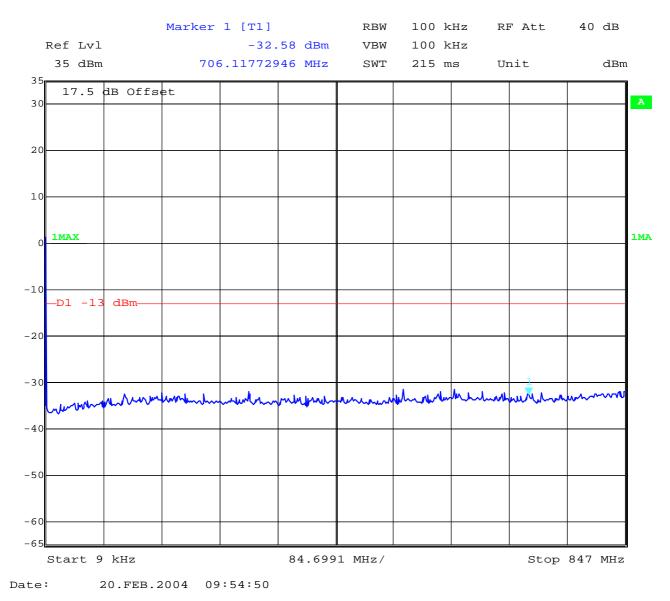
Page 66 (109)



Test report no..: 4-1209-01-03/04

Date: 2004.02.24

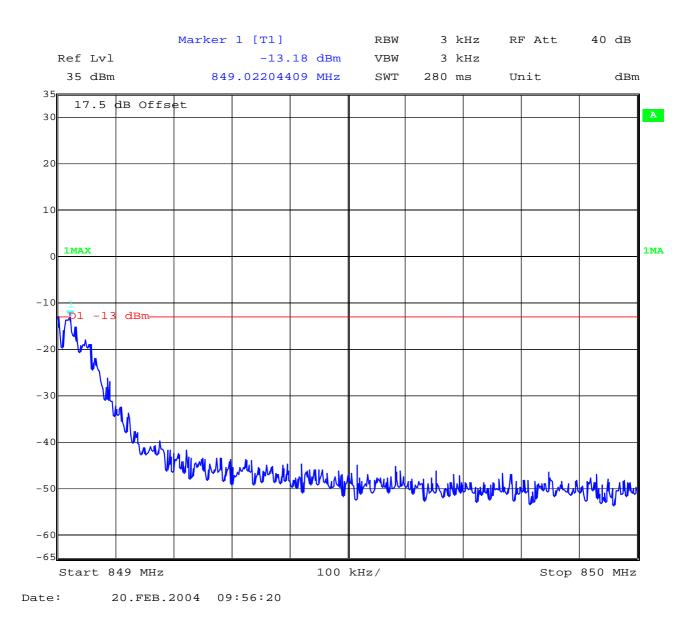
Page 67 (109)



Test report no..: 4-1209-01-03/04

Date: 2004.02.24

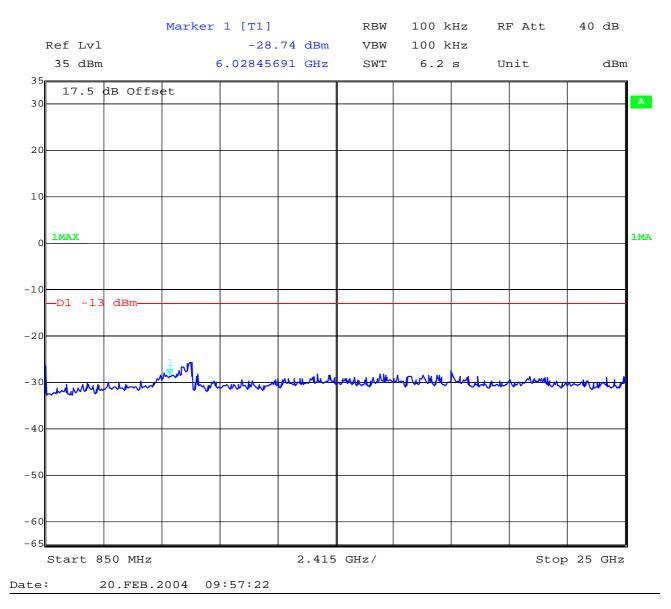
Page 68 (109)



Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 69 (109)



Test report no..: 4-1209-01-03/04

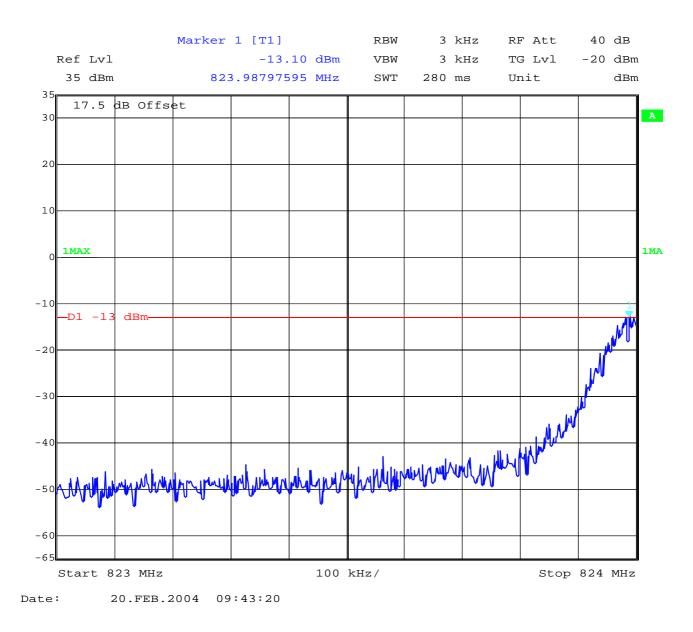
Date: 2004.02.24

Page 70 (109)

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 71 (109)


BLOCK EDGE REQUIREMENTS

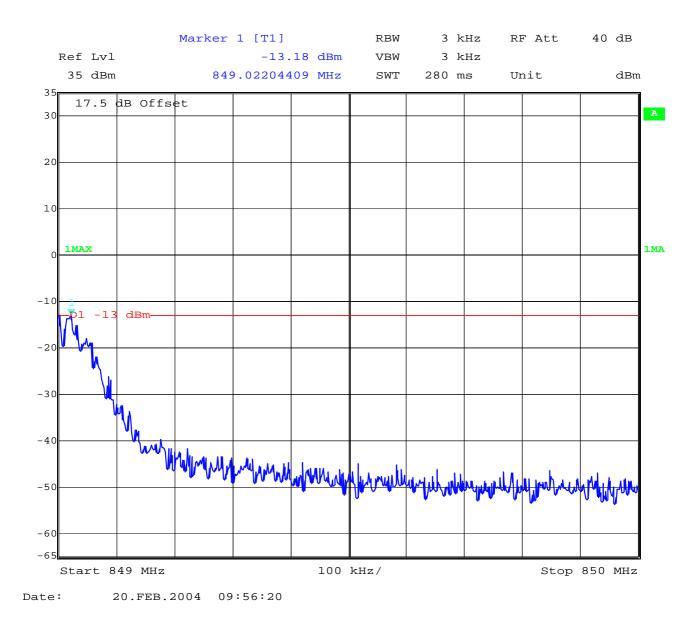
Measurement Limit:

Sec. 22.917(b) Emission Limits.

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +33 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Measurements: Block 1 Channel 128

REFERENCE NUMBER(S) OF TEST EQUIPMENT USED (for reference numbers see test equipment listing) 64



Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 72 (109)

Block 4 Channel 251

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 73 (109)

OCCUPIED BANDWIDTH	§2.989

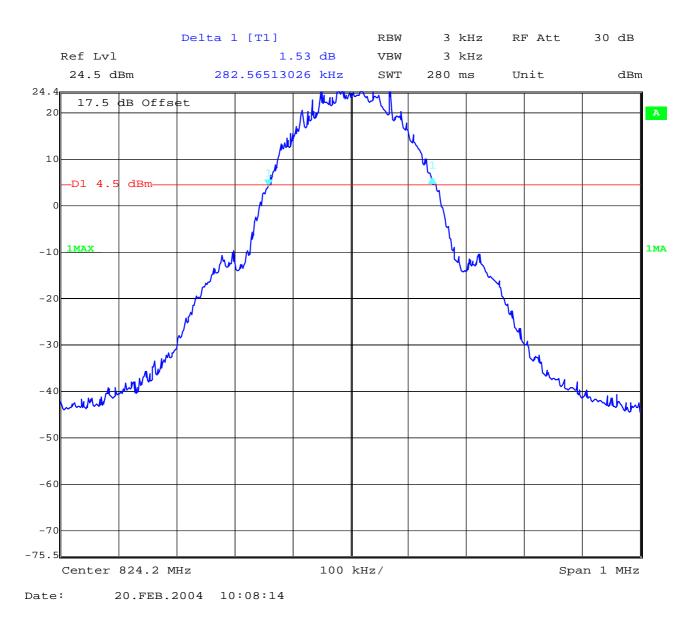
Occupied Bandwidth Results

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS

frequency band. Table 8.2 below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Frequency	99% Occupied Bandwidth	-26 dBc Bandwidth
824.2 MHz	282.565	322.645
836.4 MHz	286.573	320.641
848.8 MHz	292.585	322.645

Part 24.238 (a) requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 299 kHz, this equates to a resolution bandwidth of at least 3 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

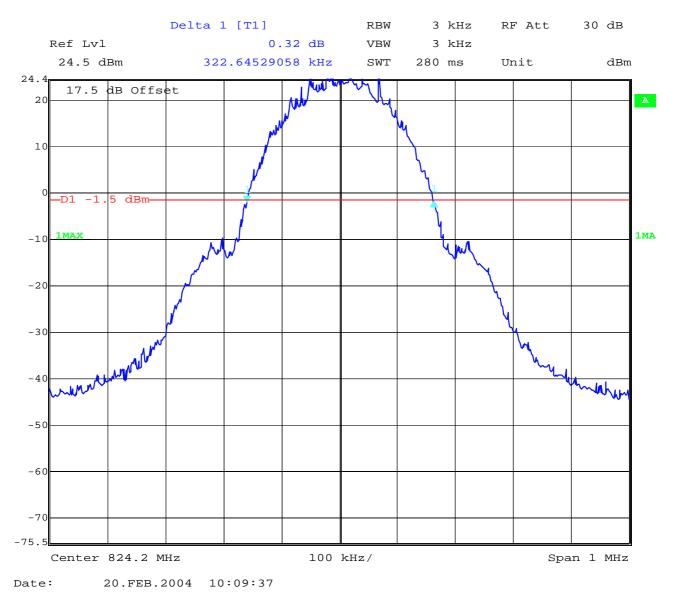


Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 74 (109)

Channel 128 99% Occupied Bandwidth

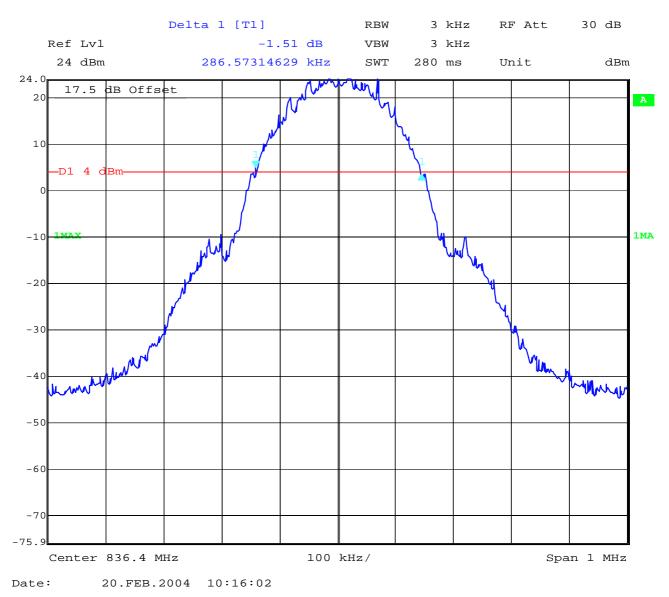


Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 75 (109)

Channel 128 -26 dBc Bandwidth

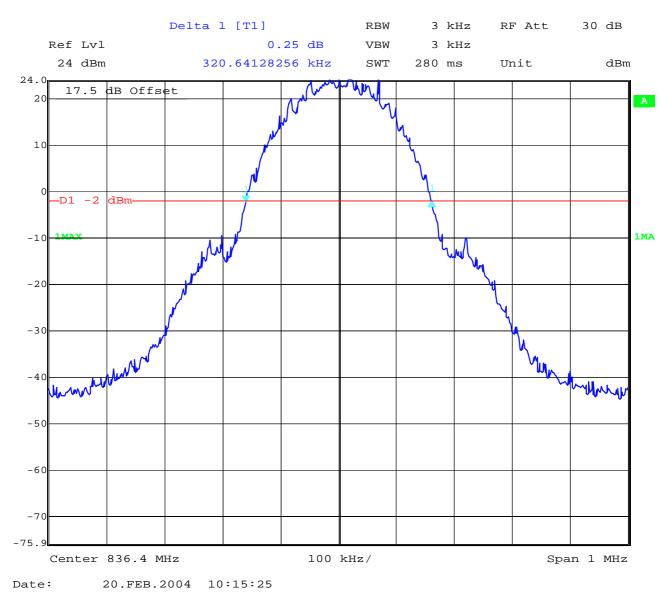


Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 76 (109)

Channel 189 99% Occupied Bandwidth

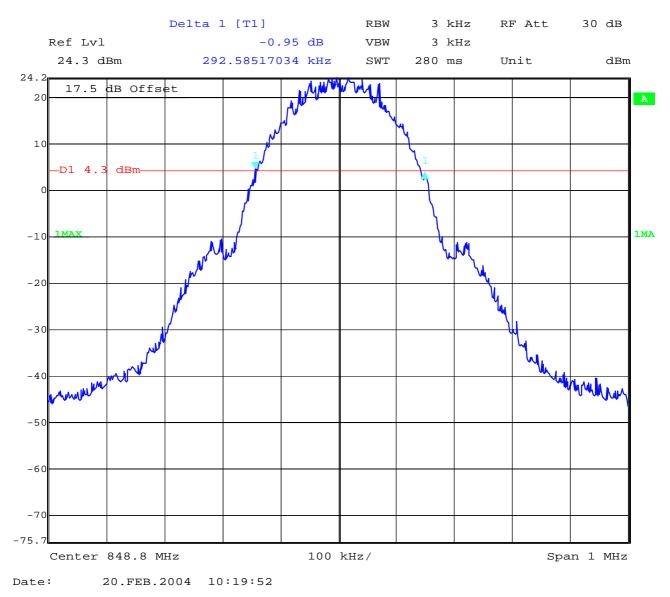


Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 77 (109)

Channel 189 -26 dBc Bandwidth

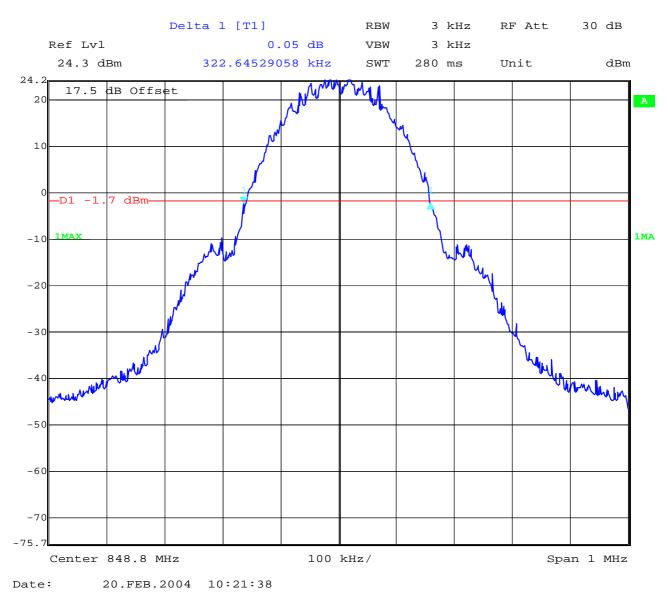


Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 78 (109)

Channel 251 99% Occupied Bandwidth



Test report no..: 4-1209-01-03/04

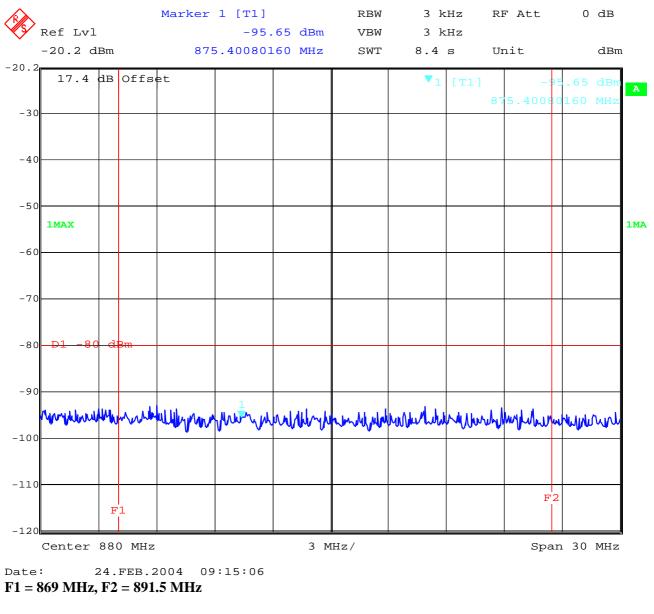
Date: 2004.02.24

Page 79 (109)

Channel 251 -26 dBc Bandwidth

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24


Page 80 (109)

EMISSION LIMITATIONS FOR CELLULAR §22.917(F)

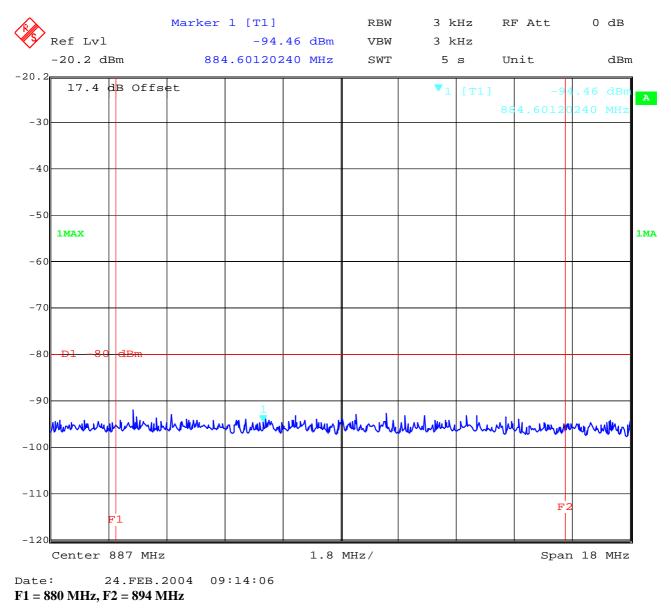
Mobile emissions in the base frequency range

All peaks are below -80 dBm in the base frequency range.

Idle Mode base station frequency range A

LIMITS

§22.917(f)

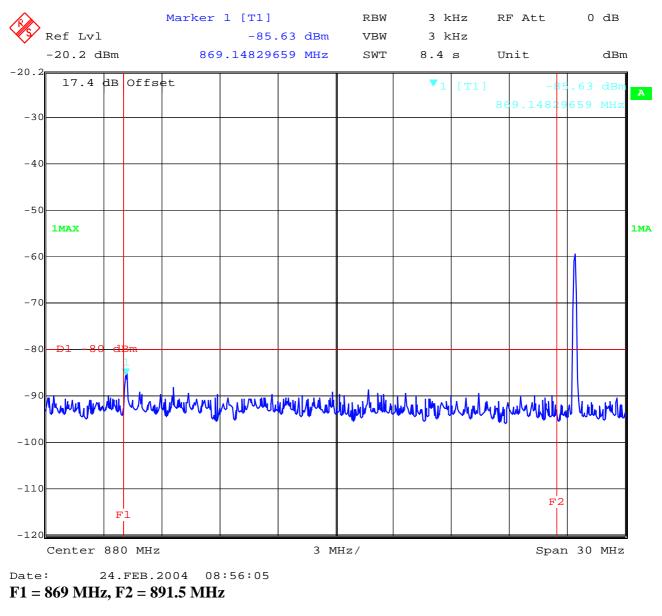


Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 81 (109)

Mobile emissions in the base frequency range Idle Mode base station frequency range B

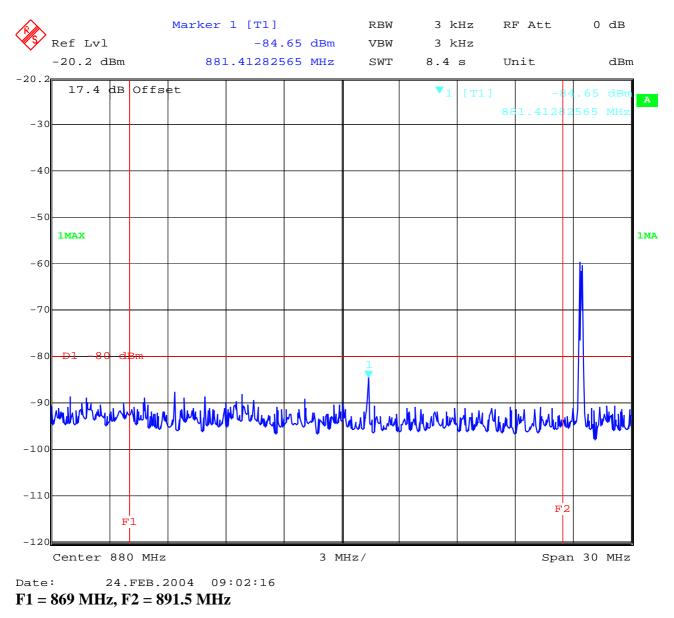


Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 82 (109)

Mobile emissions in the base frequency range **TX Mode CH 128 base station frequency range A**

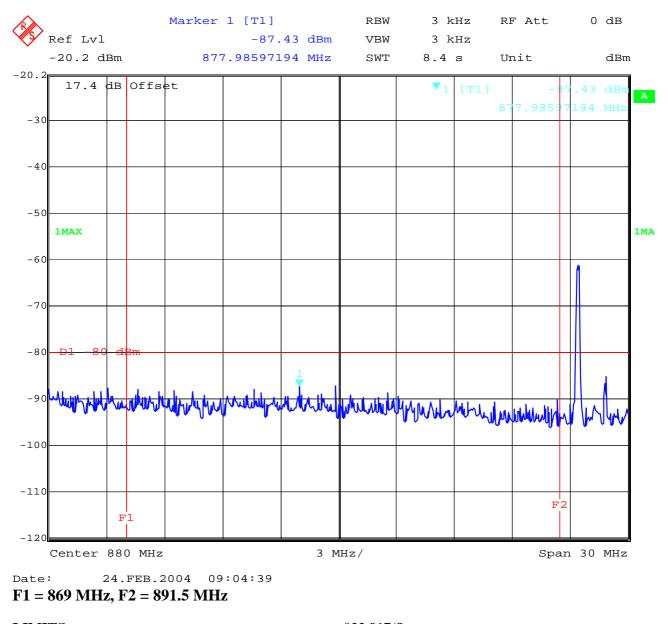


Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 83 (109)

Mobile emissions in the base frequency range **TX Mode CH 189 base station frequency range A**

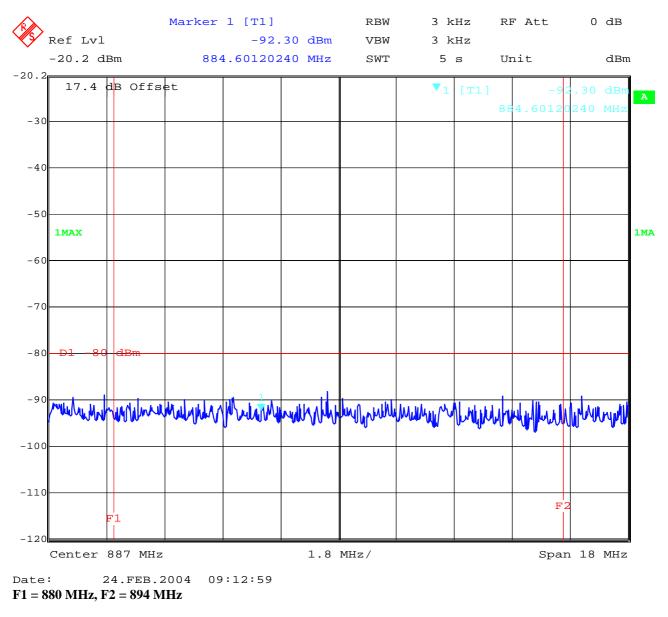


Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 84 (109)

Mobile emissions in the base frequency range **TX Mode CH 251 base station frequency range A**

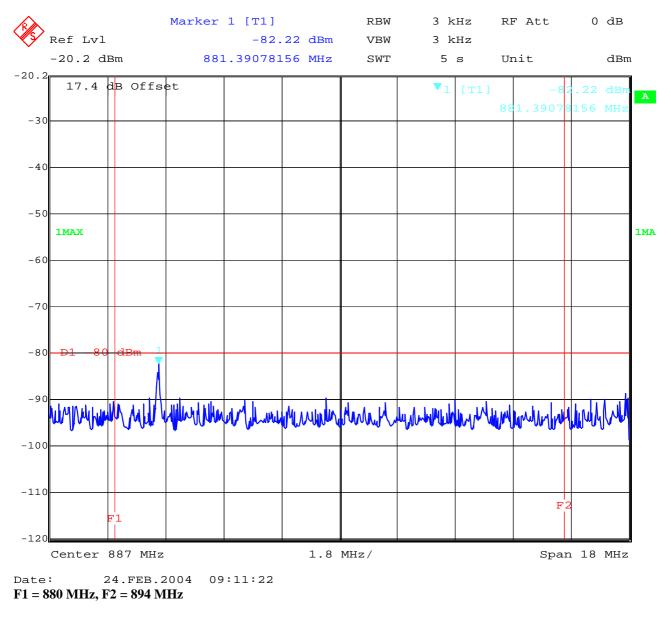


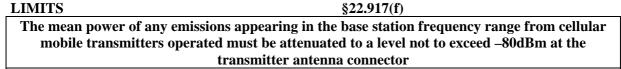
Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 85 (109)

Mobile emissions in the base frequency range **TX Mode CH 128 base station frequency range B**

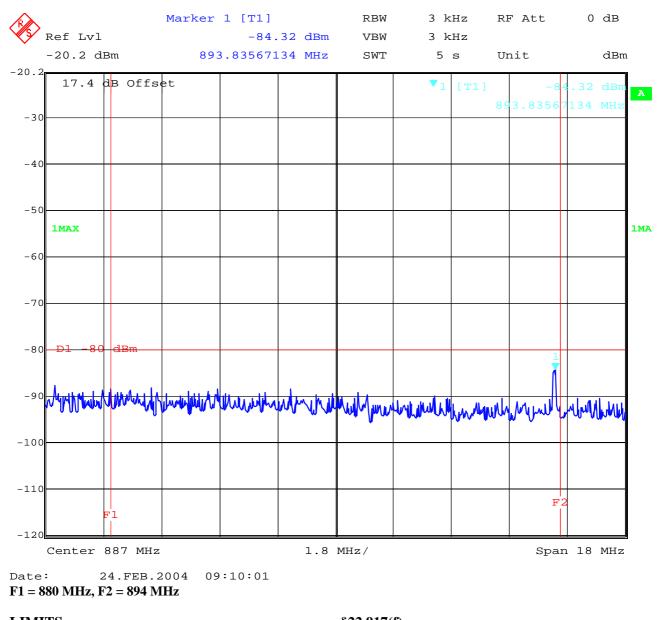

Test report no ..: 4-1209-01-03/04


Date: 2004.02.24

Page 86 (109)

Mobile emissions in the base frequency range

TX Mode CH 189 base station frequency range B


Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 87 (109)

Mobile emissions in the base frequency range

TX Mode CH 251 base station frequency range B

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 88 (109)

ADDITIONAL MEASUREMENTS FOR ANCILLARY EQUIPMENT PART 15.109

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 20 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber.

The receiving antennas are conform with specifications ANSI C63.2-1987 clause 15 and ANSI C63.4-1992 clause 4.1.5. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received.

The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63-4-1992 clause 4.2.

Antennas are conform with ANSI C63.2-1996 item 15.

9 kHz - 30 MHz: Quasi Peak measurement, 9kHz Bandwidth, passive loop antenna.

30 MHz - 200 MHz: Quasi Peak measurement, 120KHz Bandwidth, biconical antenna

200MHz - 1GHz: Quasi Peak measurement, 120KHz Bandwidth, log periodic antenna

1GHz: Average, RBW 1MHz, VBW 10 Hz, wave-guide horn

Ancillary equipment :

No ancillary equipment

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 89 (109)

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

NT	T., .4	T-	M6 4	See 2 a D
No	Instrument/Ancillary	Туре	Manufacturer	Serial No.
01	Spectrum Analyzer	8566 A	Hewlett-Packard	1925A00257
02	Analyzer Display	8566 A	Hewlett-Packard	1925A00860
03	Oscilloscope	7633	Tektronix	230054
04	Radio Communication	CMTA 54	Rohde & Schwarz	894 043/010
	Analyzer			
05	System Power Supply	6038 A	Hewlett-Packard	2848A07027
06	Signal Generator	8111 A	Hewlett-Packard	2215G00867
07	Signal Generator	8662 A	Hewlett-Packard	2224A01012
08	Function Generator	AFGU	Rohde & Schwarz	862 480/032
09	Regulating Transformer	MPL	Erfi	91350
10	LISN	NNLA 8120	Schwarzbeck	8120331
11	Relay-Matrix	PSU	Rohde & Schwarz	893 285/020
12	Power-Meter	436 A	Hewlett-Packard	2101A12378
13	Power-Sensor	8484 A	Hewlett-Packard	2237A10156
14	Power-Sensor	8482 A	Hewlett-Packard	2237A00616
15	Modulation Meter	9008	Racal-Dana	2647
16	Frequency Counter	5340 A	Hewlett-Packard	1532A03899
17	Anechoic Chamber		MWB	87400/002
18	Spectrum Analyzer	85660 B	Hewlett-Packard	2747A05306
19	Analyzer Display	85662 A	Hewlett-Packard	2816A16541
20	Quasi Peak Adapter	85650 A	Hewlett-Packard	2811A01131
21	RF-Preselector	85685 A	Hewlett-Packard	2833A00768
22	Biconical Antenna	3104	Emco	3758
23	Log. Per. Antenna	3146	Emco	2130
24	Double Ridged Horn	3115	Emco	3088
25	EMI-Testreceiver	ESAI	Rohde & Schwarz	863 180/013
26	EMI-Analyzer-Display	ESAI-D	Rohde & Schwarz	862 771/008
27	Biconical Antenna	HK 116	Rohde & Schwarz	888 945/013
28	Log. Per. Antenna	HL 223	Rohde & Schwarz	825 584/002
29	Relay-Switch-Unit	RSU	Rohde & Schwarz	375 339/002
30	Highpass	HM985955	FSY Microwave	001
31	Amplifier	P42-GA29	Tron-Tech	B 23602
32	Anechoic Chamber		Frankonia	
33	Control Computer	PSM 7	Rohde & Schwarz	834 621/004
34	EMI Test Receiver	ESMI	Rohde & Schwarz	827 063/010
35	EMI Test Receiver	Display	Rohde & Schwarz	829 808/010

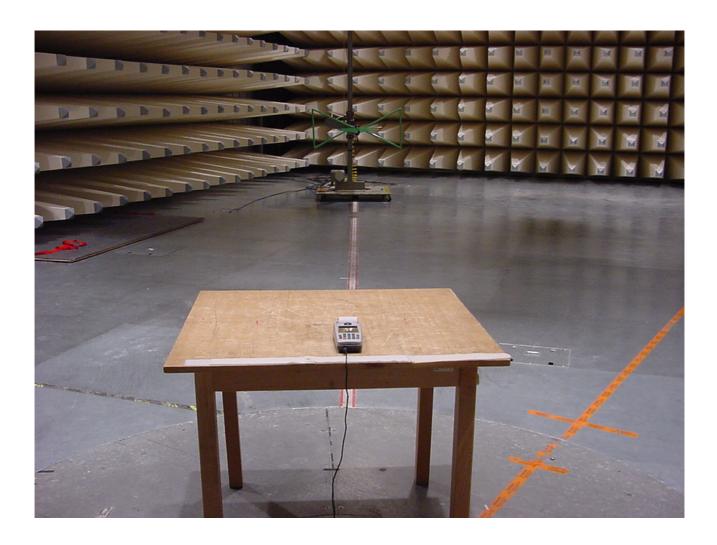
Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 90 (109)

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.


No	Instrument/Ancillary	Туре	Manufacturer	Serial No.
36	Control Computer	HD 100	Deisel	100/322/93
30	Relay Matrix	PSN	Rohde & Schwarz	829 065/003
37	Control Unit	GB 016 A2	Rohde & Schwarz	344 122/008
<u> </u>	Relay Switch Unit	RSU	Rohde & Schwarz	316 790/001
<u> </u>	Power Supply	6032A	Hewlett Packard	2846A04063
40	Spectrum Monitor	EZM	Rohde & Schwarz	<u>2840A04003</u> 883 720/006
41 42			Rohde & Schwarz Rohde & Schwarz	
42	Measuring Receiver	ESH 3 ESVP		890 174/002
	Measuring Receiver		Rohde & Schwarz	891 752/005
44	Bicon Ant. 20-300MHz	HK 116	Rohde & Schwarz	833 162/011
45	Logper Ant. 0.3-1 GHz	HL 223	Rohde & Schwarz	832 914/010
46	Amplifier 0.1-4 GHz	AFS4	Miteq Inc.	206461
47	Logper Ant. 1-18 GHz	HL 024 A2	Rohde & Schwarz	342 662/002
48	Polarisation Network	HL 024 Z1	Rohde & Schwarz	341 570/002
49	Double Ridged Horn	3115	EMCO	9107-3696
	Antenna 1-26.5 GHz			
50	Microw. Sys. Amplifier 0.5-	8317A	Hewlett Packard	3123A00105
=1	26.5 GHz	LIDD		1020 5500 04
51	Audio Analyzer	UPD	Rohde & Schwarz	1030.7500.04
52	Controler	PSM 7	Rohde & Schwarz	883 086/026
53	DC V-Network	ESH3-Z6	Rohde & Schwarz	861 406/005
54	DC V-Network	ESH3-Z6	Rohde & Schwarz	893 689/012
54 55	DC V-Network AC 2 Phase V-Network	ESH3-Z6 ESH3-Z5	Rohde & Schwarz Rohde & Schwarz	893 689/012 861 189/014
54 55 56	DC V-Network AC 2 Phase V-Network AC 2 Phase V-Network	ESH3-Z6 ESH3-Z5 ESH3-Z5	Rohde & Schwarz Rohde & Schwarz Rohde & Schwarz	893 689/012 861 189/014 894 981/019
54 55 56 57	DC V-Network AC 2 Phase V-Network AC 2 Phase V-Network AC-3 Phase V-Network	ESH3-Z6 ESH3-Z5 ESH3-Z5 ESH2-Z5	Rohde & SchwarzRohde & SchwarzRohde & SchwarzRohde & Schwarz	893 689/012 861 189/014 894 981/019 882 394/007
54 55 56 57 58	DC V-Network AC 2 Phase V-Network AC 2 Phase V-Network AC-3 Phase V-Network Power Supply	ESH3-Z6 ESH3-Z5 ESH3-Z5 ESH2-Z5 6032A	Rohde & SchwarzRohde & SchwarzRohde & SchwarzRohde & SchwarzRohde & SchwarzRohde & Schwarz	893 689/012 861 189/014 894 981/019 882 394/007 2933A05441
54 55 56 57 58 59	DC V-Network AC 2 Phase V-Network AC 2 Phase V-Network AC-3 Phase V-Network Power Supply RF-Test Receiver	ESH3-Z6 ESH3-Z5 ESH3-Z5 ESH2-Z5 6032A ESVP.52	Rohde & SchwarzRohde & Schwarz	893 689/012 861 189/014 894 981/019 882 394/007 2933A05441 881 487/021
54 55 56 57 58 59 60	DC V-Network AC 2 Phase V-Network AC 2 Phase V-Network AC-3 Phase V-Network Power Supply RF-Test Receiver Spectrum Monitor	ESH3-Z6 ESH3-Z5 ESH3-Z5 ESH2-Z5 6032A ESVP.52 EZM	Rohde & SchwarzRohde & Schwarz	893 689/012 861 189/014 894 981/019 882 394/007 2933A05441 881 487/021 883 086/026
54 55 56 57 58 59 60 61	DC V-Network AC 2 Phase V-Network AC 2 Phase V-Network AC-3 Phase V-Network Power Supply RF-Test Receiver Spectrum Monitor RF-Test Receiver	ESH3-Z6 ESH3-Z5 ESH3-Z5 ESH2-Z5 6032A ESVP.52 EZM ESH3	Rohde & SchwarzRohde & Schwarz	893 689/012 861 189/014 894 981/019 882 394/007 2933A05441 881 487/021 883 086/026 881 515/002
54 55 56 57 58 59 60 61 62	DC V-Network AC 2 Phase V-Network AC 2 Phase V-Network AC-3 Phase V-Network Power Supply RF-Test Receiver Spectrum Monitor RF-Test Receiver Relay Matrix	ESH3-Z6 ESH3-Z5 ESH3-Z5 ESH2-Z5 6032A ESVP.52 EZM ESH3 PSU	Rohde & SchwarzRohde & Schwarz	893 689/012 861 189/014 894 981/019 882 394/007 2933A05441 881 487/021 883 086/026 881 515/002 882 943/029
54 55 56 57 58 59 60 61 62 63	DC V-Network AC 2 Phase V-Network AC 2 Phase V-Network AC-3 Phase V-Network Power Supply RF-Test Receiver Spectrum Monitor RF-Test Receiver Relay Matrix Relay Matrix	ESH3-Z6 ESH3-Z5 ESH3-Z5 ESH2-Z5 6032A ESVP.52 EZM ESH3 PSU PSU	Rohde & SchwarzRohde & Schwarz	893 689/012 861 189/014 894 981/019 882 394/007 2933A05441 881 487/021 883 086/026 881 515/002 882 943/029 828 628/007
54 55 56 57 58 59 60 61 62 63 64	DC V-Network AC 2 Phase V-Network AC 2 Phase V-Network AC-3 Phase V-Network Power Supply RF-Test Receiver Spectrum Monitor RF-Test Receiver Relay Matrix Relay Matrix Spectrum Analyzer	ESH3-Z6 ESH3-Z5 ESH3-Z5 ESH2-Z5 6032A ESVP.52 EZM ESH3 PSU PSU FSIQ 26	Rohde & SchwarzRohde & Schwarz	893 689/012 861 189/014 894 981/019 882 394/007 2933A05441 881 487/021 883 086/026 881 515/002 882 943/029 828 628/007 119.6001.27
54 55 56 57 58 59 60 61 62 63 64 65	DC V-Network AC 2 Phase V-Network AC 2 Phase V-Network AC-3 Phase V-Network Power Supply RF-Test Receiver Spectrum Monitor RF-Test Receiver Relay Matrix Relay Matrix	ESH3-Z6 ESH3-Z5 ESH3-Z5 ESH2-Z5 6032A ESVP.52 EZM ESH3 PSU PSU	Rohde & SchwarzRohde & Schwarz	893 689/012 861 189/014 894 981/019 882 394/007 2933A05441 881 487/021 883 086/026 881 515/002 882 943/029 828 628/007
54 55 56 57 58 59 60 61 62 63 64 65 66	DC V-Network AC 2 Phase V-Network AC 2 Phase V-Network AC-3 Phase V-Network Power Supply RF-Test Receiver Spectrum Monitor RF-Test Receiver Relay Matrix Relay Matrix Spectrum Analyzer	ESH3-Z6 ESH3-Z5 ESH3-Z5 ESH2-Z5 6032A ESVP.52 EZM ESH3 PSU PSU FSIQ 26	Rohde & SchwarzRohde & Schwarz	893 689/012 861 189/014 894 981/019 882 394/007 2933A05441 881 487/021 883 086/026 881 515/002 882 943/029 828 628/007 119.6001.27
54 55 56 57 58 59 60 61 62 63 64 65	DC V-Network AC 2 Phase V-Network AC 2 Phase V-Network AC-3 Phase V-Network Power Supply RF-Test Receiver Spectrum Monitor RF-Test Receiver Relay Matrix Relay Matrix Spectrum Analyzer	ESH3-Z6 ESH3-Z5 ESH3-Z5 ESH2-Z5 6032A ESVP.52 EZM ESH3 PSU PSU FSIQ 26	Rohde & SchwarzRohde & Schwarz	893 689/012 861 189/014 894 981/019 882 394/007 2933A05441 881 487/021 883 086/026 881 515/002 882 943/029 828 628/007 119.6001.27

Test report no..: 4-1209-01-03/04

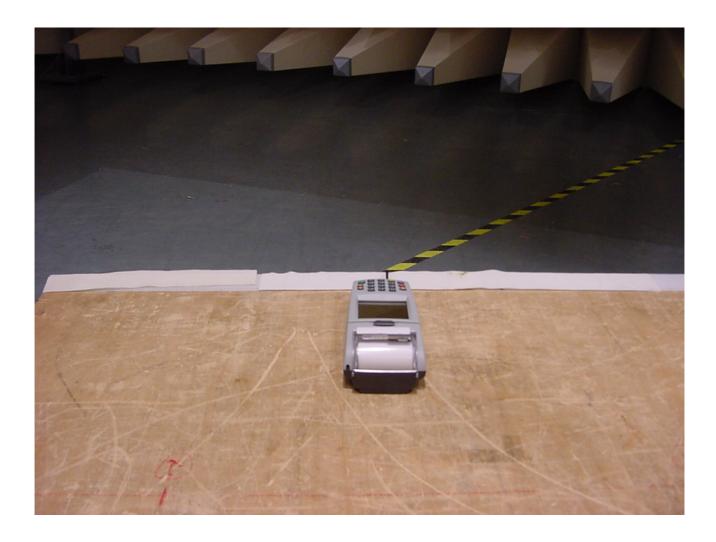
Date: 2004.02.24

Page 91 (109)

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 92 (109)



Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 93 (109)

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 94 (109)

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

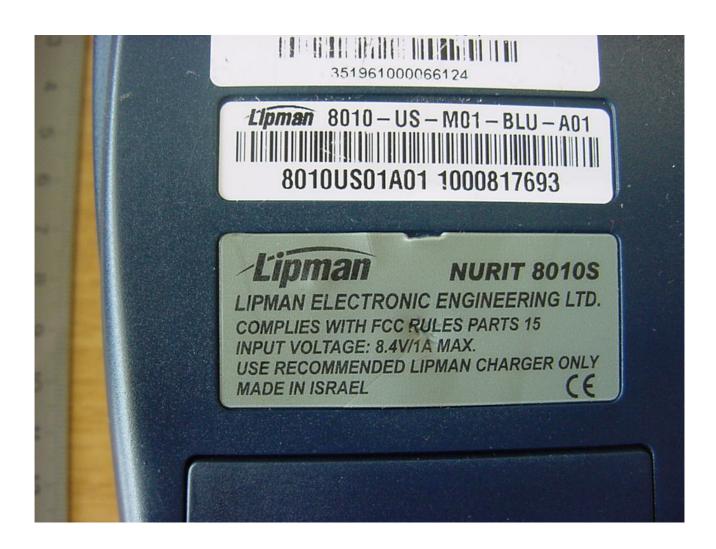
Page 95 (109)

Photographs of EUT

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 96 (109)



Test report no ..: 4-1209-01-03/04

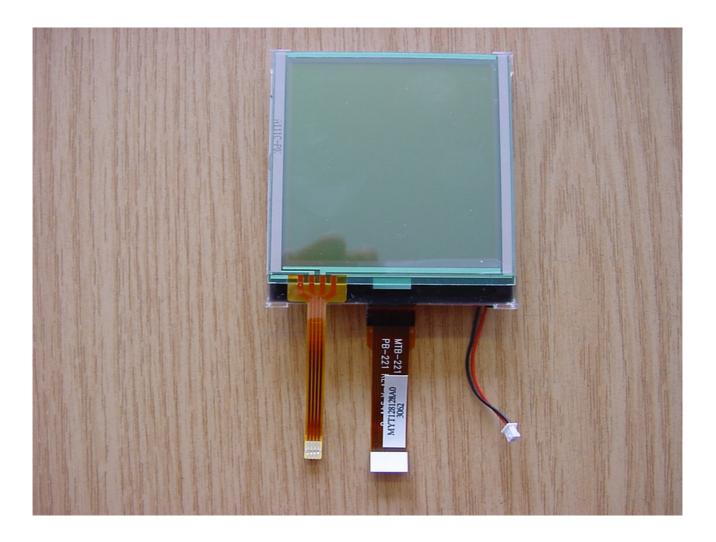
Date: 2004.02.24

Page 97 (109)

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 98 (109)



Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 99 (109)

Test report no ..: 4-1209-01-03/04

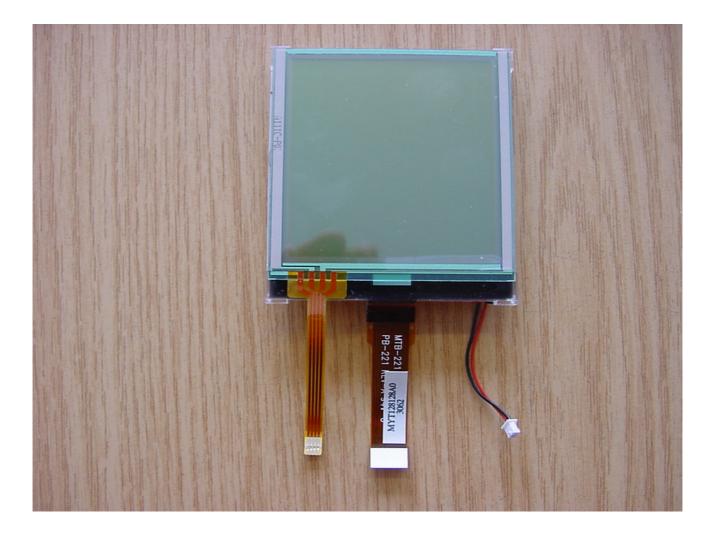
Date: 2004.02.24

Page 100 (109)

Test report no ..: 4-1209-01-03/04

Date: 2004.02.24

Page 101 (109)



Test report no..: 4-1209-01-03/04

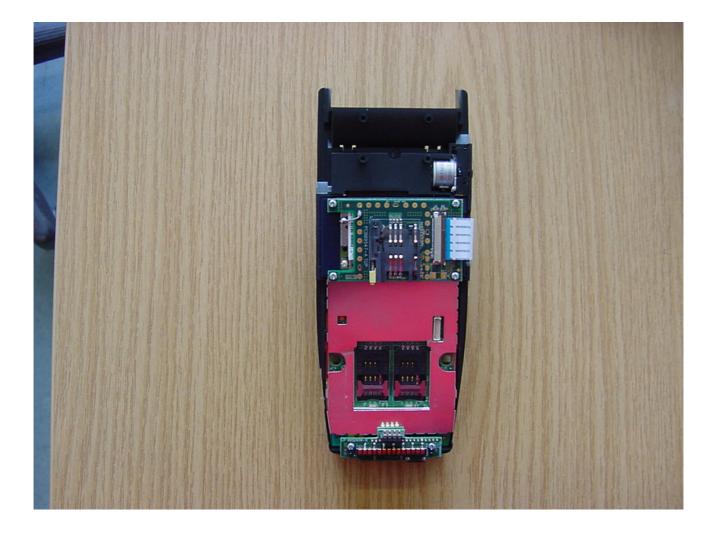
Date: 2004.02.24

Page 102 (109)

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

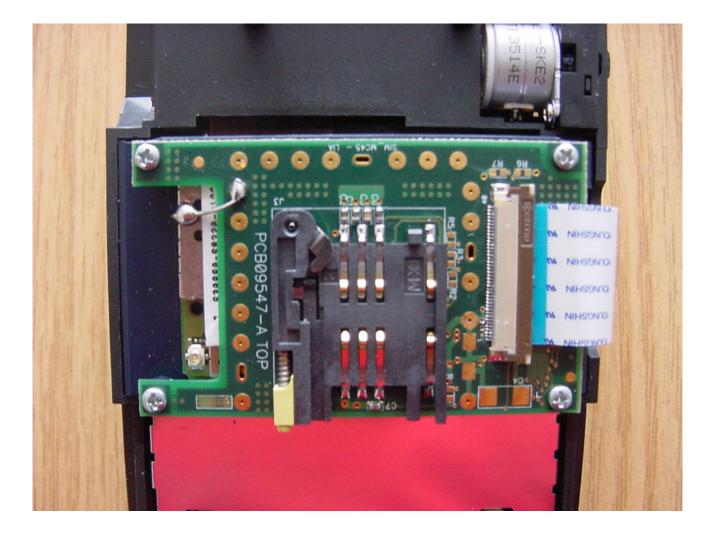
Page 103 (109)



Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 104 (109)



Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 105 (109)



Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 106 (109)

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 107 (109)

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 108 (109)

Test report no..: 4-1209-01-03/04

Date: 2004.02.24

Page 109 (109)

