

FCC PART 15, SUBPART C Bay Ar IC RSS-210, ISSUE 8, DECEMBER 2010

TEST AND MEASUREMENT REPORT

For

Rezolt Corporation

1248 Reamwood Avenue,

Sunnyvale, CA 94089, USA

FCC ID: 02R-226MS IC: 10363A-226MS

Report Type:		Product Type:
Original Report		802.11 b/g/n Module
		ail
Prepared By:	Jeffrey Wu	Stipe
Report Number:	R1304094	
Report Date:	2014-01-23	
Reviewed By:	Hans Mellberg Chief Technical Of	ficer
	Bay Area Compliar 1274 Anvilwood A Sunnyvale, CA 940 Tel: (408) 732-9162 Fax: (408) 732-916	89, USA 2

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA*, NIST, or any agency of the Federal Government.

* This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*" 📖

TABLE OF CONTENTS

1 (General Description	5
1.1	Product Description for Equipment Under Test (EUT)	
1.2	Mechanical Description	5
1.3	Objective	5
1.4	Related Submittal(s)/Grant(s)	5
1.5	Test Methodology	5
1.6	Measurement Uncertainty	5
1.7	Test Facility	6
	System Test Configuration	7
2.1	Justification	
2.2		
2.3	~r···· -1-r-r-···	
2.4	1 1	
2.5		
2.6		
2.7	\mathcal{O}	
2.8		
	Summary of Test Results	
	FCC §15.247 (i), §2.1091 & IC RSS-102 – RF Exposure	
4.1	Applicable Standard	
4.2		
4.3		
	FCC §15.203 & IC RSS-Gen §7.1.2 – Antenna Requirements	
5.1	Applicable Standard	
5.2	=	
	FCC §15.207 & IC RSS-Gen §7.2.4 – AC Line Conducted Emissions	
6.1	Applicable Standards	
6.2	I	
6.3		
6.4	I 8	
6.5	I B B B B B B B B B B B B B B B B B B B	
6.6		
6.7 6.8		
0.8 6.9	·····	
	FCC §2.1051, §15.247(d) & IC RSS-210 §A8.5 – Spurious Emissions at Antenna Terminals	
7.1	Applicable Standard	
7.2		
7.2		
7.4		
7.5		
	FCC §15.205, §15.209 & §15.247(d) & IC RSS-210 §A8.5 – Spurious Radiated Emissions	
8.1		
8.2	11	
8.3	1	
8.4		
8.5	1 6	
8.6	1 1	
8.7		
	-	

8.8	Radiated Emissions Test Data and Plots	
9 FC	CC§15.247(a)(2) & IC RSS-210 §A8.2 – 6 dB & 99% Emission Bandwidth	
9.1	Applicable Standard	
9.2	Measurement Procedure	
9.3	Test Equipment List and Details	
9.4	Test Environmental Conditions	
9.5	Test Results	
10 FC	CC §15.247(b) & IC RSS-210 §A8.4 – Peak Output Power Measurement	
10.1	Applicable Standard	55
10.2	Measurement Procedure	
10.3	Test Equipment List and Details	
10.4	Test Environmental Conditions	
10.5	Test Results	
11 FC	CC §15.247(d) & IC RSS-210 §A8.5 – 100 kHz Bandwidth of Band Edges	
11.1	Applicable Standard	
11.2	Measurement Procedure	
11.3	Test Equipment List and Details	
11.4	Test Environmental Conditions	
11.5	Test Results	
12 FC	CC §15.247(e) & IC RSS-210 §A8.2 (b) – Power Spectral Density	
12.1	Applicable Standard	
12.2	Measurement Procedure	
12.3	Test Equipment List and Details	
12.4	Test Environmental Conditions	
12.5	Test Results	
13 IC	RSS-210 §2.3 & RSS-Gen §4.10 – Receiver Spurious Radiated Emissions	
13.1	Applicable Standard	
13.2	EUT Setup	
13.3	Test Procedure	
13.4	Corrected Amplitude & Margin Calculation	
13.5	Test Equipment Lists and Details	
13.6	Test Environmental Conditions	
13.7	Summary of Test Results	
13.8	Test Results	
14 Ex	hibit A – FCC & IC Equipment Labeling Requirements	
14.1	FCC ID Label Requirements	
14.2	IC Label Requirements	
14.3	FCC ID & IC Label Contents and Location	
	hibit B – Test Setup Photographs	
15.1	Conducted Emissions - Front View	
15.2	Conducted Emissions - Side View	
15.3	Radiated Emission Front View at 3 Meter	
15.4	Radiated Emission below 1 GHz Rear View at 3 Meter	
15.5	Radiated Emission above 1 GHz Rear View at 3 Meter	
	hibit C – EUT Photographs	
16.1	EUT Front View	
16.2	EUT Back View	
16.3	EUT on the Support Board 1 View	
16.4	Support Board 2 View	
16.5	EUT Shielding off View	

DOCUMENT REVISION HISTORY

Revision Number Report Number		Description of Revision	Date of Revision
0 R1304094-247		Original Report	2014-01-23

1 General Description

1.1 Product Description for Equipment Under Test (EUT)

This test and measurement report was prepared on behalf of *Rezolt Corporation*, and their product FCC ID: O2R-226MS, IC: 10363A-226MS, model: *RZ226MS* or the "EUT" as referred on this report is an 802.11 b/g/n module operates in 2.4 GHz band.

1.2 Mechanical Description

The EUT measures approximately 1.95cm (L) x 1.85cm (W) x 0.43 cm (H) and weighs approximately 4 g.

The data gathered are from a production sample, serial number: 1C7Z18 assigned by BACL.

1.3 Objective

This report is prepared on behalf of *ReZolt Corporation* in accordance with Part 2, Subpart J, and Part 15, Subparts B and C of the Federal Communication Commission's rules and IC RSS-210 Issue 8, Dec 2010.

The objective is to determine compliance with FCC Part 15.247 and IC RSS-210 rules for Output Power, Antenna Requirements, 6 dB Bandwidth, and power spectral density, 100 kHz Bandwidth of Band Edges Measurement, Spurious Emissions, Conducted and Radiated Spurious Emissions.

1.4 Related Submittal(s)/Grant(s)

N/A

1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz and FCC KDB 558074 D01 DTS Meas Guidance v03r01: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR16-4-2: 2011, The Treatment of Uncertainty in EMC Measurements, the values ranging from ± 2.0 dB for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

1.7 Test Facility

Bay area compliance Laboratories Corp. (BACL) is:

1- An independent Commercial Test Laboratory accredited to **ISO 17025: 2005** by **A2LA**, in the fields of: Electromagnetic Compatibility & Telecommunications covering Emissions, Immunity, Radio, RF Exposure, Safety and Telecom. This includes NEBS (Network Equipment Building System), Wireless RF, Telecommunications Terminal Equipment (TTE); Network Equipment; Information Technology Equipment (ITE); Medical Electrical Equipment; Industrial, Commercial, and Medical Test Equipment; Professional Audio and Video Equipment; Electronic (Digital) Products; Industrial and Scientific Instruments; Cabled Distribution Systems and Energy Efficiency Lighting.

2- An ENERGY STAR Recognized Laboratory, for the LM80 Testing, a wide variety of Luminares and Computers.

3- A NIST Designated Phase-I and Phase-II CAB including: ACMA (Australian Communication and Media Authority), BSMI (Bureau of Standards, Metrology and Inspection of Taiwan), IDA (Infocomm Development Authority of Singapore), IC(Industry Canada), Korea (Ministry of Communications Radio Research Laboratory), NCC (Formerly DGT; Directorate General of Telecommunication of Chinese Taipei) OFTA (Office of the Telecommunications Authority of Hong Kong), Vietnam, VCCI - Voluntary Control Council for Interference of Japan and a designated EU CAB (Conformity Assessment Body) (Notified Body) for the EMC and R&TTE Directives.

4- A Product Certification Body accredited to ISO Guide 65: 1996 by A2LA to certify:

1- Unlicensed, Licensed radio frequency devices and Telephone Terminal Equipment for the FCC. Scope A1, A2, A3, A4, B1, B2, B3, B4 & C.

2. Radio Standards Specifications (RSS) in the Category I Equipment Standards List and All Broadcasting Technical Standards (BETS) in Category I Equipment Standards List for Industry Canada.

3. Radio Communication Equipment for Singapore.

4. Radio Equipment Specifications, GMDSS Marine Radio Equipment Specifications, and Fixed Network Equipment Specifications for Hong Kong.

5. Japan MIC Telecommunication Business Law (A1, A2) and Radio Law (B1, B2 and B3).

6. Audio/Video, Battery Charging Systems, Computers, Displays, Enterprise Servers, Imaging Equipment, Set-Top Boxes, Telephony, Televisions, Ceiling Fans, CFLs (Including GU24s), Decorative Light Strings, Integral LED Lamps, Luminaires, Residential Ventilating Fans.

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997, and Article 8 of the VCCI regulations on December 25, 1997. The test site also complies with the test methods and procedures set forth in CISPR 22:2008 §10.4 for measurements below 1 GHz and §10.6 for measurements above 1 GHz as well as ANSI C63.4-2009, ANSI C63.4-2009, TIA/EIA-603 & CISPR 24:2010.

The Federal Communications Commission and Voluntary Control Council for Interference have the reports on file and they are listed under FCC registration number: 90464 and VCCI Registration No.: A-0027. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL Corp. is an American Association for Laboratory Accreditation (A2LA) accredited laboratory (Lab Code 3297-02). The current scope of accreditations can be found at

http://www.a2la.org/scopepdf/3297-02.pdf?CFID=1132286&CFTOKEN=e42a3240dac3f6ba-6DE17DCB-1851-9E57-477422F667031258&jsessionid=8430d44f1f47cf2996124343c704b367816b

2 System Test Configuration

2.1 Justification

The EUT was configured for testing according to ANSI C63.4-2009 and FCC KDB 558074 D01 DTS Meas Guidance v03r01.

The EUT was tested in a testing mode to represent worst-case results during the final qualification test.

The worst-case data rates are determined to be as follows for each mode based upon investigation by measuring the average power, peak power and PPSD across all data rates bandwidths, and modulations.

The EUT had been tested with the following data rate settings (worst case):

Radio	Bandwidth	Frequency/Data Rate		
Mode	(MHz)	Low CH (MHz/Mbps)	Mid CH (MHz/Mbps)	High CH (MHz/Mbps)
802.11 b	20	2412/1	2437/1	2462/1
802.11 g	20	2412/6	2437/6	2462/6
802.11 n20	20	2412/6.5	2437/6.5	2462/6.5

2.2 EUT Exercise Software

The test utility used was wl.exe was provided by Rezolt Corporation and was verified Jeffrey Wu to comply with the standard requirements being tested against.

2.3 Special Equipment

There were no special accessories were required, included, or intended for use with EUT during these tests.

2.4 Equipment Modifications

No modifications were made to the EUT.

2.5 Local Support Equipment

Manufacturers	Descriptions	Model Number	Serial Number
IMB	Laptop	T40	-
Rezolt Corp.	Supporting Board 1	211-1135-040 Rev 2	-
Rezolt Corp.	Supporting Board 2	MB786/STM324 C-04	213020135

2.6 EUT Internal Configuration Details

Manufacturers	Descriptions	Model Number	Serial Number
Rezolt Corp.	Main Module	RZ226MS	32612000127G2

2.7 External I/O Cabling List and Details

Cable Descriptions	Length (m)	From	То
USB Cable	< 1m	Supporting Board	Laptop
RF Cable	< 1m	EUT	PSA

2.8 Power Supply List and Details

N/A

3 Summary of Test Results

Results reported relate only to the product tested.

FCC & IC Rules	Description of Test	Results
FCC §15.247(i), §2.1091 IC RSS-102	RF Exposure	Compliant
FCC §15.203 IC RSS-Gen §7.1.2	Antenna Requirement	Compliant
FCC §15.207(a) IC RSS-Gen §7.2.4	AC Line Conducted Emissions	Compliant
FCC §15.247 (d) IC RSS-210 §A8.5	Spurious Emissions at Antenna Port	Compliant
FCC §15.205 IC RSS-210 §2.2	Restricted Bands	Compliant
FCC §15.209, §15.247 (d) IC RSS-210 §A8.5	Radiated Spurious Emissions	Compliant
FCC §15.247(a)(2) IC RSS-210 §A8.2	6 dB Emission Bandwidth	Compliant
FCC §15.247(b)(3) IC RSS-210 §A8.4	Maximum Peak Output Power	Compliant
FCC §15.247(d) IC RSS-210 §A8.5	100 kHz Bandwidth of Frequency Band Edge	Compliant
FCC §15.247(e) IC RSS-210 §A8.2(b)	Power Spectral Density	Compliant
IC RSS-210 §2.3 & RSS-Gen §4.10	Receiver Spurious Emission	Compliant

4 FCC §15.247 (i), §2.1091 & IC RSS-102 – RF Exposure

4.1 Applicable Standard

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
	Limits for Ge	neral Population/Uncor	ntrolled Exposure	
0.3-1.34	614	1.63	* (100)	30
1.34-30	824/f	2.19/f	* (180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

Limits for General Population/Uncontrolled Exposure

f = frequency in MHz

* = Plane-wave equivalent power density

Before equipment certification is granted, the procedure of IC RSS-102 must be followed concerning the exposure of humans to RF fields.

According to IC RSS-102 Issue 2 section 4.1, RF limits used for general public will be applied to the EUT.

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m ²)	Time Averaging (min)
0.003 - 1	280	2.19	-	6
1 - 10	280 / f	2.19 / f	-	6
10 - 30	28	2.19 / f	-	6
30 - 300	28	0.073	2*	6
300 - 1 500	1.585 f ^{0.5}	$0.0042 \text{ f}^{0.5}$	f / 150	6
1 500 - 15 000	61.4	0.163	10	6
15 000 - 150 000	61.4	0.163	10	616000 / f ^{1.2}
150 000- 300 000	0.158 f ^{0.5}	4.21 x 10 -4 f ^{0.5}	6.67 x 10 ⁻⁵ f	616000 / f ^{1.2}

Note: *f* is frequency in MHz

* = Power density limit is applicable at frequencies greater than 100 MHz

MPE Prediction 4.2

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator R = distance to the center of radiation of the antenna

4.3 **MPE Results**

Maximum peak output power at antenna input terminal (dBm):	17.39
Maximum peak output power at antenna input terminal (mW):	<u>54.828</u>
Prediction distance (cm):	<u>20</u>
Prediction frequency (MHz):	<u>2462</u>
Maximum Antenna Gain, typical (dBi):	<u>0</u>
Maximum Antenna Gain (numeric):	<u>1</u>
Power density of prediction frequency at 20.0 cm (mW/cm ²):	0.0109
Power density of prediction frequency at 20.0 cm (W/m ²):	0.109
MPE limit for uncontrolled exposure at prediction frequency (mW/cm ²):	<u>1.0</u>
<u>MPE limit for uncontrolled exposure at prediction frequency (W/m^2):</u>	<u>10</u>

The device is compliant with the requirement MPE limit for uncontrolled exposure. The maximum power density at the distance of 20 cm is $0.011 \text{ mW/cm}^2 (0.11 \text{ W/m}^2)$. Limit is $1 \text{ mW/cm}^2 (10 \text{ W/m}^2)$.

5 FCC §15.203 & IC RSS-Gen §7.1.2 – Antenna Requirements

5.1 Applicable Standard

According to FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to FCC §15.247 (b) (4), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to IC RSS-Gen §7.1.2: Transmitter Antenna

A transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-ofband radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. Any antenna gain in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power before using the power limits specified in RSS-210 or RSS-310 for devices of RF output powers of 10 mW or less. For devices of output powers greater than 10 mW, except devices subject to RSS-210 Annex 8 (Frequency Hopping and Digital Modulation Systems Operating in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz Bands) or RSS-210 Annex 9 (Local Area Network Devices), the total antenna gain shall be added to the measured RF output power before using the specified power limits. For devices subject to RSS-210 Annex 8 or Annex 9, the antenna gain shall not be added.

5.2 Antenna List

Manufacturers	Models/Part Number	Antenna Gain (dBi) @ 2.4 GHz
Johanson Technology	2450AT42B100E	0

Note: The power setting was controlled by manufacture with different antenna configuration. The power setting of the different antenna will be set with the corresponded value and no more than the level reported.

The EUT's antenna has the maximum gain of 0 dBi and permanently attached to the PCB; which complies with sections FCC Part §15.203 and IC RSS-Gen §7.1.2 Please refer to the internal photos.

6 FCC §15.207 & IC RSS-Gen §7.2.4 – AC Line Conducted Emissions

6.1 Applicable Standards

As per FCC §15.207 and IC RSS-Gen §7.2.4 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

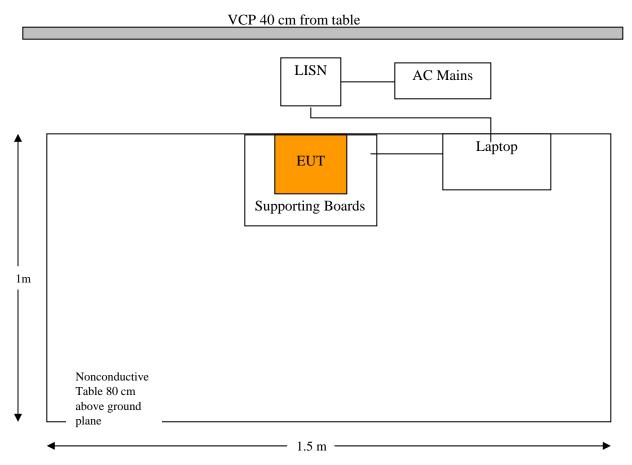
Frequency of Emission	Conducted Limit (dBuV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56 *	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

6.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.4-2009 measurement procedure. The specification used was FCC §15.207 and IC RSS-Gen §7.2.4 limits.

External I/O cables were draped along the edge of the test table and bundle when necessary. The AC/DC power adapter of the EUT was connected with LISN-1 which provided 120 V/60 Hz AC power.


6.3 Test Procedure

During the conducted emissions test, the power cord of the EUT host system was connected to the mains outlet of the LISN-2.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the peak detection mode, quasi-peak and average. Quasi-Peak readings are distinguished with a "QP." Average readings are distinguished with an "Ave".

6.4 Test Setup Block Diagram

6.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Cable Loss (CL), the Attenuator Factor (Atten) to indicated Amplitude (Ai) reading. The basic equation is as follows:

CA = Ai + CL + Atten

For example, a corrected amplitude of 46.2 dBuV = Indicated Reading (32.5 dBuV) + Cable Loss (3.7 dB) + Attenuator (10 dB)

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

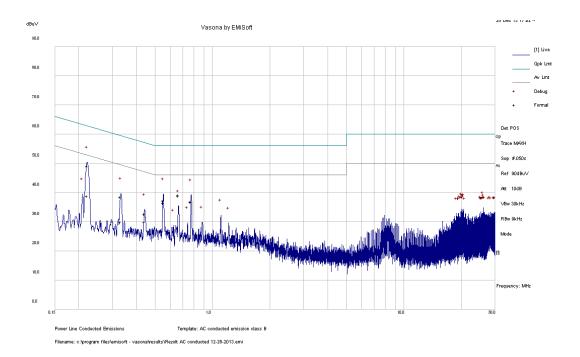
Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Rohde & Schwarz	EMI Test Receiver	ESCI 1166.5950K03	100337	2013-03-28	1 Year
Solar Electronics	LISN	9252-R-24-BNC	511213	2013-06-25	1 Year
TTE	Filter, High Pass	H9962-150K-50-21378	K7133	2013-05-30	1 Year

6.6 Test Equipment List and Details

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

6.7 Test Environmental Conditions

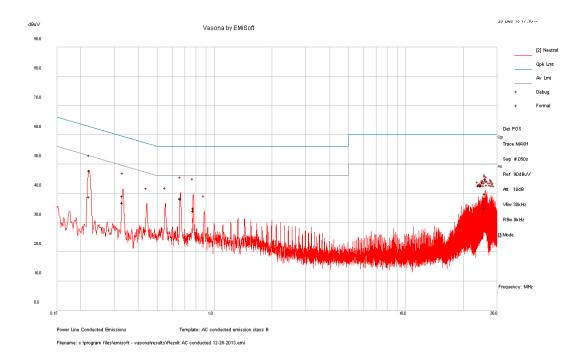
Temperature:	21 °C
Relative Humidity:	33 %
ATM Pressure:	102.2 kPa


Testing was performed by Jeffrey Wu on 2013-12-26 in chamber 5m3.

6.8 Summary of Test Results

According to the recorded data in following table, the EUT <u>complied with the FCC standard's</u> conducted emissions limits, with the margin reading of:

Connection: AC/DC adapter connected to 120 V/60 Hz, AC					
MarginFrequency(dB)(MHz)		Conductor Mode (Line/Neutral)	Range (MHz)		
-7.13	0.663726	Line	0.15-30		


6.9 Conducted Emissions Test Plots and Data

120 V, 60 Hz – Line, AC/DC Adaptor

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (L/N)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.221484	49.1	L	62.76	-13.66	QP
0.663726	39.16	L	56	-16.84	QP
0.551652	37.41	L	56	-18.59	QP
0.772539	36.96	L	56	-19.04	QP
0.330081	38.59	L	59.45	-20.86	QP
0.442191	32.77	L	57.02	-24.25	QP

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (L/N)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.663726	38.87	L	46	-7.13	Ave.
0.772539	36.76	L	46	-9.24	Ave.
0.551652	36.52	L	46	-9.48	Ave.
0.221484	38.86	L	52.76	-13.91	Ave.
0.442191	29.88	L	47.02	-17.14	Ave.
0.330081	29.88	L	49.45	-19.57	Ave.

120 V, 60 Hz – Neutral, AC/DC Adaptor

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (L/N)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.22125	47.92	Ν	62.77	-14.86	QP
0.662877	38.40	Ν	56	-17.60	QP
25.8612	39.97	Ν	60	-20.03	QP
0.331215	39.21	Ν	59.42	-20.21	QP
0.774897	34.97	Ν	56	-21.03	QP
25.97045	37.22	Ν	60	-22.78	QP

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (L/N)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.662877	38.13	N	46	-7.87	Ave.
0.774897	34.14	Ν	46	-11.86	Ave.
0.331215	36.8	N	49.42	-12.62	Ave.
0.22125	38.89	N	52.77	-13.88	Ave.
25.8612	35.32	Ν	50	-14.68	Ave.
25.97045	34.97	Ν	50	-15.03	Ave.

7 FCC §2.1051, §15.247(d) & IC RSS-210 §A8.5 – Spurious Emissions at Antenna Terminals

7.1 Applicable Standard

For FCC §15.247(d) and IC RSS-210 §A8.5 in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

7.2 Measurement Procedure

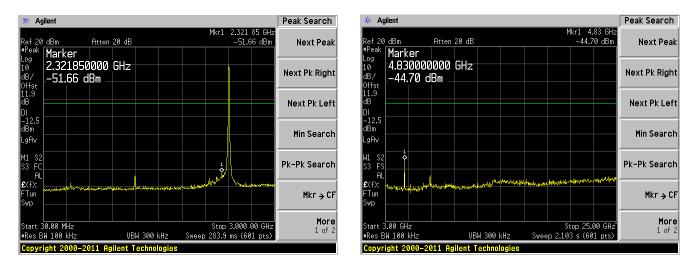
The measurements are base on FCC KDB 558074 D01 DTS Meas Guidance v03r01: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 11: Emissions in non-restricted frequency bands and section 12: Emissions in restricted frequency bands.

7.3 Test Equipment List and Details

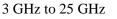
Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Spectrum Analyzer	E4446A	US44300386	2013-10-22	1 Year

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

7.4 Test Environmental Conditions

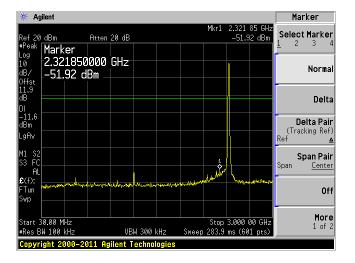

Temperature:	21 °C
Relative Humidity:	38 %
ATM Pressure:	102.2 kPa

Testing was performed by Jeffrey Wu from 2014-01-03 to 2014-01-05 in in RF Site.

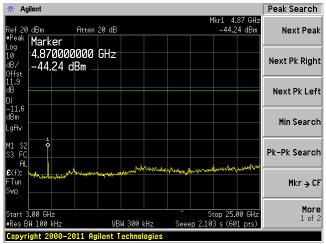

7.5 Test Results

Please refer to following plots of spurious emissions.

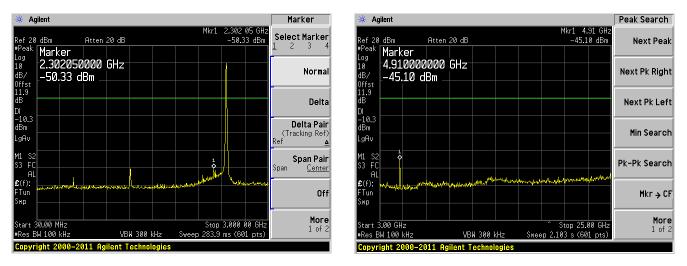
802.11b, Low Channel, 2412 MHz

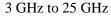


30 MHz to 3 GHz

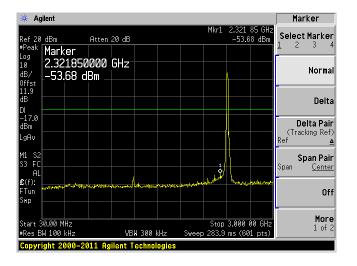


802.11b, Middle Channel, 2437 MHz


30 MHz to 3 GHz

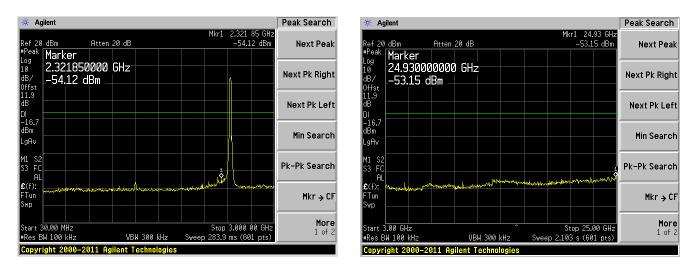

3 GHz to 25 GHz

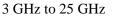
802.11b, High Channel, 2462 MHz



30 MHz to 3 GHz

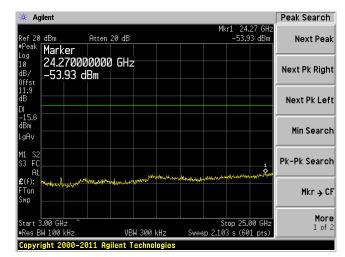
802.11g, Low Channel 2412 MHz


30 MHz to 3 GHz

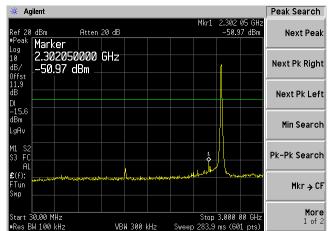

🔆 Agilent Peak Search Mkr1 24.56 GHz -53.44 dBm Ref 20 dBm #Peak More Atten 20 dB Next Peak Marker 24.560000000 GHz Log 10 dB/ Next Pk Right -53.44 dBm Offst 11.9 dB Next Pk Left DI -17.0 dBm **Min Search** LgAv M1 S2 S3 FC AL Pk-Pk Search £(f): Tun Mkr → CF awê More Stop 25.00 GHz Start 3.00 GHz 1 of 2 Res BW 100 kHz VBW 300 kHz Sweep 2.103 s (601 pts) Copyright 2000-2011 Agilent Technologies

3 GHz to 25 GHz

802.11g, Middle Channel 2437 MHz



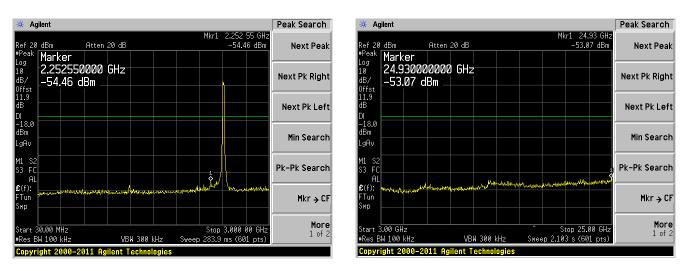
30 MHz to 3 GHz



802.11g, High Channel 2462 MHz

30 MHz to 3 GHz

3 GHz to 25 GHz

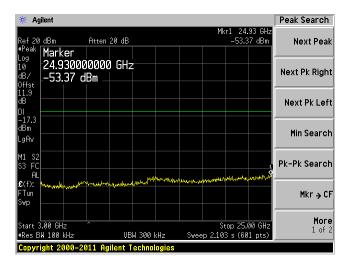


*Res BW 100 kHz VBW 300 kHz Copyright 2000–2011 Agilent Technologies

🔆 Aailent

M1 \$3

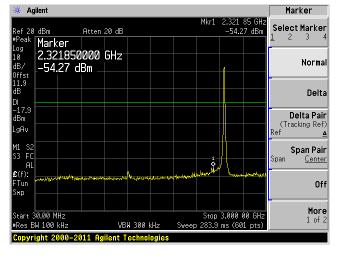
802.11n-HT20, Low Channel 2412 MHz

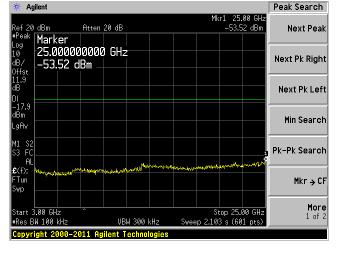

30 MHz to 3 GHz

802.11n-HT20, Middle Channel 2437 MHz

Peak Search

30 MHz to 3 GHz

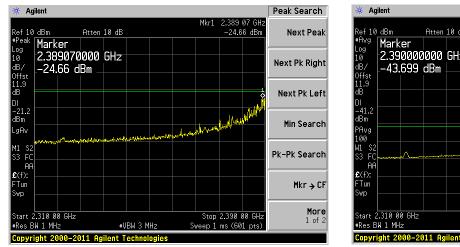


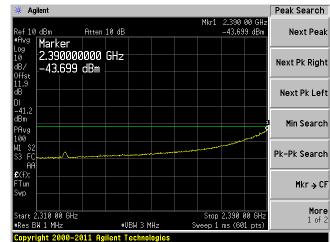

Mkr1 2.321 85 GH: -54.47 dBm Atten 20 dB Ref 20 dBm Next Peak Marker 2.321850000 GHz .0q 10 dB7 Next Pk Right -54.47 dBm 0ffs 11.9 dB Next Pk Left DI -17.3 dBm Min Search .gAv Pk-Pk Search ĤΙ **£**(f): Tun Mkr → CF WD More 1 of 2 . Res BW 100 kHz Stop 3.000 00 GHz VBW 300 kHz Swaan 283.9 ms (601 nts) Copyright 2000–2011 Agilent Tech gies

3 GHz to 25 GHz

802.11n-HT20, High Channel 2462 MHz

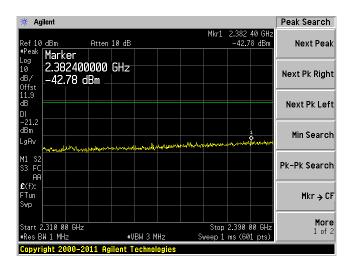
30 MHz to 3 GHz




3 GHz to 25 GHz

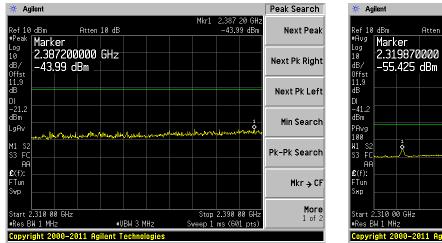
Restricted Band:

2310 to 2390 MHz


802.11b, Low Channel, 2412 MHz

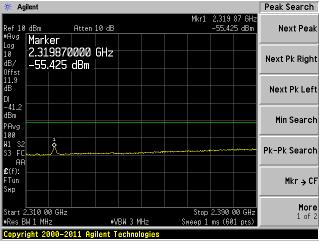
Average, Average Limit

Peak, Peak Limit

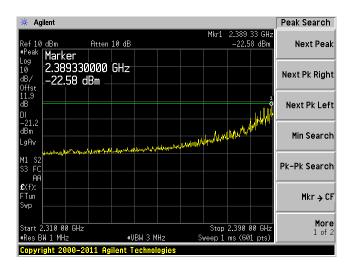


Peak, Peak Limit

Peak Search 🔆 Agilent Mkr1 2.389 33 GHz -53.178 dBm Atten 10 dB Next Peak Ref 10 dBm Marker 2.389330000 GHz Avg .og 10 Next Pk Right <u>-53.178 dBm</u> dB/ Offst 11.9 dB Next Pk Left DI -41.2 dBm Min Search PAvg 100 W1 S3 Pk-Pk Search ĤΑ **£**(f): Mkr → CF FTun wp More Stop 2.390 00 GHz Sweep 1 ms (601 pts) 2.310 00 GHz Start 1 of 2 ∗VBW 3 MHz #Res BW 1 MHz Copyright 2000-2011 Agilent Technologies


Average, Average Limit

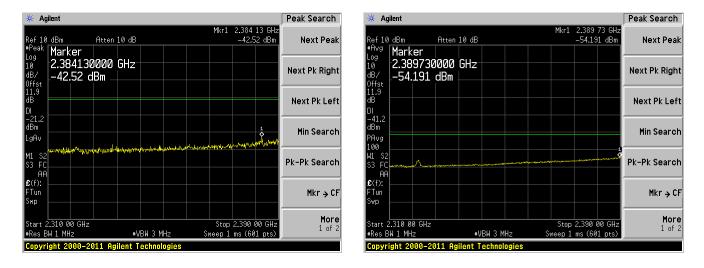
802.11b, High Channel, 2462 MHz



Peak Detector, Peak, Peak Limit

Average, Average Limit

802.11g, Low Channel 2412 MHz

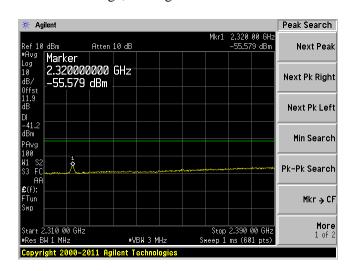


Peak, Peak Limit

Peak Search 🔆 Agilent Mkr1 2.390 00 GHz -42.180 dBm <u>Ref 10 dBm</u> Atten 10 dB Next Peak ₩Åvg Marker 2.390000000 GHz Log 10 dB/ Offst 11.9 dB Next Pk Right -42.180 dBm Next Pk Left DI -41.2 dBm Min Search PAvg 100 W1 S S3 F Pk-Pk Search AA £(f): FTun Mkr→CF WD More 1 of 2 Stop 2.390 00 GHz Sweep 1 ms (601 pts) Start 2.310 00 GHz ∗VBW 3 MHz #Res BW 1 MHz Copyright 2000-2011 Agilent Tech

Average, Average Limit

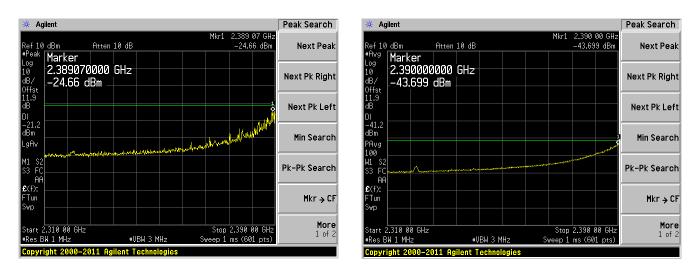
802.11g, Middle Channel 2437 MHz



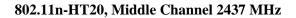
Peak, Peak Limit

Average, Average Limit

802.11g, High Channel 2462 MHz


Peak, Peak Limit

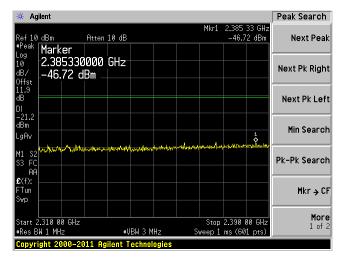
Average, Average Limit


🔆 Agilent Peak Search 2.390 00 GH: -45.24 dBm 1kr1 Ref 10 dBm #Peak Mor Atten 10 dB Next Peak Marker 2.390000000 GHz Log 10 dB/ Next Pk Right -45.24 dBm Offst 11.9 dB Next Pk Left DI -21.2 dBm **Min Search** .gAv M1 S3 Pk-Pk Search Af £(f): Tun Mkr → CF /p More Stop 2.390 00 GHz Sweep 1 ms (601 pts) Start 2.310 00 GHz 1 of 2 #Res BW 1 MHz ≢VBW 3 MHz Copyright 2000-2011 Agilent Technologies

802.11n-HT20, Low Channel 2412 MHz

Peak, Peak Limit

Average, Average Limit


🔆 Agilent Peak Search Mkr1 2.389 0 -40.83 dBm əf 10 dBm Atten 10 dB Next Peak Marker 2.389070000 GHz Pea Log 10 dB/ Next Pk Right -40.83 dBm Offs: 11.9 dB Next Pk Left DI -21.2 dBm Min Search LgAv M1 S3 Pk-Pk Search £(f): FTun Mkr→CF ٨þ More 1 of 2 Stop 2.390 00 GHz eep 1 ms (601 pts) Start 2.310 00 GHz Res BW 1 MHz **#VBW** 3 MHz Copyright 2000-2011 Agilent Tech

Peak, Peak Limit

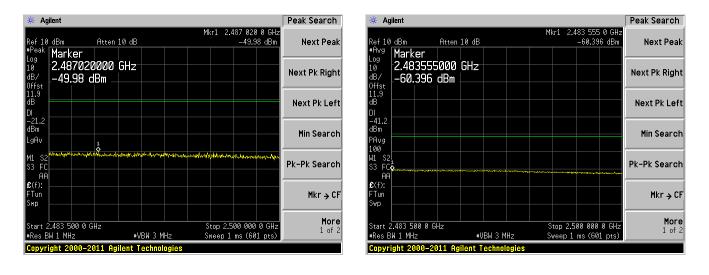
Average, Average Limit

🔆 Ag	🔆 Agilent									Peak Search
Ref 10		Atten	10 dB				Mkr1		33 GHz 24 dBm	Next Peak
	Marker 2.3893 -55.82		GHz							Next Pk Right
11.9 dB DI										Next Pk Left
-41.2 dBm PAvg 100										Min Search
W1 S2 S3 FC AA	A		·····~						1 0	Pk-Pk Search
€(f): FTun Swp										Mkr → CF
	2.310 00 GH W 1 MHz	Iz	#V	BW 3 №	1Hz	SI		2.390 ms (60	00 GHz 1 pts)	More 1 of 2
Copyri	Copyright 2000–2011 Agilent Technologies									

802.11n-HT20, High Channel 2462 MHz

Peak, Peak Limit

	U	·	C			
						_
t						
				Mkr1	2.320 00	GHz
m	Atten 1	0 dB			-56.582 d	Bm

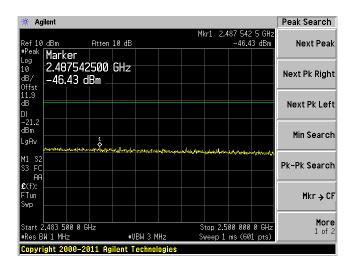

Average, Average Limit

🔆 Aaile Peak Search Next Peak Marker 2.320000000 GHz Log 10 dB/ Offst 11.9 dB DI -41.2 dBm PAvg 100 W1 S2 S3 FC Next Pk Right -56.582 dBm Next Pk Left Min Search 1 Pk-Pk Search AA €(f): FTun Swp Mkr→CF More 1 of 2 Start 2.310 00 GHz #Res BW 1 MHz Stop 2.390 00 GHz Sweep 1 ms (601 pts) ∗VBW 3 MHz

Copyright 2000–2011 Agilent Technologies

Rezolt Corporation

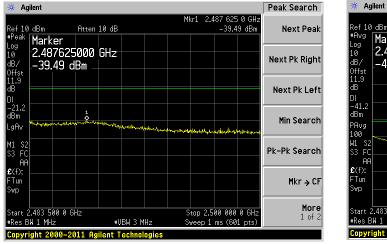
2483.5 to 2500 MHz

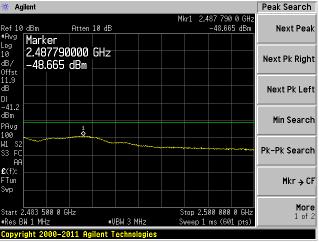


802.11b, Low Channel, 2412 MHz

Peak, Peak Limit

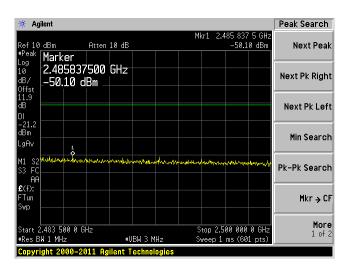
Average, Average Limit


802.11b, Middle Channel, 2437 MHz

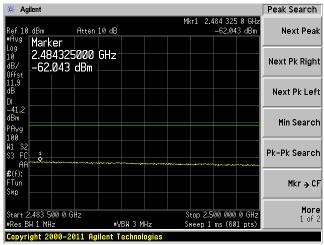

Peak, Peak Limit

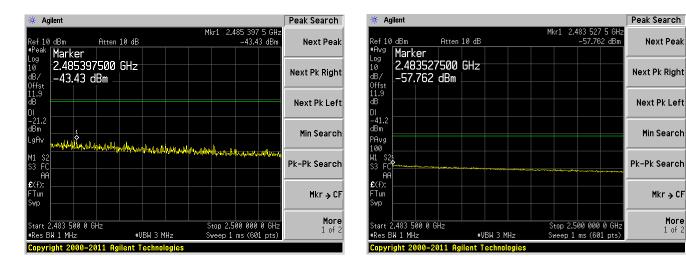
Agilent Peak Search Mkr1 2.484 050 0 GH: -57.171 dBm Atten 10 dB Ref 10 dBm Next Peak #Åvg Marker 2.484050000 GHz Log 10 dB/ Offst 11.9 dB Next Pk Right -57.171 dBm Next Pk Left DI -41.2 dBm Min Search PAvg 100 W1 S S3 F ₩1 S2 S3 FC AA £(f): 1♦ Pk-Pk Search Tun Mkr→CF wο More 1 of 2 Stop 2.500 000 0 GHz Sweep 1 ms (601 pts) tart 2.483 500 0 GHz #VBW 3 MHz #Res BW 1 MHz

Average, Average Limit


802.11b, High Channel, 2462 MHz

Peak, Peak Limit


Average, Average Limit

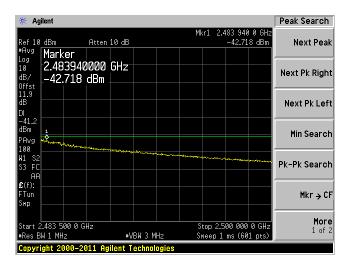

Peak, Peak Limit

Average, Average Limit

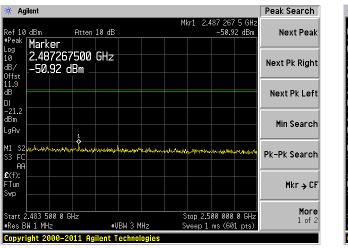
More

1 of 2

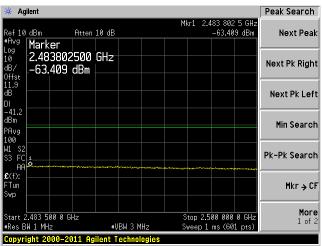
802.11g, Middle Channel 2437 MHz



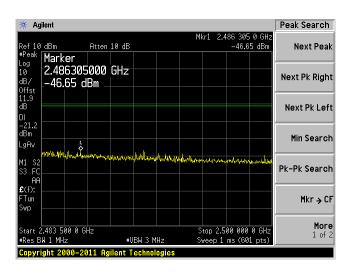
Average, Average Limit


🔆 Agilent Peak Search 2.483 940 0 GH: Mkr1 10 dBm Atten 10 dB -22.58 dBm Next Peak Marker 2.483940000 GHz Next Pk Right dR2 -22.58 dBm)ffs: 11.9 Next Pk Left DI -21.2 dBm LgAv hales a h he that when the and the second second Min Search M1 S2 S3 FC AA Pk-Pk Search **£**(f): Tun Mkr → CF an. More 1 of 2 Stop 2.500 000 0 GHz Sweep 1 ms (601 pts) Start 2.483 500 0 GHz #VBW 3 MHz #Res BW 1 MHz Copyright 2000-2011 Agilent Technologie

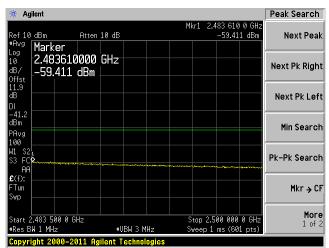
Average, Average Limit



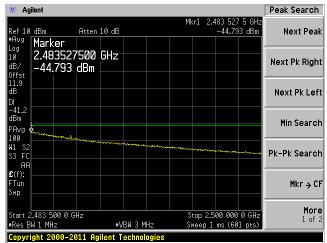
Peak, Peak Limit



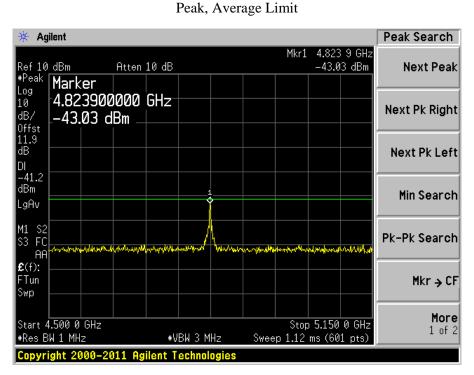
Peak, Peak Limit


Average, Average Limit

Peak, Peak Limit


Average, Average Limit

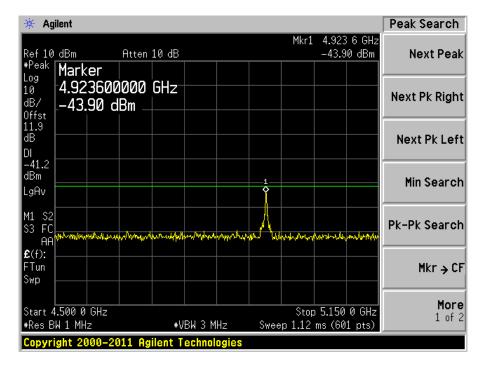
802.11n-HT20, High Channel 2462 MHz


Peak, Peak Limit

Average, Average Limit

4500 to 5150 MHz

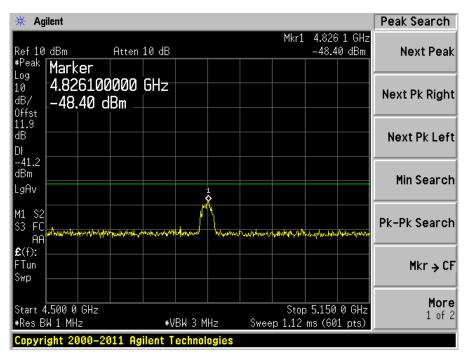
Note: The data was collected with Peak Detector, Average Limit; Average Detector, Average Limit data was not collected.

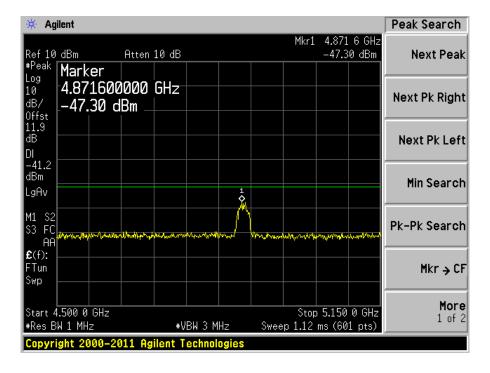

802.11b, Low Channel, 2412 MHz

802.11b, Middle Channel, 2437 MHz

Peak, Average Limit

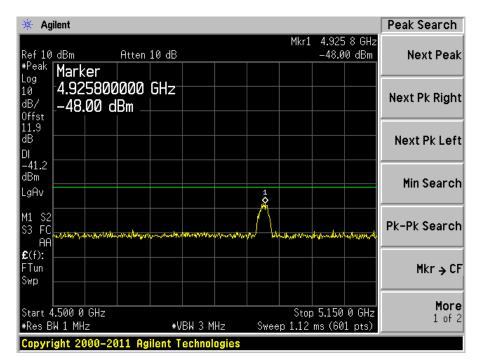
* Agilent	Peak Search						
Mkr1 4.873 8 GHz Ref 10 dBm Atten 10 dB -43.25 dBm #Peak Marker	Next Peak						
Log 10 4.873800000 GHz dB/ offst -43.25 dBm	Next Pk Right						
11.9 dB DI -41.2	Next Pk Left						
-41.2 dBm LgAv	Min Search						
M1 S2 S3 FC AA	Pk-Pk Search						
£ (f): FTun Swp	Mkr → CF						
Start 4.500 0 GHz Stop 5.150 0 GHz #Res BW 1 MHz #VBW 3 MHz Sweep 1.12 ms (601 pts)	More 1 of 2						
Copyright 2000–2011 Agilent Technologies							

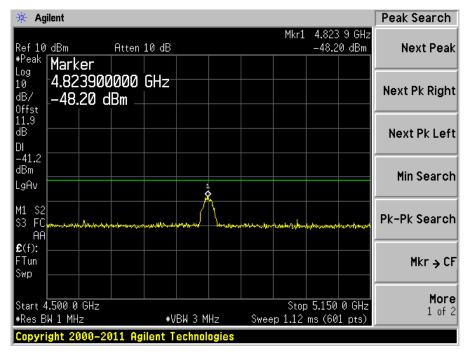

802.11b, High Channel, 2462 MHz


Peak, Average Limit

802.11g, Low Channel 2412 MHz

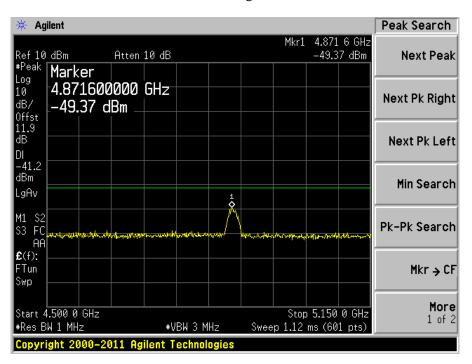
Peak, Average Limit

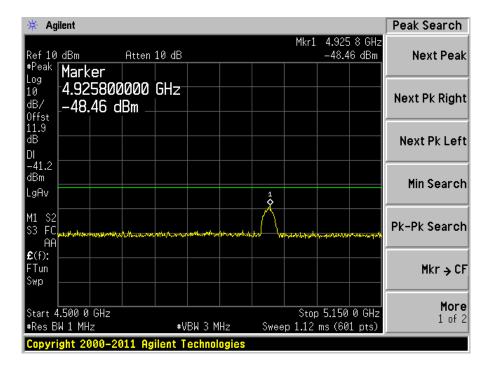

802.11g, Middle Channel 2437 MHz


Peak, Average Limit

802.11g, High Channel 2462 MHz

Peak, Average Limit


802.11n-HT20, Low Channel 2412 MHz


Peak, Average Limit

Peak, Average Limit

802.11n-HT20, High Channel 2462 MHz

Peak, Average Limit

8 FCC §15.205, §15.209 & §15.247(d) & IC RSS-210 §A8.5 – Spurious Radiated Emissions

8.1 Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

As per FCC §15.209(a) and RSS-210: Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
$\begin{array}{c} 0.090 - 0.110\\ 0.495 - 0.505\\ 2.1735 - 2.1905\\ 4.125 - 4.128\\ 4.17725 - 4.17775\\ 4.20725 - 4.20775\\ 6.215 - 6.218\\ 6.26775 - 6.26825\\ 6.31175 - 6.31225\\ 8.291 - 8.294\\ 8.362 - 8.366\\ 8.37625 - 8.38675\\ 8.41425 - 8.41475\\ 12.29 - 12.293\\ 12.51975 - 12.52025\\ 12.57675 - 12.57725\\ 13.36 - 13.41\\ \end{array}$	16.42 - 16.423 $16.69475 - 16.69525$ $25.5 - 25.67$ $37.5 - 38.25$ $73 - 74.6$ $74.8 - 75.2$ $108 - 121.94$ $123 - 138$ $149.9 - 150.05$ $156.52475 - 156.52525$ $156.7 - 156.9$ $162.0125 - 167.17$ $167.72 - 173.2$ $240 - 285$ $322 - 335.4$ $399.9 - 410$ $608 - 614$	$\begin{array}{r} 960-1240\\ 1300-1427\\ 1435-1626.5\\ 1645.5-1646.5\\ 1660-1710\\ 1718.8-1722.2\\ 2200-2300\\ 2310-2390\\ 2483.5-2500\\ 2690-2900\\ 3260-3267\\ 3.332-3.339\\ 33458-3358\\ 3.600-4.400\\ \end{array}$	$\begin{array}{c} 4.5-5.15\\ 5.35-5.46\\ 7.25-7.75\\ 8.025-8.5\\ 9.0-9.2\\ 9.3-9.5\\ 10.6-12.7\\ 13.25-13.4\\ 14.47-14.5\\ 15.35-16.2\\ 17.7-21.4\\ 22.01-23.12\\ 23.6-24.0\\ 31.2-31.8\\ 36.43-36.5\\ Above 38.6 \end{array}$

Report Number: R1304094-247

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c).

As per IC RSS-210 A8.5 Out-of-band Emissions, In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section A8.4 (4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

8.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.4-2009. The specification used was the FCC 15 Subpart C and IC RSS-210 limits.

The spacing between the peripherals was 3 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

8.3 Test Procedure

The measurements are base on FCC KDB 558074 D01 DTS Meas Guidance v03r01: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 11: Emissions in non-restricted frequency bands and section 12: Emissions in restricted frequency bands. As well as ANSI C63.4: 2009 as described below:

For the radiated emissions test, the EUT host, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 meter, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

RBW = 100 kHz / VBW = 300 kHz / Sweep = Auto

Above 1000 MHz:

(1) Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto
(2) Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

8.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

CA = Ai + AF + CL + Atten - Ga

For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5dB) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

8.5 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Spectrum Analyzer	E4446A	US44300386	2013-10-22	1 Year
Sounol Sciences	Horn Antenna	DRH-118	A052704	2013-03-07	1 Year
Mini-Circuits	Pre-amplifier	ZVA-183-S	570400946	2013-05-09	1 Year
Rohde & Schwarz	Test Receiver	ESCI 1166.5950K03	100337	2013-03-28	1 Year
Sunol Sciences	Biconi-Log Antenna	JB3	A020106-2	2013-08-12	1 Year
Agilent	Pre-amplifier	8447D	2944A10187	2013-03-08	1 Year
Sunol Sciences	System Controller	SC104V	113005-1	N/A	N/A

Statement of Traceability: BACL attests that all calibrations have been performed per the A2LA requirements, traceable to NIST.

8.6 Test Environmental Conditions

Temperature:	21-22 °C
Relative Humidity:	25-30 %
ATM Pressure:	101-102 kPa

Testing was performed by Jeffrey Wu from 2013-12-20 to2013-12-23 in chamber 5m3.

8.7 Summary of Test Results

According to the data hereinafter, the EUT <u>complied with the FCC Title 47, Part 15C and IC RSS-210</u> standard's radiated emissions limits, and had the worst margin of:

30-1000 MHz:

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Mode
-3.45	276.9013	Horizontal	B mode

1-25 GHz:

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Mode
-0.131	2483.5	Horizontal	G mode

Please refer to the following table and plots for specific test result details

8.8 Radiated Emissions Test Data and Plots

1) 30 MHz – 1 GHz, Measured at 3 meters, EUT antenna port was terminated

2.4 GHz Band, Quasi-Peak Measurements

802.11b mode

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)	
35.4855	32.78	130	V	267	40	-7.22	
277.0728	34.5	128	Н	234	46	-11.5	

802.11g mode

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Polarity Azimuth		Margin (dB)	
39.26375	31.63	100	V	140	40	-8.37	
276.9013	42.55	149	Н	280	46	-3.45	

802.11n-HT20 mode

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)
59.6695	24.6	115	V	320	40	-15.4
165.8323	39.54	256	Н	255	43.5	-3.96
215.9933	38.36	107	V	111	43.5	-5.14

All 30 MHz-1 GHz spurious are digital, other emissions are on the noise floor level. The worst case result was reported.

2) 1–25 GHz, Measured at 3 meters, EUT antenna port was terminated

Frequency	S.A.	Turntable	Т	est Anteni	na	Cable	Pre-	Cord.	FC	CC/IC		
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments	
	Low CH, 2412 MHz, measured at 3 meters											
2412	73.7	175	100	V	28.73	3.12	0	105.547	-	Fund.	Peak	
2412	74.73	94	100	Н	28.73	3.12	0	106.577	-	Fund.	Peak	
2412	70.90	175	100	V	28.73	3.12	0	102.747	-	Fund.	Ave	
2412	70.898	94	100	Н	28.73	3.12	0	102.745	-	Fund.	Ave	
2390	26.68	175	100	V	28.73	3.12	0	58.527	74	-15.473	Peak	
2390	26.78	94	100	Н	28.73	3.12	0	58.627	74	-15.373	Peak	
2390	13.88	175	100	V	28.73	3.12	0	45.727	54	-8.273	Ave	
2390	14.2	94	100	Н	28.7	3.12	0	46.047	54	-7.953	Ave	
4824	43.85	291	110	V	32.55	4.06	27.91	52.547	74	-21.453	Peak	
4828	42.99	55	103	Н	32.55	4.06	27.91	51.687	74	-22.313	Peak	
4828	41.55	291	100	V	32.55	4.06	27.91	50.247	54	-3.753	Ave	
4828	40.12	55	103	Н	32.55	4.06	27.91	48.817	54	-5.183	Ave	
7236	37.36	94	129	V	36.37	4.93	27.65	51.013	85.547	-34.534	Peak	
7236	33.86	252	135	Н	36.37	4.93	27.65	47.513	86.577	-39.064	Peak	
7236	28.4	94	129	V	36.37	4.93	27.65	42.053	82.747	-40.694	Ave	
7236	22.2	252	135	Н	36.37	4.93	27.65	35.853	82.745	-46.892	Ave	
9648*	30.24	0	100	V	37.26	5.82	27.21	46.113	85.547	-39.434	Peak	
9648*	30.33	0	100	Н	37.26	5.82	27.21	46.203	86.577	-40.374	Peak	
9648*	15.05	0	100	V	37.26	5.82	27.21	30.923	82.747	-51.824	Ave	
9648*	15.1	0	100	Н	37.26	5.82	27.21	30.973	82.745	-51.772	Ave	

802.11b mode

Encourance	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FC	CC/IC	
Frequency (MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
			Ν	liddle CH	2437 MI	Hz, meas	sured at 3	meters			
2437	73.62	195	100	V	28.73	3.25	0	105.597	_	Fund.	Peak
2437	74.96	91	100	Н	28.73	3.25	0	106.937	-	Fund.	Peak
2437	69.87	195	100	V	28.73	3.25	0	101.847	-	Fund.	Ave
2437	70.94	91	100	Н	28.73	3.25	0	102.917	-	Fund.	Ave
4874	41.39	284	115	V	32.77	4.06	27.76	50.457	74	-23.543	Peak
4874	42.29	63	113	Н	32.77	4.06	27.76	51.357	74	-22.643	Peak
4874	38.5	284	115	V	32.77	4.06	27.76	47.567	54	-6.433	Ave
4874	38.02	63	113	Н	32.77	4.06	27.76	47.087	54	-6.913	Ave
7311	35.4	84	122	V	36.59	4.88	27.67	49.203	85.597	-36.394	Peak
7311	33.22	0	100	Н	36.59	4.88	27.67	47.023	86.937	-39.914	Peak
7311	24.864	84	122	V	36.59	4.88	27.67	38.667	81.847	-43.180	Ave
7311	17.57	0	100	Н	36.59	4.88	27.67	31.373	82.917	-51.544	Ave
9748*	29.09	0	100	V	37.15	5.77	27.16	44.853	85.597	-40.744	Peak
9748*	28.94	0	100	Н	37.15	5.77	27.16	44.703	86.937	-42.234	Peak
9748*	15.31	0	100	V	37.15	5.77	27.16	31.073	81.847	-50.774	Ave
9748*	15.29	0	100	Н	37.15	5.77	27.16	31.053	82.917	-51.864	Ave
]	High CH 1	2462 MH	z, measu	ired at 3	meters			•
2462	73.79	194	100	V	28.97	3.25	0	106.009	_	Fund.	Peak
2462	74.45	92	100	Н	28.97	3.25	0	106.669	-	Fund.	Peak
2462	70.72	194	100	V	28.97	3.25	0	102.939	-	Fund.	Ave
2462	70.82	92	100	Н	28.97	3.25	0	103.039	-	Fund.	Ave
2483.5	26.29	0	100	V	28.97	3.25	0	58.509	74	-15.491	Peak
2483.5	25.75	0	100	Н	28.97	3.25	0	57.969	74	-16.031	Peak
2483.5	12.18	0	100	V	28.97	3.25	0	44.399	54	-9.601	Ave
2483.5	12.25	0	100	Н	28.97	3.25	0	44.469	54	-9.531	Ave
4924	38.06	290	116	V	32.77	4.10	27.81	47.117	74	-26.883	Peak
4924	37.99	0	131	Н	32.77	4.10	27.81	47.047	74	-26.953	Peak
4924	32.88	290	116	V	32.77	4.10	27.81	41.937	54	-12.063	Ave
4924	33.04	0	131	Н	32.77	4.10	27.81	42.097	54	-11.903	Ave
7386*	33.05	0	100	V	36.58	4.89	27.82	46.697	74	-27.303	Peak
7386*	32.67	0	100	Н	36.58	4.89	27.82	46.317	74	-27.683	Peak
7386*	20.13	0	100	V	36.58	4.89	27.82	33.777	54	-20.223	Ave
7386*	17.63	0	100	Н	36.58	4.89	27.82	31.277	54	-22.723	Ave
9848*	31.05	0	100	V	37.27	5.77	27.27	46.822	86.009	-39.187	Peak
9848*	31.25	0	100	Н	37.27	5.77	27.27	47.022	86.669	-39.647	Peak
9848*	16.62	0	100	V	37.27	5.77	27.27	32.392	82.939	-50.547	Ave
9848*	16.54	0	100	Н	37.27	5.77	27.27	32.312	83.039	-50.727	Ave

Rezolt Corporation

Frequency	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FC	C/IC	
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
]	Low CH 2	2412 MHz	z, measu	red at 3	meters			
2412	75.67	177	100	V	28.73	3.12	0	107.517	-	Fund.	Peak
2412	76.69	94	100	Н	28.73	3.12	0	108.537	-	Fund.	Peak
2412	62.48	177	100	V	28.73	3.12	0	94.327	-	Fund.	Ave
2412	63.67	94	100	Н	28.73	3.12	0	95.517	-	Fund.	Ave
2390	39.17	177	100	V	28.7	3.12	0	71.017	74	-2.983	Peak
2390	40.49	94	100	Н	28.7	3.12	0	72.337	74	-1.663	Peak
2390	16.36	177	100	V	28.7	3.12	0	48.207	54	-5.793	Ave
2390	17.04	94	100	Н	28.7	3.12	0	48.887	54	-5.113	Ave
4824	40.67	294	119	V	32.55	4.06	27.91	49.367	74	-24.633	Peak
4828	37.72	332	121	Н	32.55	4.06	27.91	46.417	74	-27.583	Peak
4828	24.51	294	119	V	32.55	4.06	27.91	33.207	54	-20.793	Ave
4828	22.61	332	121	Н	32.55	4.06	27.91	31.307	54	-22.693	Ave
7236*	33.03	0	100	V	36.37	4.93	27.65	46.683	87.517	-40.834	Peak
7236*	33.03	0	100	Н	36.37	4.93	27.65	46.683	88.537	-41.854	Peak
7236*	17.57	0	100	V	36.37	4.93	27.65	31.223	74.327	-43.104	Ave
7236*	17.49	0	100	Н	36.37	4.93	27.65	31.143	75.517	-44.374	Ave
9648*	33.41	0	100	V	37.26	5.82	27.21	49.283	87.517	-38.234	Peak
9648*	32.95	0	100	Н	37.26	5.82	27.21	48.823	88.537	-39.714	Peak
9648*	17.59	0	100	V	37.26	5.82	27.21	33.463	74.327	-40.864	Ave
9648*	17.63	0	100	Н	37.26	5.82	27.21	33.503	75.517	-42.014	Ave
			M	liddle CH	2437 MF	Iz, meas	sured at 3	3 meters			
2437	74.86	197	100	V	28.73	3.25	0	106.837	-	Fund.	Peak
2437	75.46	91	100	Н	28.73	3.25	0	107.437	-	Fund.	Peak
2437	61.84	197	100	V	28.73	3.25	0	93.817	-	Fund.	Ave
2437	63.14	91	100	Н	28.73	3.25	0	95.117	-	Fund.	Ave
4874	37.9	290	111	V	32.77	4.06	27.76	46.967	74	-27.033	Peak
4874	35.84	126	117	Н	32.77	4.06	27.76	44.907	74	-29.093	Peak
4874	22.14	290	111	V	32.77	4.06	27.76	31.207	54	-22.793	Ave
4874	21.34	126	117	Н	32.77	4.06	27.76	30.407	54	-23.593	Ave
7311*	31.57	0	100	V	36.59	4.88	27.67	45.373	86.837	-41.464	Peak
7311*	31.71	0	100	Н	36.59	4.88	27.67	45.513	87.437	-41.924	Peak
7311*	17.56	0	100	V	36.59	4.88	27.67	31.363	73.817	-42.454	Ave
7311*	17.58	0	100	Н	36.59	4.88	27.67	31.383	75.117	-43.734	Ave
9748*	30.51	0	100	V	37.15	5.77	27.16	46.273	86.837	-40.564	Peak
9748*	30.47	0	100	Н	37.15	5.77	27.16	46.233	87.437	-41.204	Peak
9748*	17.62	0	100	V	37.15	5.77	27.16	33.383	73.817	-40.434	Ave
9748*	17.68	0	100	Н	37.15	5.77	27.16	33.443	75.117	-41.674	Ave

802.11g mode

E	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FC	CC/IC	
Frequency (MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
	High CH 2462 MHz, measured at 3 meters										
2462	76.49	184	100	V	28.97	3.25	0	108.709	-	Fund.	Peak
2462	76.77	58	100	Н	28.97	3.25	0	108.989	-	Fund.	Peak
2462	63.47	184	100	V	28.97	3.25	0	95.689	-	Fund.	Ave
2462	64.03	58	100	Н	28.97	3.25	0	96.249	-	Fund.	Ave
2483.5	41.63	184	100	V	28.969	3.25	0	73.849	74	-0.151	Peak
2483.5	41.65	58	100	Н	28.969	3.25	0	73.869	74	-0.131	Peak
2483.5	18.6	184	100	V	28.969	3.25	0	50.819	54	-3.181	Ave
2483.5	19.01	58	100	Н	28.969	3.25	0	51.229	54	-2.771	Ave
4924	34.57	265	113	V	32.77	4.10	27.81	43.627	74	-30.373	Peak
4924	36.82	18	125	Н	32.77	4.10	27.81	45.877	74	-28.123	Peak
4924	18.05	265	113	V	32.77	4.10	27.81	27.107	54	-26.893	Ave
4924	20.81	18	125	Н	32.77	4.10	27.81	29.867	54	-24.133	Ave
7386*	30.79	0	100	V	36.58	4.89	27.82	44.437	74	-29.563	Peak
7386*	31.82	0	100	Н	36.58	4.89	27.82	45.467	74	-28.533	Peak
7386*	17.37	0	100	V	36.58	4.89	27.82	31.017	54	-22.983	Ave
7386*	17.45	0	100	Н	36.58	4.89	27.82	31.097	54	-22.903	Ave
9848*	31.25	0	100	V	37.27	5.77	27.27	47.022	88.709	-41.687	Peak
9848*	31.4	0	100	Н	37.27	5.77	27.27	47.172	88.989	-41.817	Peak
9848*	17.38	0	100	V	37.27	5.77	27.27	33.152	75.689	-42.537	Ave
9848*	17.61	0	100	Н	37.27	5.77	27.27	33.382	76.249	-42.867	Ave

Rezolt Corporation

Frequency	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FC	CC/IC	
(MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments
]	Low CH 2	2412 MH	z, measu	red at 3 i	meters			
2412	72.61	187	100	V	28.73	3.12	0	104.457	-	Fund.	Peak
2412	74.13	52	100	Н	28.73	3.12	0	105.977	-	Fund.	Peak
2412	59.87	187	100	V	28.73	3.12	0	91.717	-	Fund.	Ave
2412	61.53	52	100	Н	28.73	3.12	0	93.377	-	Fund.	Ave
2390	37.33	187	100	V	28.7	3.12	0	69.177	74	-4.823	Peak
2390	39.45	52	100	Н	28.7	3.12	0	71.297	74	-2.703	Peak
2390	14.66	187	100	V	28.7	3.12	0	46.507	54	-7.493	Ave
2390	15.53	52	100	Н	28.7	3.12	0	47.377	54	-6.623	Ave
4824	39.09	290	100	V	32.55	4.06	27.91	47.787	74	-26.213	Peak
4828	36.24	127	114	Н	32.55	4.06	27.91	44.937	74	-29.063	Peak
4828	23.23	290	100	V	32.55	4.06	27.91	31.927	54	-22.073	Ave
4828	21.34	127	114	Н	32.55	4.06	27.91	30.037	54	-23.963	Ave
7236*	31.59	0	100	V	36.37	4.93	27.65	45.243	84.457	-39.214	Peak
7236*	31.64	0	100	Н	36.37	4.93	27.65	45.293	85.977	-40.684	Peak
7236*	17.42	0	100	V	36.37	4.93	27.65	31.073	71.717	-40.644	Ave
7236*	17.46	0	100	Н	36.37	4.93	27.65	31.113	73.377	-42.264	Ave
		·	Μ	liddle CH	2437 MI	Hz, meas	ured at 3	meters	•		·
2437	73.1	197	100	V	28.73	3.25	0	105.077	_	Fund.	Peak
2437	72.8	51	100	Н	28.73	3.25	0	104.777	-	Fund.	Peak
2437	60.49	197	100	V	28.73	3.25	0	92.467	-	Fund.	Ave
2437	60.45	51	100	Н	28.73	3.25	0	92.427	-	Fund.	Ave
4874	37.09	96	115	V	32.77	4.06	27.76	46.157	74	-27.843	Peak
4874	39.53	64	115	Н	32.77	4.06	27.76	48.597	74	-25.403	Peak
4874	19.59	96	115	V	32.77	4.06	27.76	28.657	54	-25.343	Ave
4874	23.01	64	115	Н	32.77	4.06	27.76	32.077	54	-21.923	Ave
7311*	31.00	0	100	V	36.59	4.88	27.67	44.803	85.077	-40.274	Peak
7311*	32.11	0	100	Н	36.59	4.88	27.67	45.913	84.777	-38.864	Peak
7311*	17.46	0	100	V	36.59	4.88	27.67	31.263	72.467	-41.204	Ave
7311*	17.53	0	100	Н	36.59	4.88	27.67	31.333	72.427	-41.094	Ave
9748*	30.85	0	100	V	37.15	5.77	27.16	46.613	85.077	-38.464	Peak
9748*	30.47	0	100	Н	37.15	5.77	27.16	46.233	84.777	-38.544	Peak
9748*	17.12	0	100	V	37.15	5.77	27.16	32.883	72.467	-39.584	Ave
9748*	17.09	0	100	Н	37.15	5.77	27.16	32.853	72.427	-39.574	Ave

802.11n-HT20 mode

E	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FC	CC/IC		
Frequency (MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Comments	
	High CH 2462 MHz, measured at 3 meters											
2462	73.16	193	100	V	28.97	3.25	0	105.379	-	Fund.	Peak	
2462	74.21	108	100	Н	28.97	3.25	0	106.429	-	Fund.	Peak	
2462	61.38	193	100	V	28.97	3.25	0	93.599	-	Fund.	Ave	
2462	63.78	108	100	Н	28.97	3.25	0	95.999	-	Fund.	Ave	
2483.5	40.99	193	100	V	28.969	3.25	0	73.209	74	-0.791	Peak	
2483.5	41.01	108	100	Н	28.969	3.25	0	73.229	74	-0.771	Peak	
2483.5	16.4	193	100	V	28.969	3.25	0	48.619	54	-5.381	Ave	
2483.5	17.07	108	100	Н	28.969	3.25	0	49.289	54	-4.711	Ave	
4924	32.23	0	100	V	32.77	4.10	27.81	41.287	74	-32.713	Peak	
4924	32.39	0	100	Н	32.77	4.10	27.81	41.447	74	-32.553	Peak	
4924	17.62	0	100	V	32.77	4.10	27.81	26.677	54	-27.323	Ave	
4924	18.24	0	100	Н	32.77	4.10	27.81	27.297	54	-26.703	Ave	
7386	32.51	0	100	V	36.58	4.89	27.82	46.157	74	-27.843	Peak	
7386	32.19	0	100	Н	36.58	4.89	27.82	45.837	74	-28.163	Peak	
7386	17.4	0	100	V	36.58	4.89	27.82	31.047	54	-22.953	Ave	
7386	17.34	0	100	Н	36.58	4.89	27.82	30.987	54	-23.013	Ave	
9848	30.85	0	100	V	37.27	5.77	27.27	46.622	85.379	-38.757	Peak	
9848	30.72	0	100	Н	37.27	5.77	27.27	46.492	86.429	-39.937	Peak	
9848	16.94	0	100	V	37.27	5.77	27.27	32.712	73.599	-40.887	Ave	
9848	16.86	0	100	Н	37.27	5.77	27.27	32.632	75.999	-43.367	Ave	

9 FCC§15.247(a)(2) & IC RSS-210 §A8.2 – 6 dB & 99% Emission Bandwidth

9.1 Applicable Standard

According to FCC §15.247(a)(2) and IC RSS-210 A8.2 (a), systems using digital modulation techniques may operate in the 902~928 MHz, 2400~2483.5 MHz, and 5725~5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz

9.2 Measurement Procedure

The measurements are base on FCC KDB 558074 D01 DTS Meas Guidance v03r01: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 8: DTS bandwidth

9.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Spectrum Analyzer	E4446A	US44300386	2013-10-22	1 Year

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

9.4 Test Environmental Conditions

Temperature:	22 °C
Relative Humidity:	39 %
ATM Pressure:	102.2 kPa

Testing was performed by Jeffrey Wu on 2014-01-02 in RF Site.

9.5 Test Results

802.11 b mode:

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)	Limit (MHz)	Results
Low	2412	8.591	12.9184	>0.5	Compliant
Middle	2437	8.094	12.9276	>0.5	Compliant
High	2462	8.549	12.9601	>0.5	Compliant

802.11 g mode:

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)	Limit (MHz)	Results
Low	2412	15.358	16.3118	>0.5	Compliant
Middle	2437	15.156	16.2996	>0.5	Compliant
High	2462	15.333	16.2853	>0.5	Compliant

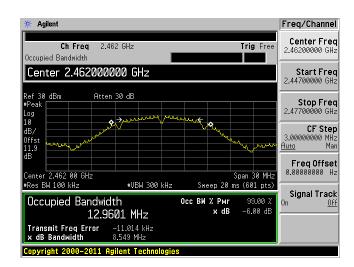
802.11n HT20 mode:

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)	Limit (MHz)	Results
Low	2412	16.089	17.4564	>0.5	Compliant
Middle	2437	16.090	17.4508	>0.5	Compliant
High	2462	15.984	17.4570	>0.5	Compliant

Please refer to the following plots for detailed test results

CF Step

Off


Freq/Channel Agilent Agilent Freq/Channel Center Freq 2.41200000 GHz Center Freq 2.43700000 GHz Ch Freq 2.412 GHz Ch Freq 2.437 GHz Trig Free Trig Fre Occupied Bandwidth Occupied Bandwidth Start Freq 2.42200000 GHz Center 2.412000000 GHz Start Freq 2.39700000 GHz Center 2.437000000 GHz Ref30 dBm ≢Peak [_____ Atten 30 dB Atten 30 dB Ref 30_dBm Stop Freq 2.42700000 GHz Stop Freq 2.45200000 GHz ŧPea Log 10 8 > 10٥ CF Step 3.00000000 MHz <u>Auto</u> Man dB/ iΒ/ 3.00000000 MHz Auto Man Offst 11.9 Auto <u>Auto</u> FreqOffset 0.00000000 Hz FreqOffset 0.00000000 Hz Center 2.412 00 GHz #Res BW 100 kHz Center 2.437 00 GHz #Res BW 100 kHz Span 30 MHz Span 30 MHz ₩VBW 300 kHz Sweep 20 ms (601 pts) ₩VBW 300 kHz Sweep 20 ms (601 pts) Signal Track Signal Track Occupied Bandwidth Occupied Bandwidth Occ BW % Pwr 99.00 % Occ BW % Pwr 99.00 % 0n Off x dB хdВ -6.00 dE -6.00 dE 12.9184 MHz 12.9276 MHz Transmit Freq Error -3.123 kHz x dB Bandwidth 8.591 MHz Transmit Freq Error 12.120 kHz × dB Bandwidth 8.094 MHz

802.11 b mode

Low Channel, 2412 MHz

Middle Channel, 2437 MHz

High Channel, 2462 MHz

Report Number: R1304094-247

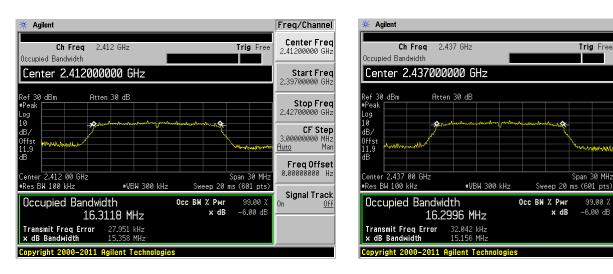
Freq/Channel

Center Freq 2.43700000 GHz

Start Freq 2.42200000 GHz

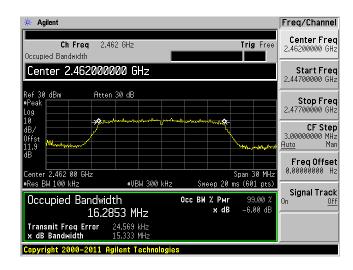
Stop Freq 2.45200000 GHz

CF Step 3.00000000 MHz <u>Auto</u>Man

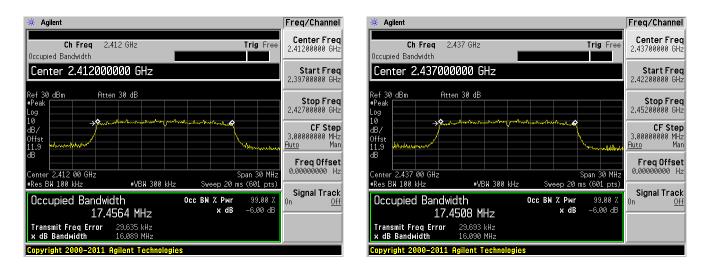

FreqOffset 0.00000000 Hz

Signal Track

Off


Auto

802.11 g mode



Low Channel, 2412 MHz

Middle Channel, 2437 MHz

802.11n-HT20 mode

Low Channel, 2412 MHz

Middle Channel, 2437 MHz

🔆 Agilent	Freq/Channel
Ch Freq 2.462 GHz Trig Free Occupied Bandwidth	Center Freq 2.46200000 GHz
Center 2.462000000 GHz	Start Fred 2.44700000 GHz
Ref 30 dBm Atten 30 dB Peak Log Log	Stop Fred 2.47700000 GHz
10	CF Step 3.00000000 MHz <u>Auto</u> Mar
dB	Freq Offset 0.00000000 Ha
••Res BH 100 kHz ••VBW 300 kHz Sweep 20 ms (601 pts) Occupied Bandwidth ••cc BH % PHr 99.00 % 17.4570 MHz × dB -6.00 dB	Signal Track ^{On <u>Of</u>}
Transmit Freg Error 27.476 kHz × dB Bandwidth 15.984 MHz	
Copyright 2000–2011 Agilent Technologies	

10 FCC §15.247(b) & IC RSS-210 §A8.4 – Peak Output Power Measurement

10.1 Applicable Standard

According to FCC §15.247(b) and IC RSS-210 §A8.4 (4) for systems using digital modulation in the 902~928 MHz, 2400~2483.5 MHz, and 5725~5850 MHz bands: 1 Watt.

10.2 Measurement Procedure

The measurements are base on FCC KDB 558074 D01 DTS Meas Guidance v03r01: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 9: Fundamental emission output power

10.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Spectrum Analyzer	E4446A	US44300386	2013-10-22	1 Year

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

10.4 Test Environmental Conditions

Temperature:	22 °C
Relative Humidity:	39 %
ATM Pressure:	102.2 kPa

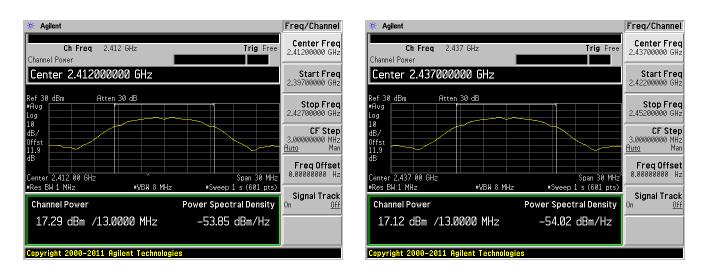
Testing was performed by Jeffrey Wu on 2014-01-02 in RF Site.

10.5 Test Results

Channel	Frequency (MHz)	Conducted Output Power (dBm)	Limit (dBm)	Margin (dB)
Low	2412	17.29	30	-12.71
Middle	2437	17.12	30	-12.88
High	2462	17.39	30	-12.61

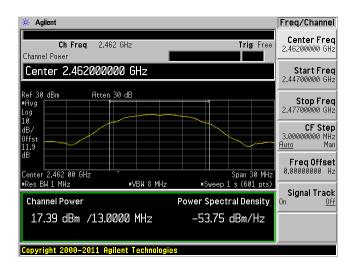
802.11b mode

802.11g mode


Channel	Frequency (MHz)	Conducted Output Power (dBm)	Limit (dBm)	Margin (dB)
Low	2412	14.26	30	-15.74
Middle	2437	14.35	30	-15.65
High	2462	14.40	30	-15.60

802.11n-HT20 mode

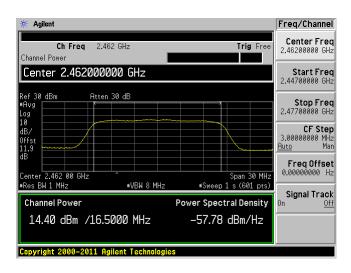
Channel	Frequency (MHz)	Conducted Output Power (dBm)	Limit (dBm)	Margin (dB)
Low	2412	12.97	30	-17.03
Middle	2437	13.01	30	-16.99
High	2462	13.39	30	-16.61


Please refer to the following plots for detailed test results

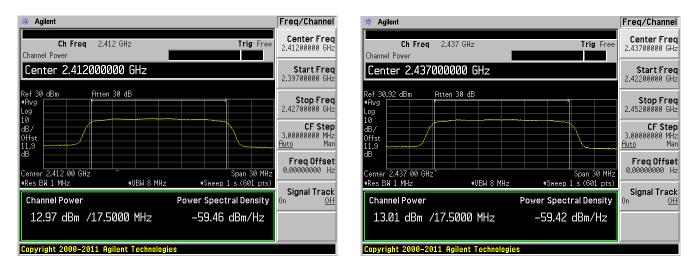
802.11 b mode

Low Channel, 2412 MHz

Middle Channel, 2437 MHz



802.11 g mode



Low Channel, 2412 MHz

Middle Channel, 2437 MHz

802.11n-HT20 mode

Low Channel, 2412 MHz

Middle Channel, 2437 MHz

🔆 Agilent			Freq/Channel
Ch Freq 2. Channel Power	462 GHz	Trig Free	Center Freq 2.46200000 GHz
Center 2.462000	1000 GHz		Start Freq 2.44700000 GHz
#Avg K	n 30 dB		Stop Freq 2.47700000 GHz
10 dB/ Offst 11.9			CF Step 3.00000000 MHz <u>Auto</u> Man
dB Center 2.462 00 GHz		Span 30 MHz	Freq Offset 0.00000000 Hz
*Res BW 1 MHz Channel Power	#VBW 8 MHz	#Sweep 1 s (601 pts) Power Spectral Density	Signal Track On <u>Off</u>
13.39 dBm /17.	5000 MHz	–59.04 dBm/Hz	
Copyright 2000-2011 (Agilent Technologie	·S	

11 FCC §15.247(d) & IC RSS-210 §A8.5 – 100 kHz Bandwidth of Band Edges

11.1 Applicable Standard

According to FCC §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emissions limits specified in §15.209(a) see §15.205(c).

According to IC Rss-210 §A8.5, in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the radio frequency power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required.

11.2 Measurement Procedure

The measurements are base on FCC KDB 558074 D01 DTS Meas Guidance v03r01: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 13: Bandedge measurements

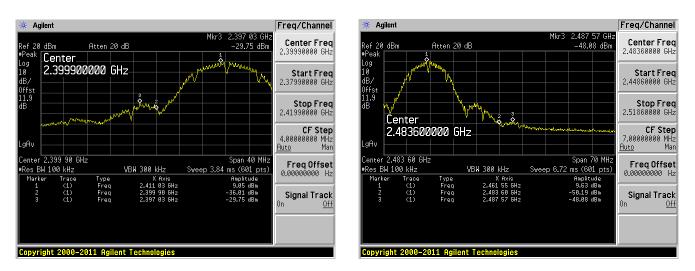
11.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Spectrum Analyzer	E4446A	US44300386	2013-10-22	1 Year

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

11.4 Test Environmental Conditions

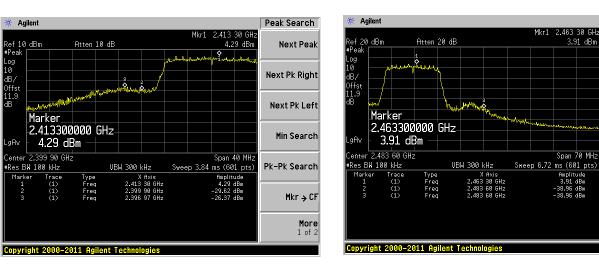
Temperature:	22 °C
Relative Humidity:	39 %
ATM Pressure:	102.2 kPa


Testing was performed by Jeffrey Wu on 2014-01-02 in RF Site.

11.5 Test Results

Please refer to following pages for plots of band edge.

Higher Edge


802.11b mode

Lower Edge

Lower Edge

Higher Edge

Peak Search

Next Pk Right

Next Pk Left

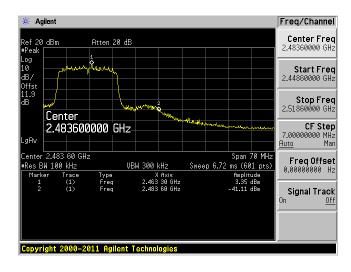
Min Search

Pk-Pk Search

Mkr→CF

More 1 of 2

Next Peak


Log 10 dB/ 0ffst 11.9

αAv

Freq/Channel 🔆 Agilent 2.392 63 GHz -33.03 dBm Mkr3 Center Freq 2.39990000 GHz Atten 20 dB lef 20 dBm Center 2.399900000 GHz-Log 10 dB/ Offst 11.9 1 \$ Start Freq 2.37990000 GHz Stop Freq 2.41990000 GHz ° Å ó CF Step 4.00000000 MHz <u>Auto</u> Man . aAv Center 2.399 90 GHz #Res BW 100 kHz Span 40 MHz Sweep 3.84 ms (601 pts) FreqOffset 0.00000000 Hz VBW 300 kHz Trace (1) (1) (1) Type Freq Freq Freq X Axis 2.413 30 GHz 2.399 90 GHz 2.392 63 GHz Amplitude 2.83 dBm -34.42 dBm -33.03 dBm Marke Signal Track Ωn Copyright 2000-2011 Agilent Technologies

Lower Edge

802.11n-HT20 mode

Higher Edge

12 FCC §15.247(e) & IC RSS-210 §A8.2 (b) – Power Spectral Density

12.1 Applicable Standard

According to FCC §15.247(e) and RSS-210 §A8.2 (b), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

12.2 Measurement Procedure

The measurements are base on FCC KDB 558074 D01 DTS Meas Guidance v03r01: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 10: Maximum power spectral density level in the fundamental emission

12.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Spectrum Analyzer	E4446A	US44300386	2013-10-22	1 Year

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

12.4 Test Environmental Conditions

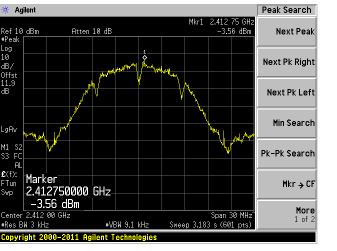
Temperature:	22 °C
Relative Humidity:	39 %
ATM Pressure:	102.2 kPa

Testing was performed by Jeffrey Wu on 2014-01-02 in RF Site.

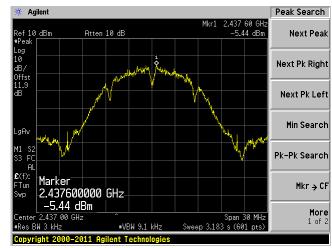
12.5 Test Results

Channel	Frequency (MHz)	Conducted PSD (dBm)	Limit (dBm)	Margin (dB)
Low	2412	-3.56	8	-11.56
Middle	2437	-5.44	8	-13.44
High	2462	-4.22	8	-12.22

802.11b mode

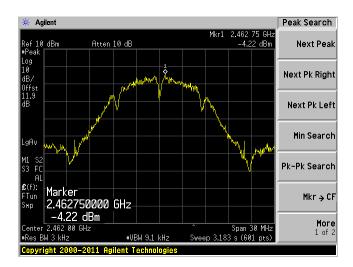

802.11g mode

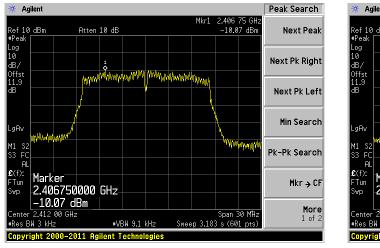
Channel	Frequency (MHz)	Conducted PSD (dBm)	Limit (dBm)	Margin (dB)
Low	2412	-10.07	8	-18.07
Middle	2437	-9.12	8	-17.12
High	2462	-8.85	8	-16.85


802.11n-HT20 mode

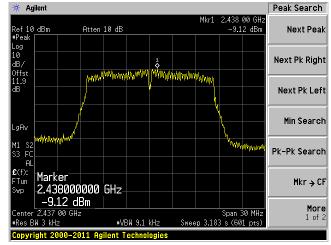
Channel	Frequency (MHz)	Conducted PSD Limit (dBm) (dBm)		Margin (dB)
Low	2412	-9.57	8	-17.57
Middle	2437	-10.88	8	-18.88
High	2462	-9.95	8	-17.95

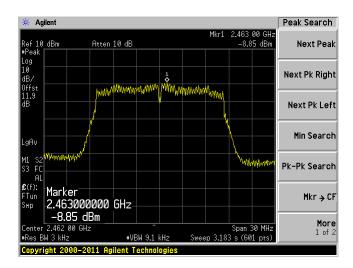
Please refer to the following plots for detailed test results




802.11 b mode

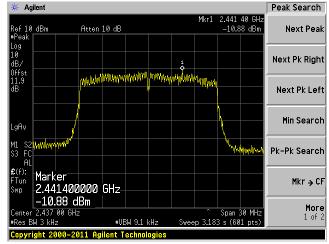
Low Channel, 2412 MHz


Middle Channel, 2437 MHz

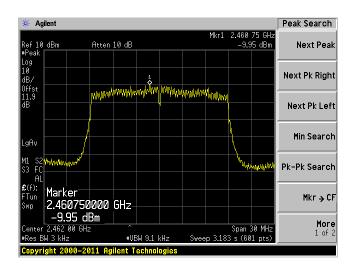


Low Channel, 2412 MHz

802.11 g mode



Middle Channel, 2437 MHz



802.11n-HT20 mode

Low Channel, 2412 MHz

Middle Channel, 2437 MHz

13 IC RSS-210 §2.3 & RSS-Gen §4.10 – Receiver Spurious Radiated Emissions

13.1 Applicable Standard

According to IC RSS-Gen §4.10, the receiver shall be operated in the normal receive mode near the mid-point of the band over which the receiver is designed to operate.

Unless otherwise specified in the applicable RSS, the radiated emission measurement is the standard measurement method (with the device's antenna in place) to measure receiver spurious emissions.

Radiated emission measurements are to be performed using a calibrated open-area test site.

For either method, the search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tuneable or local oscillator frequency, whichever is the higher, without exceeding 40 GHz.

For emissions below 1 GHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector with the same measurement bandwidth as that for CISPR quasi-peak measurements. Above 1 GHz, measurements shall be performed using an average detector and a resolution bandwidth of 300 kHz to 1 MHz.

According to RSS-Gen §6.1, Tables 2 show the general field strength limits of receiver spurious emissions

Frequency (MHz)	Field Strength (Microvolts/m at 3 meters)
30-88	100
88-216	150
216-960	200
Above 960	500

Table 2: Radiated Limits of Receiver Spurious Emissions

13.2 EUT Setup

The radiated emissions tests were performed in the 3 meter chamber, using the setup in accordance with ANSI C63.4-2009.

13.3 Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

All data were recorded in the peak detection mode. Quasi-peak readings was performed only when an emissions was found to be marginal (within -4 dB of specification limits), and are distinguished with a "**QP**" in the data table.

13.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to the indicated Amplitude (Ai) reading. The basic equation is as follows:

CA = Ai + AF + CL + Atten - Ga

For example, the Corrected Amplitude (CA) of 40.3 dBuV/m = indicated Amplitude reading (Ai) 32.5 dBuV + Antenna Factor (AF) 23.5dB + Cable Loss (CL) 3.7 dB + Attenuator (Atten) 10 dB - Amplifier Gain (Ga) 29.4 dB

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit for Class A. The equation for margin calculation is as follows:

Margin (dB) = Corrected Amplitude (dBuV/m) - Limit (dBuV/m)

13.5 Test Equipment Lists and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Spectrum Analyzer	E4446A	US44300386	2013-10-22	1 Year
Sounol Sciences	Horn Antenna	DRH-118	A052704	2013-03-07	1 Year
Mini-Circuits	Pre-amplifier	ZVA-183-S	570400946	2013-05-09	1 Year
Rohde & Schwarz	Test Receiver	ESCI 1166.5950K03	100337	2013-03-28	1 Year
Sunol Sciences	Biconi-Log Antenna	JB3	A020106-2	2013-08-12	1 Year
Agilent	Pre-amplifier	8447D	2944A10187	2013-03-08	1 Year
Sunol Sciences	System Controller	SC104V	113005-1	N/A	N/A

Statement of Traceability: BACL attests that all calibrations have been performed per the A2LA requirements, traceable to NIST.

13.6 Test Environmental Conditions

Temperature:	21 ° C	
Relative Humidity:	33 %	
ATM Pressure:	102.2 kPa	

Testing was performed by Jeffrey Wu on 2013-12-26 in chamber 5m3.

13.7 Summary of Test Results

According to the test data, the EUT <u>complied with the RSS-210</u>, with the closest margins from the limit listed below:

30 MHz-1 GHz

Mode: Receiving			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Range (MHz)
-5.15	780.0455	Horizontal	30-1000

1-12.75 GHz

Mode: Receiving			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Range (MHz)
-9.423	2437	Vertical	1000-12750

13.8 Test Results

1) 30-1000 MHz, Measured at 3 meters

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)	Comment
59.828	19.99	196	V	231	40	-20.01	QP
196.6043	35.82	100	V	360	43.5	-7.68	QP
504.8248	27.98	133	Н	0	46	-18.02	QP
593.1698	30.67	174	Н	78	46	-15.33	QP
729.457	22.35	100	V	11	46	-23.65	QP
780.0455	40.85	102	Н	242	46	-5.15	QP

2) Above 1 GHz Measured at 3 meters

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)	Comment
2437	43.72	111	V	180	74	-26.613	Peak
2437	42.62	124	Н	317	74	-27.713	Peak
2437	40.91	111	V	180	54	-9.423	Ave
2437	39.48	124	Н	317	54	-10.853	Ave

14 Exhibit A – FCC & IC Equipment Labeling Requirements

14.1 FCC ID Label Requirements

As per FCC §2.925,

(a) Each equipment covered in an application for equipment authorization shall bear a nameplate or label listing the following:

(1) FCC Identifier consisting of the two elements in the exact order specified in §2.926. The FCC Identifier shall be preceded by the term FCC ID in capital letters on a single line, and shall be of a type size large enough to be legible without the aid of magnification.

Example: FCC ID: XXX123

Where: XXX—Grantee Code, 123—Equipment Product Code

As per FCC §15.19,

(a) In addition to the requirements in part 2 of this chapter, a device subject to certification, or verification shall be labeled as follows:

(3) All other devices shall bear the following statement in a conspicuous location on the device: This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

(4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified above is required to be affixed only to the main control unit. If the EUT is integrated within another device then a label affixed to the host shall also state, "Contains FCC ID: XXXXXX"

(5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

14.2 IC Label Requirements

As per IC RSS-Gen §5.2, the certification number shall appear as follows:

IC: XXXXXX-YYYYYYY

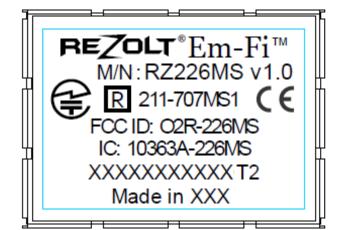
Where:

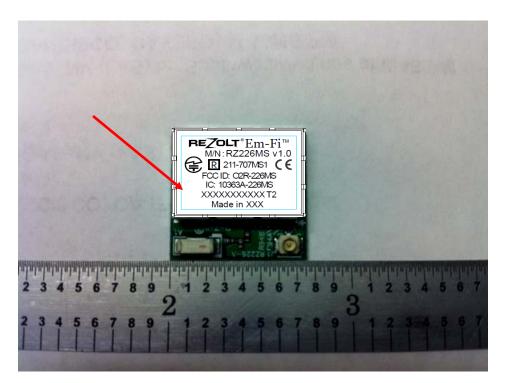
- "XXXXX-YYYYYYY" is the certification number
- "XXXXXX" is the Certificate Holder Number (CHN), made of at most 6 alphanumeric characters (A-Z, 0-9), assigned by Industry Canada; and
- "YYYYYYY" is the Unique Product Number (UPN), made of at most 11 alphanumeric characters (A-Z, 0-9) assigned by the applicant.
- Note 1: The term "IC" before the equipment certification number only signifies that the Industry Canada technical specifications were met.
- Note 2: Note 1 shall be conspicuously placed in the equipment user manual.
- Note 3: Permitted alphanumeric characters used in the CHN and UPN are limited to capital letters (A-Z) and digits (0-9). Other characters, such as "#", "/" or "-", shall not be used.

As per RSS-Gen §5.2 Equipment Labeling:

Equipment subject to certification under the applicable RSS, shall be permanently labeled on each item, or as an inseparable combination. The label must contain the following information for full compliance:

(a) the certification number, prefixed by the term "IC:";


(b) the manufacturer's name, trade name or brand name; and


(c) a model name or number.

Equipment for which a certificate has been issued is not considered certified if it is not properly labeled.

The information on the Canadian label can be combined with the manufacturer's other labeling requirements. If the device size is too small to put a label, the label can be included in the user's manual, upon agreement with Industry Canada.

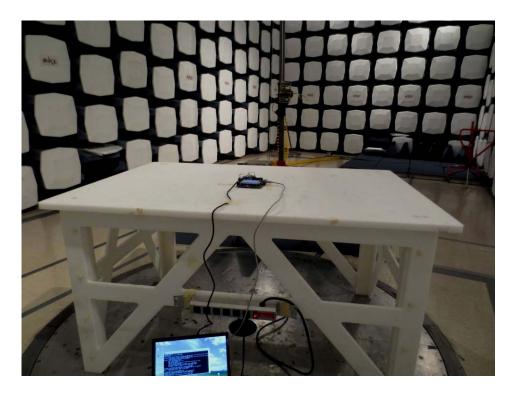
14.3 FCC ID & IC Label Contents and Location

Report Number: R1304094-247

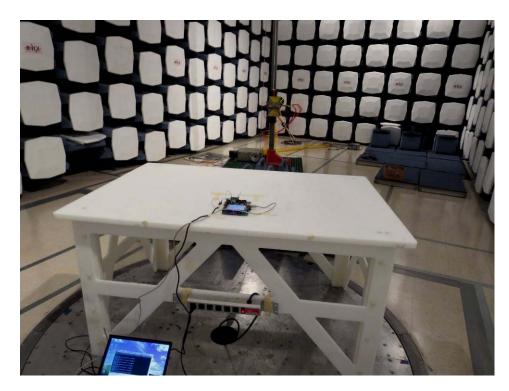
15 Exhibit B – Test Setup Photographs

15.1 Conducted Emissions - Front View

15.2 Conducted Emissions - Side View

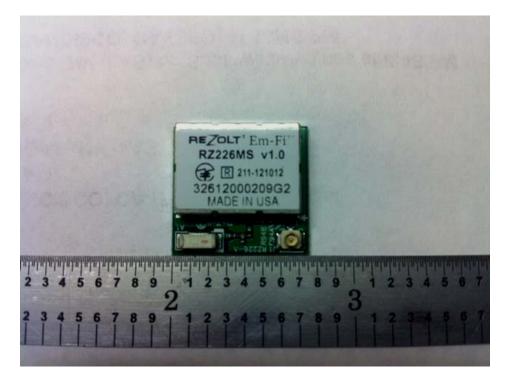


Report Number: R1304094-247



15.3 Radiated Emission Front View at 3 Meter

15.4 Radiated Emission below 1 GHz Rear View at 3 Meter



15.5 Radiated Emission above 1 GHz Rear View at 3 Meter

16 Exhibit C – EUT Photographs

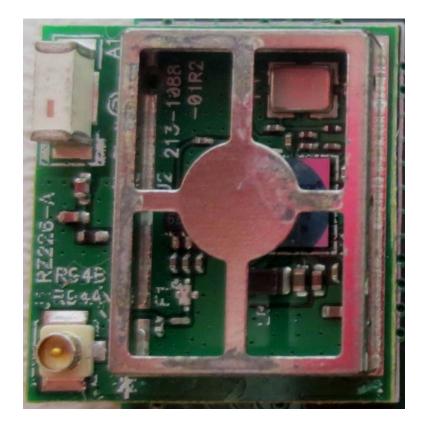
16.1 EUT Front View

16.2 EUT Back View

	Contraction of the local division of the loc	
States St		
1000	E	
	4 8 12 16 20 24 28	4 8 12 16 20 24
	32 NDS 64 THS 8 16 24 32 40 48 56	MADE IN U.S.A.
	atalatalatalatalatalatalatalata	

Report Number: R1304094-247

16.3 EUT on the Support Board 1 View



16.4 Support Board 2 View

Report Number: R1304094-247

16.5 EUT Shielding off View

--- END OF REPORT ---