

FCC RF Test Report

Ness Corporation Pty Ltd.
Medi-Minder Guardian
Smartlink (A division of Ness
Corporation Pty Ltd.)
SMIND-GUARD-LTE
O2K-SMINDLTE
FCC Part 15 Subpart C §15.247
(DSS) Spread Spectrum Transmitter

The product was received on Aug. 28, 2020 and testing was completed on Sep. 23, 2020. We, Sporton International (Shenzhen) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Shenzhen) Inc., the test report shall not be reproduced except in full.

Dogue Cher

Reviewed by: Derreck Chen / Supervisor

File Shih

Approved by: Eric Shih / Manager

Sporton International (ShenZhen) Inc. 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

RE	VISIO	N HISTORY	.3
SU	MMAF	Y OF TEST RESULT	.4
1	GEN	ERAL DESCRIPTION	.5
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	Applicant Manufacturer Product Feature of Equipment Under Test Product Specification of Equipment Under Test Modification of EUT Testing Location Test Software Applicable Standards	5 5 5 6 7 7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.8
	2.1 2.2 2.3 2.4 2.5 2.6	Descriptions of Test Mode Test Mode Connection Diagram of Test System	8 9 0 1
3	TEST	RESULT1	2
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Number of Channel Measurement 1 Hopping Channel Separation Measurement 1 Dwell Time Measurement 1 20dB and 99% Bandwidth Measurement 1 Peak Output Power Measurement 2 Conducted Band Edges Measurement 2 Conducted Spurious Emission Measurement 2 Radiated Band Edges and Spurious Emission Measurement 2	2 4 7 9 24 25 28 32
	3.9 3.10	Ac conducted Emission Measurement	14
4	LIST	OF MEASURING EQUIPMENT	15
5	UNC	ERTAINTY OF EVALUATION	16
AP	PEND	IX A. CONDUCTED TEST RESULTS	

APPENDIX B. RADIATED SPURIOUS EMISSION

APPENDIX C. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR082803	Rev. 01	Initial issue of report	Oct. 13, 2020

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
			5 05 0 1	5	
3.1	15.247(a)(1)	Number of Channels	≥ 25Chs	Pass	-
3.2	15 247(a)(1)	Hopping Channel	≥ 25 kHz or the 20 dB	Pass	_
0.2	10.247 (0)(1)	Separation	bandwidth	1 435	
	45.047(-)(4)	Dwell Time of Each		Dava	
3.3	15.247(a)(1)	Channel	≤ 0.4sec in 10sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	≤ 500KHz	Pass	-
3.4	-	99% Bandwidth	99% Bandwidth -		-
3.5	15.247(b)(1)	Peak Output Power ≤ 24dBm		Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
27	Conducted S		< 20dPo	Dooo	
3.7	15.247 (u)	Emission	≤ 200BC	F 855	-
		Radiated Band Edges and			Under limit
3.8	15.247(d)	Radiated Spurious	15.209(a) & 15.247(d)	Pass	5.50 dB at
		Emission			3660.00 MHz
					Under limit
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	21.02 dB at
					0.15 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

Ness Corporation Pty Ltd.

4/167 Prospect Highway, Seven Hills, NSW, 2147, Australia

1.2 Manufacturer

Ness Corporation Pty Ltd.

4/167 Prospect Highway, Seven Hills, NSW, 2147, Australia

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Medi-Minder Guardian			
Brand Name	Smartlink (A division of Ness Corporation Pty Ltd.)			
Model Name	SMIND-GUARD-LTE			
FCC ID O2K-SMINDLTE				
EUT supports Radios application	WCDMA/LTE/SRD			
IMEI Code	Conducted: SN5005 Conduction: SN5002 Radiation: 355285089993750			
HW Version	5			
SW Version	1.5			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification					
Tx/Rx Frequency Range	903 MHz ~ 927 MHz				
Number of Channels	25				
Carrier Frequency of Each Channel	903+n*1 MHz; n=0~24				
Maximum Output Power to Antenna	20.78 dBm (0.1197 W)				
Antenna Type / Gain	Fixed Internal Antenna with gain 2.15 dBi				
Type of Modulation	GFSK				

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Shenzhen) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International (Shenzhen) Inc.							
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595							
	Sporton Site No.	FCC Designation No.	FCC Test Firm					
Test Site No.			Registration No.					
	CO01-SZ TH01-SZ	CN1256	421272					
Test Firm	Sporton International (Sh	nenzhen) Inc.						
Test Site Location	No. 3 Bldg the third floor of south, Shahe River west, Fengzeyuan Warehouse, Nanshan Shenzhen, 518055 People's Republic of China TEL: +86-755-33202398							
	Sporton Sito No	ECC Decignation No.	FCC Test Firm					
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.					
	03CH04-SZ	CN1256	421272					

1.7 Test Software

Item Site		Manufacture	Name	Version	
1.	03CH04-SZ	AUDIX	E3	6.2009-8-24	
2.	CO01-SZ	AUDIX	E3	6.120613b	

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

Channel	Frequency	SRD RF Output Power
CH00	903MHz	20.78 dBm
CH12	915MHz	20.35 dBm
CH24	927MHz	19.88 dBm

Remark:

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).
- b. AC power line Conducted Emission was tested under maximum output power.

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases					
Test Item	Data Rate					
Conducted	Mode 1: CH00_903 MHz					
	Mode 2: CH12_915 MHz					
Test Cases	Mode 3: CH24_927 MHz					
Dedicted	Mode 1: CH00_903 MHz					
Radiated	Mode 2: CH12_915 MHz					
TCS	Mode 3: CH24_927 MHz					
AC						
Conducted	Mode 1 :WCDMA Band II Idle + Charging from Adapter + SRD Tx					
Emission						
Remark: For	Radiated Test Cases, The tests were performance with Adapter.					

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Base station	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

For SRD function, The programmed RF utility, "Test Tool" installed in the notebook to make the EUT get into the engineering modes to continuously transmit.

For AC power line conducted emissions, the EUT was set to connect with the Base station under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.0 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.0 + 10 = 14.0 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

Number of Hopping Channel Plot on Channel 00 - 24

Date: 22.SEP.2020 10:00:47

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

Date: 21.SEP.2020 11:52:48

Channel Separation Plot on Channel 23 - 24

Date: 21.SEP.2020 11:57:12

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Date: 18.SEP.2020 19:29:18

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

The maximum allowed 20 dB bandwidth of the hopping channel is 500kHz.

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 99% bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

20 dB Bandwidth Plot on Channel 00

Date: 18.SEP.2020 15:36:05

20 dB Bandwidth Plot on Channel 12

Date: 22.SEP.2020 19:44:00

20 dB Bandwidth Plot on Channel 24

Date: 18.SEP.2020 15:30:26

Test Result of 99% Occupied Bandwidth 3.4.6

Please refer to Appendix A.

99% Occupied Bandwidth Plot on Channel 00

Date: 18.SEP.2020 15:44:53

99% Occupied Bandwidth Plot on Channel 12

Date: 18.SEP.2020 15:45:27

99% Occupied Bandwidth Plot on Channel 24

Date: 18.SEP.2020 15:47:30

3.5 Peak Output Power Measurement

3.5.1 Limit of Peak Output Power

For systems using digital modulation in the 903-927MHz, the limit for peak output power is 24dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

3.6.5 Test Result of Conducted Band Edges

Low Band Edge Plot on Channel 00

Date: 18.SEP.2020 16:41:22

Date: 18.SEP.2020 16:46:17

3.6.6 Test Result of Conducted Hopping Mode Band Edges

Hopping Mode Low Band Edge Plot

Date: 22.SEP.2020 09:44:52

Date: 22.SEP.2020 09:54:07

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

Spectrum Analyzer

EUT

3.7.5 Test Result of Conducted Spurious Emission

CSE Plot on Ch 00 between 30MHz ~ 1 GHz

Date: 22.SEP.2020 10:13:19

CSE Plot on Ch 00 between 800MHz ~ 10 GHz

Spectrum									
Ref Level Att	30.00 dBm 30 dB	Offset SWT	14.00 dB 👄 92 ms 👄	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sweet	0		
∋1Pk View									
11 20 dBm [01 19.930	dBm			M M	1[1] 2[1]			19.93 dBm 900.0 MHz ·42.86 dBm 6.1860 GHz
10 dBm		2							
0 dBm	D2 -0.	070 dBm							
10 dBm									
-20 dBm									
-30 dBm		2		2 17					
40 dBm			و اس راد ر	a like makes that star	M2	mandader			de contractorio
-50 dBm	untraja frederine	Mundhan	- Marcallan and	ht. man and a		- WILL WILL	madante	www.huturentee	energen abien
-60 dBm									
Start 800.0	MHz			691	pts			Stop) 10.0 GHz
	J					Measuri	ng 💵		

Date: 22.SEP.2020 10:15:16

CSE Plot on Ch 12 between 30MHz ~ 1 GHz

Date: 22.SEP.2020 10:28:23

CSE Plot on Ch 12 between 800MHz ~ 10 GHz

Spectrum									
Ref Level	30.00 dBm	Offset	14.00 dB 🔵	RBW 100 k	:Hz				
Att	30 dB	SWT	92 ms 👄	VBW 300 k	Hz Mode	Auto Swee	р		
●1Pk View									
M1 20_dBm(01 19.430 d	Bm			M	1[1] 2[1]			19.43 dBm 913.0 MHz 42.92 dBm 6.9180 GHz
10 dBm				-					
0 dBm	D2 -0.5	70 dBm							
-10 dBm									
-20 dBm									
-30 dBm				2					
-40 dBm			14		ALL LABORATION	M2			
-50 dBitter	dequiranteed	numper	himmen	m		more and first	Hundridgener	uknika mulik ru	hin a an
-60 dBm									
Start 800.0	MHz			691	pts			Stop	10.0 GHz
)[]				I] Measur	ing 🚺		

Date: 22.SEP.2020 10:29:36

CSE Plot on Ch 24 between 30MHz ~ 1 GHz

Date: 22.SEP.2020 10:30:50

CSE Plot on Ch 24 between 800MHz ~ 10 GHz

Spectrum									
Ref Level	30.00 dBm	Offset	14.00 dB 👄	RBW 100	kHz				
Att	30 dB	SWT	92 ms 🖷	VBW 300	kHz Mode	Auto Swee	p		
11 20 dBm	D1 18.980 d	IBm			M	11[1] 12[1]			18.98 dBn 926.0 MH; -43.12 dBn 6.9710 GH;
10 dBm								-	
0 dBm	D2 -1.0	120 dBm							
-10 dBm						-	_		
-20 dBm		-							
-30 dBm		2							
-40 dBm					a da las	M2			
Anly -50 UBHH	monterest	nonnallad	mound	an an an an an and h	a Meria marande	marine July	water water	monorman	montan
-60 dBm									
Start 800.0	MHz			69:	L pts			Sto	p 10.0 GHz
	Π				I.	Measur	ing 🚺		4

Date: 22.SEP.2020 10:31:50

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.8.3 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.8.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International (Shenzhen) Inc. TEL: +86-755-86379589 FAX: +86-755-86379595 FCC ID: O2K-SMINDLTE

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Duty cycle correction factor for average measurement

903MHz: on time (One Pulse) Plot on Channel 00

903MHz: on time (Count Pulses) Plot on Channel 00

Note:

- 1. Duty cycle = on time/100 milliseconds = $2 \times 15.2 / 100 = 30.40 \%$
- 2. Duty cycle correction factor = 20*log(Duty cycle) = -10.34 dB

915MHz: on time (One Pulse) Plot on Channel 12

915MHz: on time (Count Pulses) Plot on Channel 12

Note:

- 1. Duty cycle = on time/100 milliseconds = 2 * 15.3 / 100 = 30.60 %
- 2. Duty cycle correction factor = 20*log(Duty cycle) = -10.29 dB

927MHz: on time (One Pulse) Plot on Channel 24

927MHz: on time (Count Pulses) Plot on Channel 24

Note:

- 1. Duty cycle = on time/100 milliseconds = 2 * 15.3 / 100 = 30.60 %
- 2. Duty cycle correction factor = 20*log(Duty cycle) = -10.29 dB

3.8.7 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 17, 2020	Sep. 18, 2020~ Sep. 22, 2020	Apr. 16, 2021	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1207253	30MHz~40GHz	Dec. 26, 2019	Sep. 18, 2020~ Sep. 22, 2020	Dec. 25, 2020	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Dec. 26, 2019	Sep. 18, 2020~ Sep. 22, 2020	Dec. 25, 2020	Conducted (TH01-SZ)
EMI Test Receiver	R&S	ESR7	101404	9kHz~7GHz	Oct. 16, 2019	Sep. 14, 2020~ Sep. 15, 2020	Oct. 15, 2020	Radiation (03CH04-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY55150213	10Hz~44GHz	Jul. 21, 2020	Sep. 14, 2020~ Sep. 15, 2020	Jul. 20, 2021	Radiation (03CH04-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jun. 22, 2020	Sep. 14, 2020~ Sep. 15, 2020	Jun. 21, 2022	Radiation (03CH04-SZ)
Bilog Antenna	TeseQ	CBL6111D	41909	30MHz~1GHz	Nov. 07, 2019	Sep. 14, 2020~ Sep. 15, 2020	Nov. 06, 2020	Radiation (03CH04-SZ)
Double Ridge Horn Antenna	SCHWARZBECK	BBHA9120 D	9120D-1474	1GHz~18GHz	May. 23, 2020	Sep. 14, 2020~ Sep. 15, 2020	Mar. 22, 2021	Radiation (03CH04-SZ)
Amplifier	Burgeon	BPA-530	102211	0.01Hz ~3000MHz	Oct. 17,2019	Sep. 14, 2020~ Sep. 15, 2020	Oct. 16,2020	Radiation (03CH04-SZ)
HF Amplifier	MITEQ	AMF-7D-00 101800-30- 10P-R	1943528	1GHz~18GHz	Oct. 17,2019	Sep. 14, 2020~ Sep. 15, 2020	Oct. 16,2020	Radiation (03CH04-SZ)
Amplifier	Agilent Technologies	83017A	MY53270156	500MHz~26.5G Hz	Oct.17 2019	Sep. 14, 2020~ Sep. 15, 2020	Oct.16 2020	Radiation (03CH04-SZ)
AC Power Source	Chroma	61601	N/A	N/A	NCR	Sep. 14, 2020~ Sep. 15, 2020	NCR	Radiation (03CH04-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Sep. 14, 2020~ Sep. 15, 2020	NCR	Radiation (03CH04-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Sep. 14, 2020~ Sep. 15, 2020	NCR	Radiation (03CH04-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Dec. 26, 2018	Sep. 09, 2020	Dec. 25, 2020	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103912	9kHz~30MHz	Oct. 17, 2019	Sep. 09, 2020	Oct. 16, 2020	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 17, 2019	Sep. 09, 2020	Oct. 16, 2020	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	6160200008 91	100Vac~250Vac	Jul. 21, 2020	Sep. 09, 2020	Jul. 20, 2021	Conduction (CO01-SZ)

NCR: No Calibration Required

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2 7dB
of 95% (U = 2Uc(y))	2.708

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5 OdP
of 95% (U = 2Uc(y))	5.00B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4 8dB
of 95% (U = 2Uc(y))	4.60B

Appendix A. conducted test results

Report Number : FR082803

Test Engineer:	Zhang Jiang	Temperature:	21~25	°C
Test Date:	2020/9/18~2020/9/22	Relative Humidity:	51~54	%

			20dE	and 9	9% Occup	<u>TEST RESU</u> bied Bandwidt	<u>JLTS DATA</u> h and Hopping C	Channel Sepa	ration	
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Maximum 20 dB bandwidth Limit (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
SRD	128kbps	1	0	903	0.277	0.226	0.994	0.500	0.1846	Pass
SRD	128kbps	1	12	915	0.278	0.228	0.999	0.500	0.1852	Pass
SRD	128kbps	1	24	927	0.276	0.226	0.999	0.500	0.1843	Pass

			<u>TES</u>	<u>T RESULTS I</u> Dwell Time	<u>DATA</u>		
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail	
SRD	25	10	15.30	0.15	0.4	Pass	

				<u>TES</u> Pe	<u>T RESUL1</u> eak Power	<u>'S DATA</u> Table		
						I		
пц	СЦ	NTY	Peak Power	Power Limit	Test	1		
	On.	NIA.	(dBm)	(dBm)	Result			
	0	1	20.78	24.00	Pass			
SRD	12	1	20.35	24.00	Pass			
Ī	24	1	19.88	24.00	Pass	ł		

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u> (Reporting Only)											
	(Reporting Only)											
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)								
	0	1	20.10	4.10								
SRD	12	1	19.70	4.10								
	24	1	19.40	4.10								

TEST RESULTS DATA Number of Hopping Frequency										
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail							
25	25	≥25	Pass							

Appendix B. Radiated Spurious Emission

SRD	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
000		901.925	57.58	-36.9	94.48	59.52	29.2	3.16	34.3	132	189	Р	Н
SRD	*	903	114.48	-	-	116.41	29.2	3.16	34.29	132	189	Р	Н
003MH 7		901.99	51.89	-36.92	88.81	53.83	29.2	3.16	34.3	175	236	Р	V
50011112	*	903	108.81	-	-	110.74	29.2	3.16	34.29	175	236	Р	V
SRD	*	915	107.47	-	-	109.16	29.4	3.18	34.27	189	145	Р	Н
915MHz	*	915	104.79	-	-	106.48	29.4	3.18	34.27	123	166	Р	V
000	*	927	106.93	-	-	108.3	29.68	3.2	34.25	162	86	Р	н
SRD		928.025	50.71	-36.22	86.93	52.03	29.72	3.2	34.24	162	86	Ρ	Н
СП24 027МН 7	*	927	104.01	-	-	105.38	29.68	3.2	34.25	170	229	Р	V
927 IVII 12		928.01	48.27	-35.74	84.01	49.59	29.72	3.2	34.24	170	229	Ρ	V
Remark	1. No 2. Al	o other spurio I results are F	us found. ASS agains	st Peak	and Averag	je limit lin	e.						

SRD TX 902~928MHz 15C.247 (Band Edge @ 3m)

Sporton International (Shenzhen) Inc. TEL : +86-755-86379589 FAX : +86-755-86379595 FCC ID : O2K-SMINDLTE

SRD	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		<i></i> .		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		901.96	50.09	-38.09	88.18	52.03	29.2	3.16	34.3	107	71	Р	Н
SRD	*	910.02	108.18	-	-	109.99	29.3	3.17	34.28	107	71	Р	Н
Hopping		901.98	46.72	-38.07	84.79	48.66	29.2	3.16	34.3	123	142	Р	V
	*	910.02	104.79	-	-	106.6	29.3	3.17	34.28	123	142	Р	V
	*	919.96	105.48	-	-	107.07	29.48	3.19	34.26	109	68	Ρ	Н
SRD		928.01	46.7	-38.78	85.48	48.02	29.72	3.2	34.24	109	68	Р	Н
Hopping	*	919.96	106.68	-	-	108.27	29.48	3.19	34.26	120	138	Р	V
		928.24	48.68	-38	86.68	50	29.72	3.2	34.24	120	138	Р	V

15C.247 (Band Edge @ 3m) Hopping

	15C.247 (Harmonic @ 3m)												
SRD	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		1806	48.15	-25.85	74	70.63	25.53	4.67	52.68	123	158	Ρ	Н
		1806	37.81	-16.19	54					123	158	А	Н
		2709	55.49	-18.51	74	74.5	27.92	5.68	52.61	108	22	Ρ	Н
		2709	45.15	-8.85	54					108	22	А	Н
		3612	58.4	-15.6	74	74.5	29.22	6.68	52	159	57	Ρ	Н
		3612	48.06	-5.94	54					159	57	А	Н
		4515	43.85	-30.15	74	56.05	30.77	7.84	50.81	134	84	Ρ	Н
		4515	33.51	-20.49	54					134	84	А	н
		5418	49.75	-24.25	74	57.59	31.65	9.66	49.15	122	25	Ρ	Н
		5418	39.41	-14.59	54					122	25	А	Н
		6321	50.18	-23.82	74	57.48	33.32	10.51	51.13	159	14	Ρ	н
SRD		6321	39.84	-14.16	54					159	14	А	Н
		1806	46.19	-27.81	74	68.67	25.53	4.67	52.68	100	41	Ρ	V
90311112		1806	35.85	-18.15	54					100	41	А	V
		2708	54.97	-19.03	74	73.99	27.92	5.68	52.62	105	24	Ρ	V
		2708	44.63	-9.37	54					105	24	А	V
		3612	57.81	-16.19	74	73.91	29.22	6.68	52	102	36	Ρ	V
		3612	47.47	-6.53	54					102	36	А	V
		4515	42.49	-31.51	74	54.69	30.77	7.84	50.81	100	66	Ρ	V
		4515	32.15	-21.85	54					100	66	А	V
		5418	49.95	-24.05	74	57.79	31.65	9.66	49.15	122	58	Ρ	V
		5418	39.61	-14.39	54					122	58	Α	V
		6321	52.3	-21.7	74	59.6	33.32	10.51	51.13	105	246	Ρ	V
		6321	41.96	-12.04	54					105	246	А	V

SRD TX 902~928MHz

Report No. : FR082803

SRD	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		/ 		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHZ)	(dBµV/m)	(dB)	(dBµv/m)	(aBh A)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		1830	44.46	-29.54	74	66.85	25.64	4.67	52.7	162	1//	Р	н
		1830	34.17	-19.83	54					162	177	A	Н
		2745	57.56	-16.44	74	76.46	27.99	5.71	52.6	124	62	Р	Н
		2745	47.27	-6.73	54					124	62	А	Н
		3660	58.79	-15.21	74	74.74	29.29	6.74	51.98	147	142	Р	Н
		3660	48.5	-5.5	54					147	142	А	Н
		4575	42.27	-31.73	74	54.03	30.86	7.94	50.56	132	57	Р	Н
		4575	31.98	-22.02	54					132	57	А	Н
		5490	50.82	-23.18	74	58.52	31.87	9.7	49.27	133	331	Р	н
		5490	40.53	-13.47	54					133	331	А	н
		6405	50.67	-23.33	74	57.82	33.62	10.53	51.3	199	57	Р	н
SRD		6405	40.38	-13.62	54					199	57	А	н
015MH-		1830	43.46	-30.54	74	65.85	25.64	4.67	52.7	100	24	Р	V
51514112		1830	33.17	-20.83	54					100	24	А	V
		2745	54.33	-19.67	74	73.23	27.99	5.71	52.6	100	45	Р	V
		2745	44.04	-9.96	54					100	45	А	V
		3660	56.84	-17.16	74	72.79	29.29	6.74	51.98	100	79	Р	V
		3660	46.55	-7.45	54					100	79	А	V
		4575	43.07	-30.93	74	54.83	30.86	7.94	50.56	100	155	Р	V
		4575	32.78	-21.22	54					100	155	А	V
		5490	50.52	-23.48	74	58.22	31.87	9.7	49.27	100	17	Р	V
		5490	40.23	-13.77	54					100	17	А	V
		6405	52.3	-21.7	74	59.45	33.62	10.53	51.3	100	88	Ρ	V
		6405	42.01	-11.99	54					100	88	А	V

Report No. : FR082803

SRD	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		1854	44.06	-29.94	74	66.32	25.74	4.71	52.71	100	154	Ρ	н
		1854	33.77	-20.23	54					100	154	А	Н
		2781	56.47	-17.53	74	75.26	28.06	5.74	52.59	100	95	Ρ	Н
		2781	46.18	-7.82	54					100	95	А	н
		3708	57.64	-16.36	74	73.41	29.36	6.8	51.93	100	21	Ρ	Н
		3708	47.35	-6.65	54					100	21	А	Н
		4635	44.08	-29.92	74	55.17	30.97	8.15	50.21	122	142	Ρ	Н
		4635	33.79	-20.21	54					122	142	А	Н
		5562	48.25	-25.75	74	55.84	32.09	9.74	49.42	100	47	Ρ	Н
		5562	37.96	-16.04	54					100	47	А	Н
		6490	53.07	-20.93	74	59.81	33.96	10.77	51.47	134	34	Ρ	Н
SRD		6490	42.78	-11.22	54					134	34	А	н
		1854	43.25	-30.75	74	65.51	25.74	4.71	52.71	164	46	Ρ	V
92710112		1854	32.96	-21.04	54					164	46	А	V
		2781	54.9	-19.1	74	73.69	28.06	5.74	52.59	102	29	Ρ	V
		2781	44.61	-9.39	54					102	29	А	V
		3708	56.79	-17.21	74	72.56	29.36	6.8	51.93	107	55	Р	V
		3708	46.5	-7.5	54					107	55	А	V
		4635	43.19	-30.81	74	54.28	30.97	8.15	50.21	110	127	Р	V
		4635	32.9	-21.1	54					110	127	А	V
		5562	47.91	-26.09	74	55.5	32.09	9.74	49.42	124	65	Р	V
		5562	37.62	-16.38	54					124	65	А	V
		6489	54.4	-19.6	74	61.14	33.96	10.77	51.47	100	88	Р	V
		6489	44.11	-9.89	54					100	88	А	V
Remark	1. No 2. Al	o other spurio I results are P	us found. PASS again:	st Peak	and Avera	ge limit lin	e.						

Emission below 1GHz

SRD	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	24.4	-15.6	40	33.67	25.2	0.53	35			Р	Н
		122.15	19.35	-24.15	43.5	35.68	17.7	1.13	35.16			Р	Н
		216.24	37.79	-8.21	46	56.38	14.98	1.5	35.07	100	241	Р	Н
		289.96	29.6	-16.4	46	43.65	19.1	1.77	34.92			Р	Н
		423.82	27.92	-18.08	46	37.72	22.8	2.15	34.75			Р	Н
15C.247		574.17	27.91	-18.09	46	33.83	26.12	2.51	34.55			Р	Н
SRD LF		30.97	24.06	-15.94	40	33.82	24.7	0.54	35			Р	V
		129.91	17.79	-25.71	43.5	33.97	17.8	1.16	35.14			Р	V
		180.35	20.98	-22.52	43.5	39.71	15	1.37	35.1			Р	V
		216.24	33.73	-12.27	46	52.32	14.98	1.5	35.07	100	74	Р	V
		286.08	20.85	-25.15	46	35.08	18.94	1.76	34.93			Р	V
		559.62	26.72	-19.28	46	32.32	26.5	2.48	34.58			Р	V
		915	70.57	24.57	46	72.26	29.4	3.18	34.27				V
Remark	1. No 2. Al	o other spurio I results are P	us found. ASS agains	st limit li	ne.								

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Ρ	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

1. Level(dBµV/m)

= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".