

TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: Airsynergy SYN2-CN-00-A36-000

FCC ID: O2J-365AS

To: FCC Parts 15.207; 90.209; 90.210; 90.1321 & 90.1323

Test Report Serial No: RFI-RPT-RP82269JD01A

This Test Report Is Issued Under The Authority Of Chris Guy, Head of Global Approvals:	1. M. Wester
Checked By:	Ian Watch
Signature:	1. M. Water
Date of Issue:	17 August 2011

This report is issued in Adobe Acrobat portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may not be reproduced other than in full, except with the prior written approval of RFI Global Services Ltd. The results in this report apply only to the sample(s) tested.

VERSION NO. 1.0 ISSUE DATE: 17 AUGUST 2011

This page has been left intentionally blank.

Page 2 of 67 RFI Global Services Ltd

Table of Contents

1. Customer Information	4
2. Summary of Testing	5 5 5 5 5 5
3. Equipment Under Test (EUT) 3.1. Identification of Equipment Under Test (EUT) 3.2. Description of EUT 3.3. Modifications Incorporated in the EUT 3.4. Additional Information Related to Testing 3.5. Support Equipment	6 6 7 8
4. Operation and Monitoring of the EUT during Testing4.1. Operating Modes4.2. Configuration and Peripherals	9 9 9
5. Measurements, Examinations and Derived Results 5.1. General Comments 5.2. Test Results 5.2.1. Transmitter AC Conducted Spurious Emissions 5.2.2. Transmitter Carrier Output Power (EIRP) 5.2.3. Transmitter Peak EIRP Power Density 5.2.4. Transmitter Occupied Bandwidth 5.2.5. Transmitter Conducted Emissions Mask 5.2.6. Transmitter Conducted Emissions (Out of Band) 5.2.7. Transmitter Band Edge Conducted Emissions 5.2.8. Transmitter Radiated Emissions (Out of Band) 5.2.9. Transmitter Band Edge Radiated Emissions	
6. Measurement Uncertainty	66
Appendix 1. Test Equipment Used	67

RFI Global Services Ltd Page 3 of 67

1. Customer Information

Company Name:	Airspan Communications Ltd.
Address:	Capital Point 33 Bath Road Slough Berkshire SL1 3UF United Kingdom

Page 4 of 67 RFI Global Services Ltd

2. Summary of Testing

2.1. General Information

Specification Reference:	47CFR15.207
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications) 2010: Part 15 Subpart C (Intentional Radiators) – Section 15.207
Specification Reference:	47CFR90
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications) 2010: Part 90 Subpart Z (Wireless Broadband Services in the 3650-3700 MHz Band)
Specification Reference:	Customer Test Plan
Specification Title:	SC_AIR_TP03_A Date: 04 July 2011
Site Registration:	209735
Location of Testing:	RFI Global Services Ltd, Wade Road, Basingstoke, Hampshire, RG24 8AH.
Test Dates:	01 July 2011 to 10 August 2011

2.2. Summary of Test Results

FCC Reference (47CFR)	Measurement	Result
Part 15.207	Transmitter AC Conducted Emissions	②
Part 90.1321(a) / 2.1046	Transmitter Carrier Output Power (EIRP)	Ø
Part 90.1321(a) / 2.1046	Transmitter Peak EIRP Power Density	Ø
Part 90.209 / 2.1049	Transmitter Occupied Bandwidth	Ø
Part 90.210(b)(n) / 2.1051	Transmitter Conducted Emissions Mask	Ø
Part 90.1323 / 2.1051	Transmitter Conducted Emissions (Out of Band)	Ø
Part 90.1323 / 2.1053	Transmitter Radiated Emissions (Out of Band)	②
Key to Results		
	ot comply	

2.3. Methods and Procedures

Reference:	ANSI/TIA-603-C-2004
Title:	Land Mobile FM or PM – Communications Equipment – Measurement and Performance Standards
Reference:	ANSI C63.4 (2009)
Title:	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

2.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

RFI Global Services Ltd Page 5 of 67

VERSION NO. 1.0 ISSUE DATE: 17 AUGUST 2011

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name:	Airspan
Model Name or Number:	Airsynergy SYN2-CN-00-A36-000
Serial Number:	9B23B3FFFF28 - baseband board
Hardware Version Number:	Synergy2 revA
FCC ID:	O2J-365AS

3.2. Description of EUT

The equipment under test was a Airsynergy P2P WiMax Base Station operating in the 3.6 GHz frequency band.

3.3. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

Page 6 of 67 RFI Global Services Ltd

ISSUE DATE: 17 AUGUST 2011

3.4. Additional Information Related to Testing

Tested Technology:	WiMAX		
Type of Equipment	Base Station		
Modulation Type:	QPSK3/4 and	QPSK3/4 and 64QAM3/4	
Duty Cycle	5MHz: 59% 10MHz: 60%		
Channel Spacing:	5 MHz and 10	O MHz	
Antenna Gain:	+6.5 dBi for 5 MHz channels +9.5 dBi for 10 MHz channels		
Power Supply Requirement:	Nominal 120 VAC 60 Hz		
5 MHz Channels Transmit Frequency Range:	3650 MHz to 3700 MHz		
5 MHz Channels	Cł	nannel ID	Channel Frequency (MHz)
Transmit Channels Tested:		Bottom	3652.5
	Top of lov	ver 25 MHz band	3672.5
	Top of wh	ole 50 MHz band	3697.5
10 MHz Channels Transmit Frequency Range:	3650 MHz to	3700 MHz	
10 MHz Channels	Cł	nannel ID	Channel Frequency (MHz)
Transmit Channels Tested:		Bottom	3655.0
	Top of lov	ver 25 MHz band	3670.0
	Top of wh	ole 50 MHz band	3695.0

RFI Global Services Ltd Page 7 of 67

VERSION NO. 1.0 ISSUE DATE: 17 AUGUST 2011

3.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Laptop
Brand Name:	Dell
Model Name or Number:	Latitude
Serial Number:	Airspan 005853

Description:	120 VAC 60 Hz to 48 VDC PSU
Brand Name:	Powerbox
Model Name or Number:	PBUS-LUV-54V/100W-SN-QNA
Serial Number:	S1125CV000566

Description:	POE Connection box
Brand Name:	Airspan
Model Name or Number:	Not Stated
Serial Number:	Not Stated

Description:	Ethernet Router
Brand Name:	Dlink
Model Name or Number:	DGS-1005D
Serial Number:	DRSB92000451

Page 8 of 67 RFI Global Services Ltd

4. Operation and Monitoring of the EUT during Testing

4.1. Operating Modes

The EUT was tested in the following operating mode(s):

- Transmit Mode The EUT was set to transmit with maximum output power on the bottom and top channels using a 5 MHz or 10 MHz channel bandwidth as detailed in the Customer's Test Plan.
- Operating on the bottom or lower top channel, as detailed in the Customer's Test Plan.

4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

- The EUT was controlled from a laptop PC using software supplied by the Customer.
- The EUT supports MIMO on two RF ports. Measurements were performed on each port as required.
- A 50 Ohm load was fitted to both RF ports on the EUT during radiated spurious emission testing.
- AC conducted emissions testing was performed with the 120 VAC 60 Hz to 48 VDC PSU plugged into a LISN. The LISN was connected to a 120 VAC 60 Hz mains supply. The EUT was connected to the 48 VDC output of the PSU. The EUT was configured to transmit at full power during the test.

RFI Global Services Ltd Page 9 of 67

5. Measurements, Examinations and Derived Results

5.1. General Comments

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to Section 6. Measurement Uncertainty for details.

Page 10 of 67 RFI Global Services Ltd

VERSION NO. 1.0 ISSUE DATE: 17 AUGUST 2011

5.2. Test Results

5.2.1. Transmitter AC Conducted Spurious Emissions

Test Summary:

Test Engineer:	Andrew Edwards	Test Date:	06 July 2011
Test Sample Serial No:	9B23B3FFFF28		

FCC Part:	15.207
Test Method Used:	As detailed in ANSI C63.10 Section 6.2 referencing ANSI C63.4

Environmental Conditions:

Temperature (°C):	29
Relative Humidity (%):	27

RFI Global Services Ltd Page 11 of 67

Transmitter AC Conducted Spurious Emissions (continued)

Results: Live / Quasi Peak

Frequency (MHz)	Line	Level (dB _µ V)	Limit (dBµV)	Margin (dB)	Result
0.384000	Live	52.1	58.2	6.1	Complied
0.573000	Live	53.5	56.0	2.5	Complied
0.739500	Live	52.6	56.0	3.4	Complied
0.879000	Live	48.9	56.0	7.2	Complied
1.023000	Live	49.6	56.0	6.4	Complied
1.180500	Live	48.5	56.0	7.5	Complied
1.626000	Live	45.2	56.0	10.8	Complied
1.837500	Live	45.9	56.0	10.1	Complied
2.152500	Live	42.6	56.0	13.4	Complied
2.625000	Live	43.3	56.0	12.7	Complied

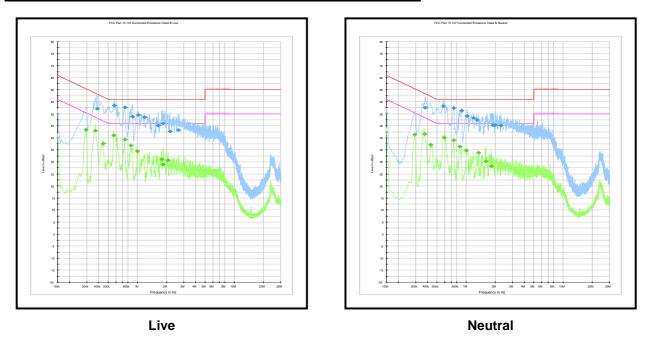
Results: Live / Average

Frequency (MHz)	Line	Level (dBμV)	Limit (dBµV)	Margin (dB)	Result
0.294000	Live	43.4	50.4	7.0	Complied
0.366000	Live	43.0	48.6	5.6	Complied
0.442500	Live	37.7	47.0	9.3	Complied
0.568500	Live	41.0	46.0	5.0	Complied
0.739500	Live	39.3	46.0	6.7	Complied
0.852000	Live	36.9	46.0	9.1	Complied
0.991500	Live	34.6	46.0	11.4	Complied
1.774500	Live	31.1	46.0	14.9	Complied
1.828500	Live	29.0	46.0	17.0	Complied
2.049000	Live	30.7	46.0	15.3	Complied

Page 12 of 67 RFI Global Services Ltd

Transmitter AC Conducted Spurious Emissions (continued)

Results: Neutral / Quasi Peak


Frequency (MHz)	Line	Level (dBμV)	Limit (dBµV)	Margin (dB)	Result
0.375000	Neutral	52.5	58.4	5.9	Complied
0.577500	Neutral	53.2	56.0	2.8	Complied
0.744000	Neutral	52.4	56.0	3.6	Complied
0.892500	Neutral	51.3	56.0	4.7	Complied
1.018500	Neutral	49.1	56.0	6.9	Complied
1.189500	Neutral	48.3	56.0	7.7	Complied
1.284000	Neutral	47.5	56.0	8.5	Complied
1.864500	Neutral	45.2	56.0	10.8	Complied
1.990500	Neutral	45.3	56.0	10.7	Complied
2.274000	Neutral	45.2	56.0	10.8	Complied

Results: Neutral / Average

Frequency (MHz)	Line	Level (dBμV)	Limit (dBµV)	Margin (dB)	Result
0.294000	Neutral	41.3	50.4	9.1	Complied
0.370500	Neutral	41.6	48.5	6.9	Complied
0.429000	Neutral	37.2	47.3	10.1	Complied
0.591000	Neutral	40.1	46.0	5.9	Complied
0.739500	Neutral	39.1	46.0	6.9	Complied
0.856500	Neutral	36.4	46.0	9.6	Complied
0.996000	Neutral	34.8	46.0	11.2	Complied
1.338000	Neutral	33.9	46.0	12.1	Complied
1.594500	Neutral	30.3	46.0	15.7	Complied
1.815000	Neutral	28.2	46.0	17.8	Complied

RFI Global Services Ltd Page 13 of 67

Transmitter AC Conducted Spurious Emissions (continued)

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

Page 14 of 67 RFI Global Services Ltd

ISSUE DATE: 17 AUGUST 2011

5.2.2. Transmitter Carrier Output Power (EIRP)

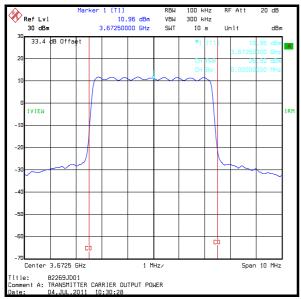
Test Summary:

Test Engineer:	Andrew Edwards	Test Date:	04 July 2011
Test Sample Serial No:	9B23B3FFFF28		

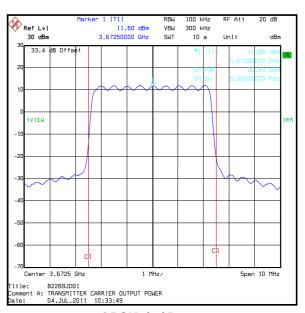
FCC Part:	90.1321(a) / 2.1046
Test Method:	As detailed in FCC KDB 965270 dated 15 April 2010

Environmental Conditions:

Temperature (°C):	28
Relative Humidity (%):	24


Note(s):

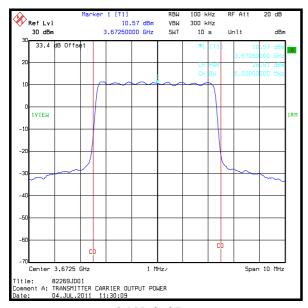
- 1. Measurements were performed with the EUT transmitting on the top channel of the lower 25 MHz frequency band using 5 MHz and 10 MHz channel bandwidths in accordance with the Customer's Test Plan
- 2. Part 90.1321(a) limits of 25 Watts / 25 MHz were scaled to 5 MHz and 10 MHz channel widths supported by the EUT.
- 3. The Customer declared that the EUT supports MIMO using two outputs and the antenna is a dual port. dual slant +/- 45° polarised. Therefore, in accordance with FCC KDB 662911 the antenna definition is cross polarised with N = 2 and the directional gain is the gain of an individual antenna (+6.5 dBi for 5 MHz channels and +9.5 dBi for 10 MHz channels).
- 4. The conducted maximum output power from each port was measured using a spectrum analyser channel power function in conjunction with an RMS detector for each supported bandwidth. The results for each port were linearly summed in accordance with FCC KDB 662911(1). The applicable antenna gain was added to the summed conducted output power to calculate the EIRP.
- 5. An additional spectrum analyser offset of 2.3 dB was used to compensate for the 59% duty cycle of the EUT when transmitting a 5 MHz channel. This was calculated using the equation 10*Log₁₀(Ton/Period). Ton was measured as being 2.97 ms and Period measured was 5.01 ms.
- 6. An additional spectrum analyser offset of 2.2 dB was used to compensate for the 60% duty cycle of the EUT when transmitting a 10 MHz channel. This was calculated using the equation 10*Log₁₀(Ton/Period). Ton was measured as being 2.98 ms and period measured was 4.99 ms.


RFI Global Services Ltd Page 15 of 67

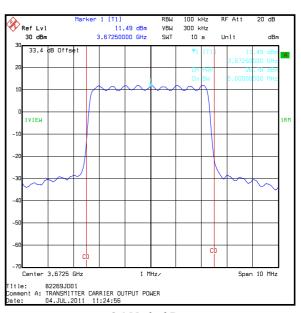
Results: Top Channel / 3672.5 MHz / Lower 25 MHz Band / 5 MHz Channel / QPSK3/4

Port 1 Conducted Power (dBm)	Port 2 Conducted Power (dBm)	Summed Conducted Power (dBm)	Antenna Gain (dBi)	Antenna Gain + Summed Power (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
26.9	26.8	29.9	6.5	36.4	37.0	0.6	Complied

QPSK3/4 / Port 1



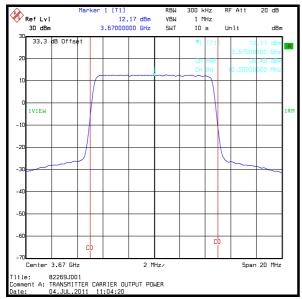
QPSK3/4 / Port 2

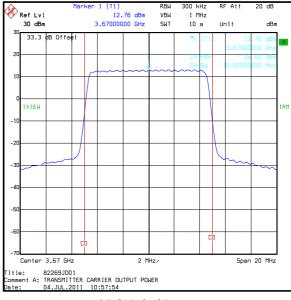

Page 16 of 67 RFI Global Services Ltd

Results: Top Channel / 3672.5 MHz / Lower 25 MHz Band / 5 MHz Channel / 64QAM3/4

Port 1 Conducted Power (dBm)	Port 2 Conducted Power (dBm)	Summed Conducted Power (dBm)	Antenna Gain (dBi)	Antenna Gain + Summed Power (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
26.5	26.8	29.7	6.5	36.2	37.0	0.8	Complied

64QAM3/4 / Port 1

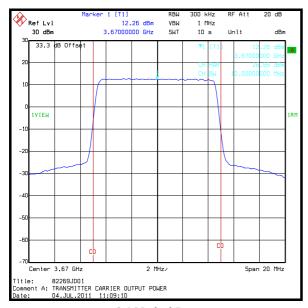



64QAM3/4 / Port 2

RFI Global Services Ltd Page 17 of 67

Results: Top Channel / 3670.0 MHz / Lower 25 MHz Band / 10 MHz Channel / QPSK3/4

Port 1 Conducted Power (dBm)	Port 2 Conducted Power (dBm)	Summed Conducted Power (dBm)	Antenna Gain (dBi)	Antenna Gain + Summed Power (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
26.5	26.8	29.7	9.5	39.2	40.0	0.8	Complied


QPSK3/4 / Port 1

QPSK3/4 / Port 2

Page 18 of 67 RFI Global Services Ltd

Results: Top Channel / 3670.0 MHz / Lower 25 MHz Band / 10 MHz Channel / 64QAM3/4

Port 1 Conducted Power (dBm)	Port 2 Conducted Power (dBm)	Summed Conducted Power (dBm)	Antenna Gain (dBi)	Antenna Gain + Summed Power (dBm)	EIRP Limit (dBm)	Margin (dB)	Result
26.6	26.5	29.6	9.5	39.1	40.0	0.9	Complied

64QAM3/4 / Port 1

64QAM3/4 / Port 2

RFI Global Services Ltd Page 19 of 67

VERSION NO. 1.0 ISSUE DATE: 17 AUGUST 2011

5.2.3. Transmitter Peak EIRP Power Density

Test Summary:

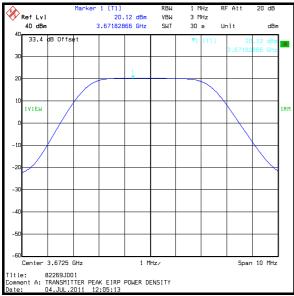
Test Engineer:	Andrew Edwards	Test Date:	04 July 2011	
Test Sample Serial No:	9B23B3FFFF28			

FCC Part:	90.1321(a) / 2.1046
Test Method:	As detailed in FCC KDB 965270 dated 15 April 2010, referencing KDB 662911 dated 04 April 2011

Environmental Conditions:

Temperature (°C):	30
Relative Humidity (%):	23

Note(s):


- 1. Measurements were performed on the top channel of the lower 25 MHz frequency band using 5 MHz and 10 MHz channel bandwidths in accordance with the Customer's Test Plan.
- 2. The Customer declared that the EUT supports MIMO using two outputs and the antenna is a dual port, dual slant +/- 45° polarised. Therefore, in accordance with FCC KDB 662911 the antenna definition is cross polarised with N = 2 and the directional gain is the gain of an individual antenna (+6.5 dBi for 5 MHz channels and +9.5 dBi for 10 MHz channels).
- 3. The conducted maximum output power from each port was measured using a 1 MHz measurement bandwidth in conjunction with an RMS detector for each supported bandwidth. The results for each port were linearly summed in accordance with FCC KDB 662911(1). The applicable antenna gain was added to the summed conducted output power to calculate the EIRP.
- 4. An additional spectrum analyser offset of 2.3 dB was used to compensate for the 59% duty cycle of the EUT when transmitting a 5 MHz channel. This was calculated using the equation 10*Log₁₀(Ton/Period).Ton was measured as being 2.97 ms and Period measured was 5.01 ms.
- 5. An additional spectrum analyser offset of 2.2 dB was used to compensate for the 60% duty cycle of the EUT when transmitting a 10 MHz channel. This was calculated using the equation 10*Log₁₀(Ton/Period). Ton was measured as being 2.98 ms and period measured was 4.99 ms.

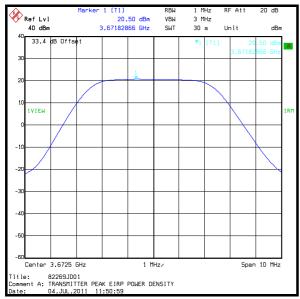
Page 20 of 67 RFI Global Services Ltd

Transmitter Peak EIRP Power Density (continued)

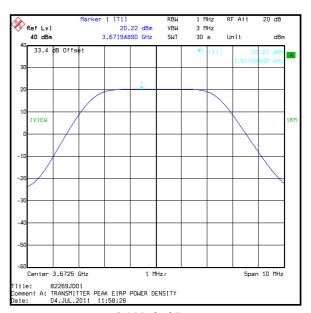
Results: Top Channel / 3672.5 MHz / Lower 25 MHz Band / 5 MHz Channel / QPSK3/4

Port 1 Conducted Power (dBm)	Port 2 Conducted Power (dBm)	Summed Conducted Power (dBm)	Antenna Gain (dBi)	Antenna Gain + Summed Power (dBm)	EIRP PSD Limit (dBm/MHz)	Margin (dB)	Result
20.1	20.2	23.2	6.5	29.7	30.0	0.3	Complied

QPSK3/4 / Port 1


QPSK3/4 / Port 2

RFI Global Services Ltd Page 21 of 67


Transmitter Peak EIRP Power Density (continued)

Results: Top Channel / 3672.5 MHz / Lower 25 MHz Band / 5 MHz Channel / 64QAM3/4

Port 1 Conducted Power (dBm)	Port 2 Conducted Power (dBm)	Summed Conducted Power (dBm)	Antenna Gain (dBi)	Antenna Gain + Summed Power (dBm)	EIRP PSD Limit (dBm/MHz)	Margin (dB)	Result
20.5	20.2	23.4	6.5	29.9	30.0	0.1	Complied

64QAM3/4 / Port 1

64QAM3/4 / Port 2

Page 22 of 67 RFI Global Services Ltd

1 MHz 3 MHz

30 s

Unit

dBm

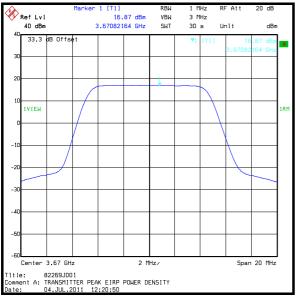
Span 20 MHz

VBW SWT

1 [T1] 17.21 dBm 3,67290581 GHz

VERSION NO. 1.0 ISSUE DATE: 17 AUGUST 2011

Transmitter Peak EIRP Power Density (continued)

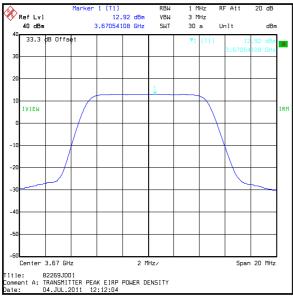

Results: Top Channel / 3670.0 MHz / Lower 25 MHz Band / 10 MHz Channel / QPSK3/4

Port 1 Conducted Power (dBm)	Port 2 Conducted Power (dBm)	Summed Conducted Power (dBm)	Antenna Gain (dBi)	Antenna Gain + Summed Power (dBm)	EIRP PSD Limit (dBm/MHz)	Margin (dB)	Result
16.9	17.2	20.1	9.5	29.6	30.0	0.4	Complied

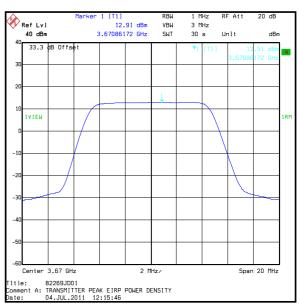
Ref Lvl 40 dBm

1VIEW

33.3 dB Offs


RFI Global Services Ltd Page 23 of 67 VERSION NO. 1.0

ISSUE DATE: 17 AUGUST 2011


Transmitter Peak EIRP Power Density (continued)

Results: Top Channel / 3670.0 MHz / Lower 25 MHz Band / 10 MHz Channel / 64QAM3/4

Port 1 Conducted Power (dBm)	Port 2 Conducted Power (dBm)	Summed Conducted Power (dBm)	Antenna Gain (dBi)	Antenna Gain + Summed Power (dBm)	EIRP PSD Limit (dBm/MHz)	Margin (dB)	Result
12.9	12.9	15.9	9.5	25.4	30.0	4.6	Complied

64QAM3/4 / Port 1

64QAM3/4 / Port 2

Page 24 of 67 RFI Global Services Ltd

VERSION NO. 1.0 ISSUE DATE: 17 AUGUST 2011

5.2.4. Transmitter Occupied Bandwidth

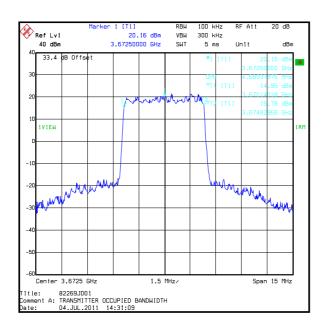
Test Summary:

Test Engineer:	Andrew Edwards	Test Date:	04 July 2011
Test Sample Serial No:	9B23B3FFFF28		

FCC Part:	90.209 / 2.1049
Test Method Used	Occupied Bandwidth Function of a Spectrum Analyser in accordance with FCC KDB 971168

Environmental Conditions:

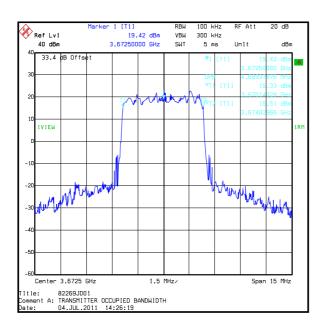
Temperature (°C):	31
Relative Humidity (%):	22


Note(s):

- 1. Measurements were performed on the top channel of the lower 25 MHz frequency band using 5 MHz and 10 MHz channel bandwidths in accordance with the Customer's Test Plan.
- 2. The spectrum analyser was left to sweep repeatedly on Max hold for a long enough period in order to maximise the measurement.

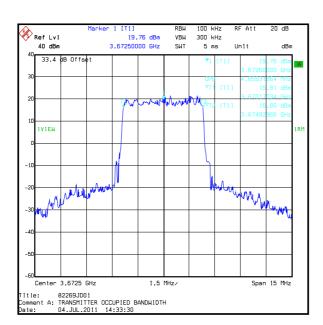
RFI Global Services Ltd Page 25 of 67

Results: Port 1 / Lower 25 MHz Band / 5 MHz Channel / QPSK3/4


Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Тор	3672.5	4689.379

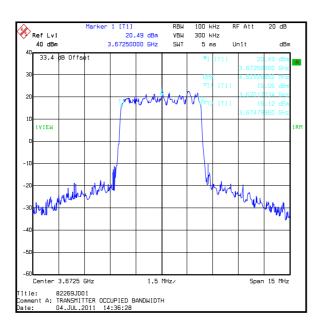
Page 26 of 67 RFI Global Services Ltd

Results: Port 2 / Lower 25 MHz Band / 5 MHz Channel / QPSK3/4


Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Тор	3672.5	4689.379

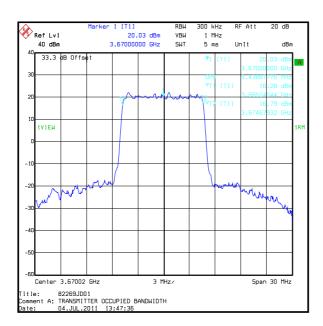
RFI Global Services Ltd Page 27 of 67

Results: Port 1 / Lower 25 MHz Band / 5 MHz Channel / 64QAM3/4


Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Тор	3672.5	4659.319

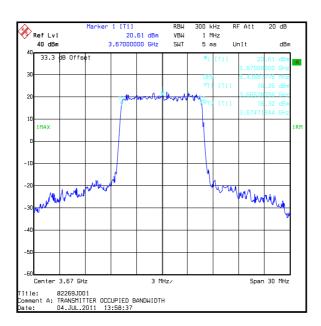
Page 28 of 67 RFI Global Services Ltd

Results: Port 2 / Lower 25 MHz Band / 5 MHz Channel / 64QAM3/4


Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Тор	3672.5	4629.259

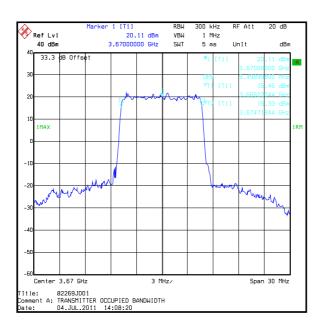
RFI Global Services Ltd Page 29 of 67

Results: Port 1 / Lower 25 MHz Band / 10 MHz Channel / QPSK3/4


Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Тор	3670.0	9438.878

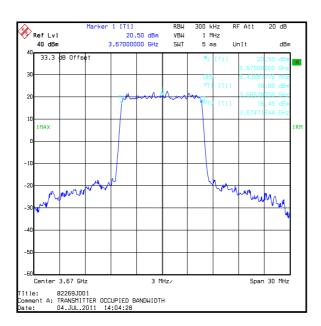
Page 30 of 67 RFI Global Services Ltd

Results: Port 2 / Lower 25 MHz Band / 10 MHz Channel / QPSK3/4


Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Тор	3670.0	9438.878

RFI Global Services Ltd Page 31 of 67

Results: Port 1 / Lower 25 MHz Band / 10 MHz Channel / 64QAM3/4


Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Тор	3670.0	9498.998

Page 32 of 67 RFI Global Services Ltd

Results: Port 2 / Lower 25 MHz Band / 10 MHz Channel / 64QAM3/4

Channel	Frequency (MHz)	Occupied Bandwidth (kHz)
Тор	3670.0	9438.878

RFI Global Services Ltd Page 33 of 67

5.2.5. Transmitter Conducted Emissions Mask

Test Summary:

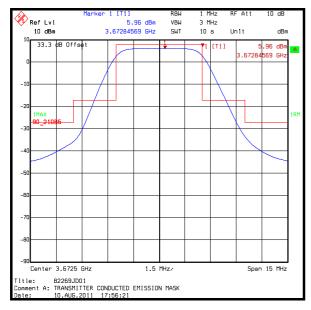
Test Engineer:	Nick Steele	Test Date:	10 August 2011
Test Sample Serial No:	9B23B3FFFF28		

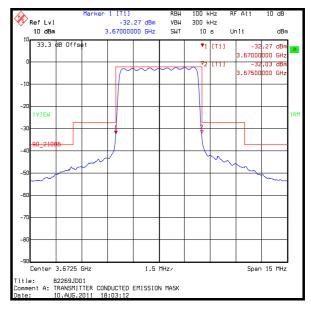
Test Summary:

FCC Part:	Part 90.210(b)(n) / 2.1051
Test Method Used	As detailed in ANSI TIA-603-C-2004 Section 2.2.13 referencing FCC Part 2.1051

Environmental Conditions:

Temperature (°C):	30
Relative Humidity (%):	24

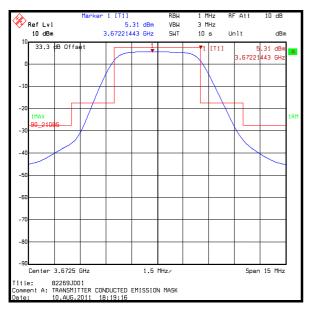

Note(s):

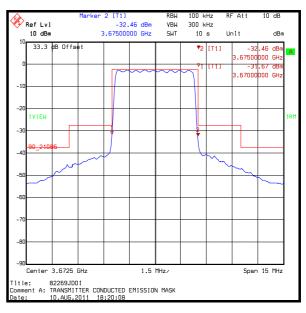

- 1. FCC Part 90.210 Emission Mask B was used at the request of the Customer.
- 2. The power of the modulated signal was measured on a spectrum analyser using an RMS detector and 10 second sweep time to give the full output power in the whole channel band. The limit mask on the spectrum analyser was placed at the level of the peak of the carrier when measured with an unmodulated carrier in a 10 MHz bandwidth. The modulation was turned on once the mask reference level had been established. The analyser resolution bandwidth was then changed to 1 MHz, to carry out the measurement in accordance with Part 90.210. To eliminate the effects of measuring with a relatively wide resolution bandwidth, which caused the signal to cross the mask limit, final measurements were performed with a 100 kHz resolution bandwidth and the mask amplitude was reduced by 10 dB to compensate for the reduced measurement bandwidth.
- 3. The spectrum analyser was left to sweep for 10 seconds during each test to ensure that all emissions were captured..
- 4. An additional spectrum analyser offset of 2.3 dB was used to compensate for the 59% duty cycle of the EUT when transmitting a 5 MHz channel. This was calculated using the equation 10*Log₁₀(Ton/Period).Ton was measured as being 2.97 ms and Period measured was 5.01 ms.
- 5. An additional spectrum analyser offset of 2.2 dB was used to compensate for the 60% duty cycle of the EUT when transmitting a 10 MHz channel. This was calculated using the equation 10*Log₁₀(Ton/Period). Ton was measured as being 2.98 ms and period measured was 4.99 ms.

Page 34 of 67 RFI Global Services Ltd

Transmitter Conducted Emissions Mask (continued)

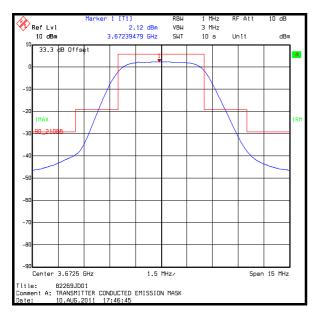
Results: Port 1 / Lower 25 MHz Band / 5 MHz Channel / QPSK3/4

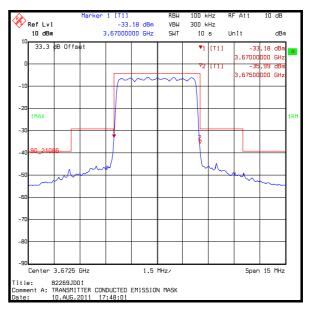



1 MHz Measurement Bandwidth

100 kHz Measurement Bandwidth

Results: Port 2 / Lower 25 MHz Band / 5 MHz Channel / QPSK3/4

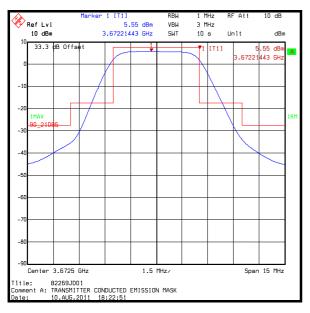


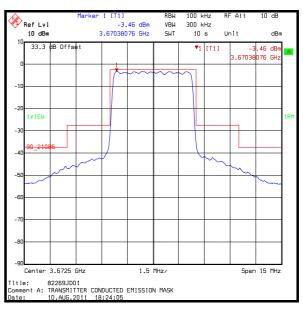

100 kHz Measurement Bandwidth

RFI Global Services Ltd Page 35 of 67

Transmitter Conducted Emissions Mask (continued)

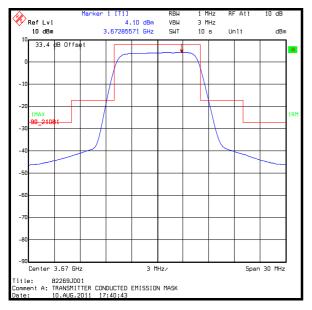
Results: Port 1 / Lower 25 MHz Band / 5 MHz Channel / 64QAM3/4

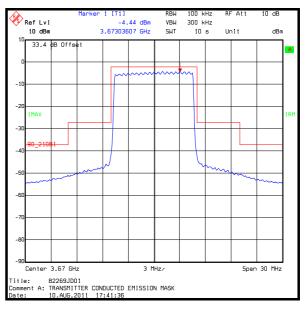



1 MHz Measurement Bandwidth

100 kHz Measurement Bandwidth

Results: Port 2 / Lower 25 MHz Band / 5 MHz Channel / 64QAM3/4

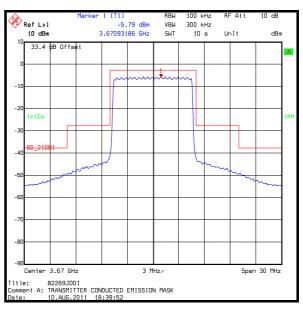




100 kHz Measurement Bandwidth

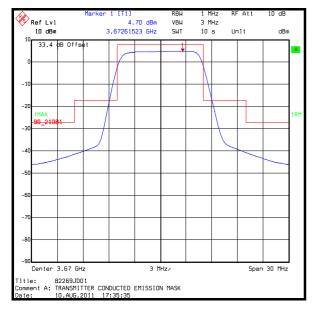
Page 36 of 67 RFI Global Services Ltd

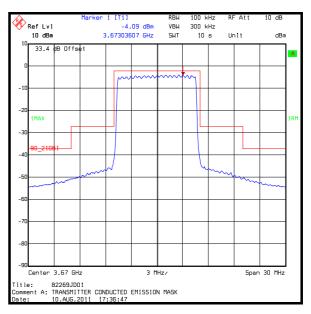
Results: Port 1 / Lower 25 MHz Band / 10 MHz Channel / QPSK3/4


1 MHz Measurement Bandwidth

100 kHz Measurement Bandwidth

Results: Port 2 / Lower 25 MHz Band / 10 MHz Channel / QPSK3/4

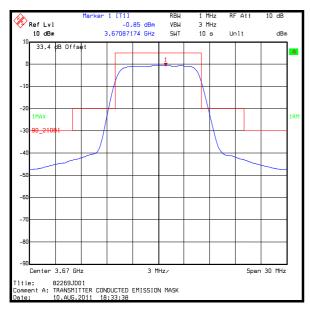


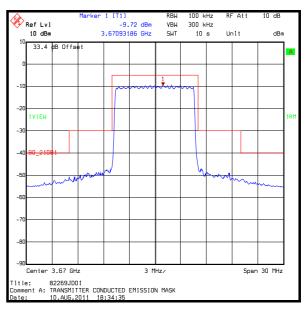


100 kHz Measurement Bandwidth

RFI Global Services Ltd Page 37 of 67

Results: Port 1 / Lower 25 MHz Band / 10 MHz Channel / 64QAM3/4




1 MHz Measurement Bandwidth

100 kHz Measurement Bandwidth

Results: Port 2 / Lower 25 MHz Band / 10 MHz Channel / 64QAM3/4

100 kHz Measurement Bandwidth

Page 38 of 67 RFI Global Services Ltd

VERSION NO. 1.0 ISSUE DATE: 17 AUGUST 2011

5.2.6. Transmitter Conducted Emissions (Out of Band)

Test Summary:

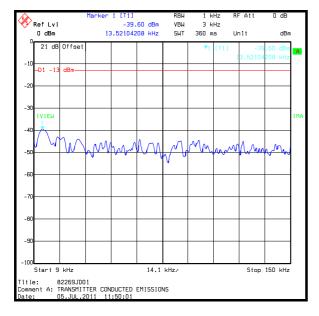
Test Engineer:	Andrew Edwards	Test Date:	05 July 2011 & 06 July 2011
Test Sample Serial No:	9B23B3FFFF28		

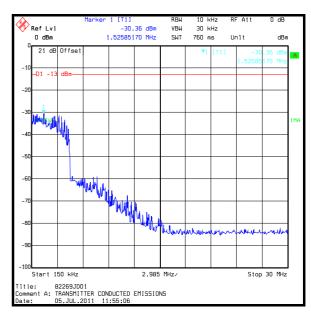
FCC Part:	90.1323(a) & 90.210(b)(3) / 2.1051
Test Method:	As detailed in ANSI TIA-603-C-2004 Section 2.2.13 referencing FCC Part 2.1051
Frequency Range:	9 kHz to 37 GHz

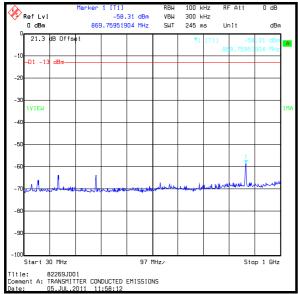
Environmental Conditions:

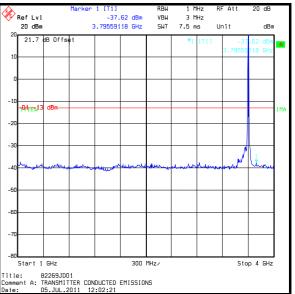
Temperature (°C):	30
Relative Humidity (%):	22

Results: 5 MHz Channel Bandwidth - Top Channel 64 QAM3/4

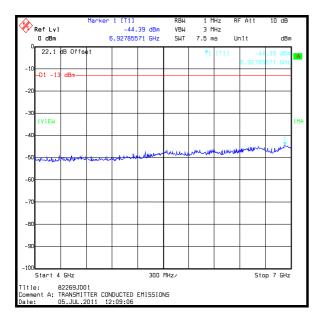

Frequency (MHz)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
1.525852	-30.4	-13.0	17.4	Complied

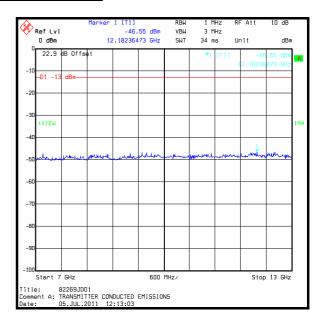

Note(s):

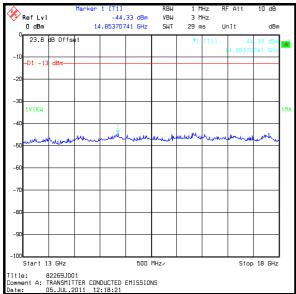

- 1. The EUT was set to transmit on both the 5 MHz and 10 MHz bandwidths with 64QAM3/4 modulation applied as this was found to have the highest output power.
- 2. All tests were performed on RF Port 1 of the EUT, as it was previously found to emit the highest power.
- 3. The emission seen on the 1 GHz to 4 GHz plot at approximately 3.6 GHz is the EUT carrier.
- 4. All other emissions were at least 20 dB below the specification limit or below the measurement system noise floor.

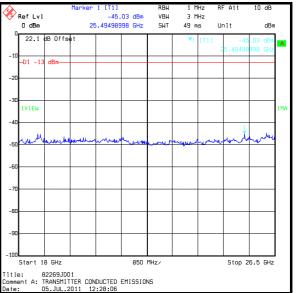

RFI Global Services Ltd Page 39 of 67

Results: 5 MHz Channel Bandwidth - Top Channel 64QAM3/4

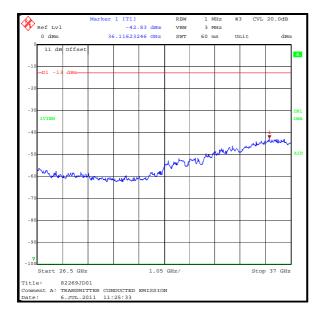




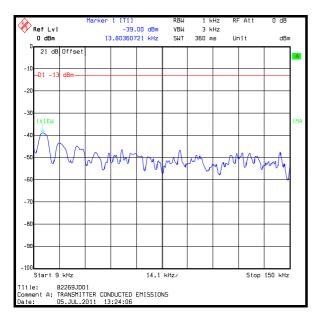


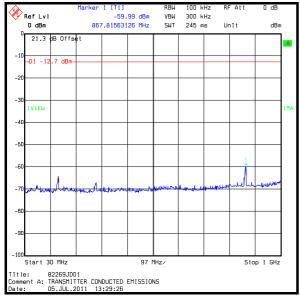

Page 40 of 67 RFI Global Services Ltd

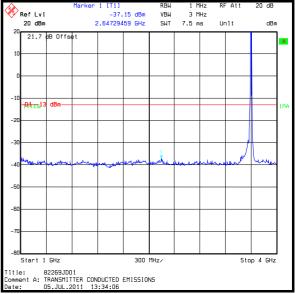
Results: 5 MHz Channel Bandwidth - Top Channel 64QAM3/4



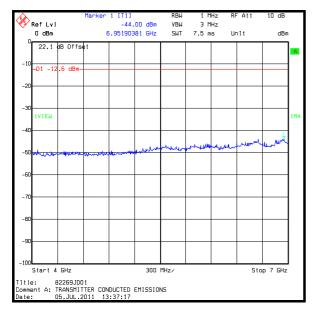
RFI Global Services Ltd Page 41 of 67

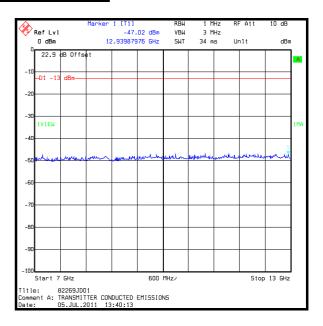

Results: 5 MHz Channel Bandwidth - Top Channel 64QAM3/4

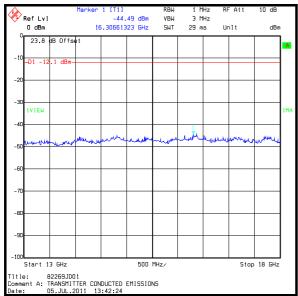

Page 42 of 67 RFI Global Services Ltd

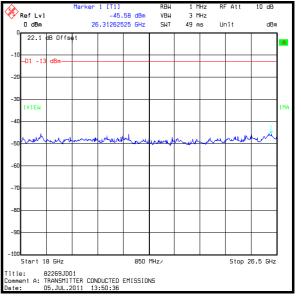

Results: 10 MHz Channel Bandwidth - Top Channel 64QAM3/4

Frequency (MHz)	Emission Level (dBm))	Limit (dBm)	Margin (dB)	Result
2.183868	-31.3	-13.0	18.3	Complied

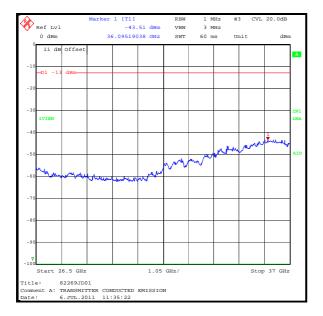







RFI Global Services Ltd Page 43 of 67

Results: 10 MHz Channel Bandwidth - Top Channel 64QAM3/4



Page 44 of 67 RFI Global Services Ltd

Results: 10 MHz Channel Bandwidth - Top Channel 64QAM3/4

RFI Global Services Ltd Page 45 of 67

ISSUE DATE: 17 AUGUST 2011

5.2.7. Transmitter Band Edge Conducted Emissions

Test Summary:

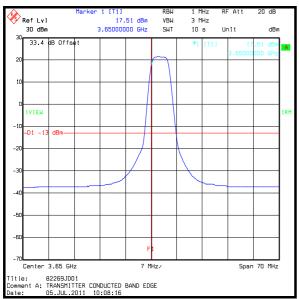
Test Engineer:	Andrew Edwards	Test Dates:	04 July 2011 & 05 July 2011
Test Sample Serial No:	9B23B3FFFF28		

FCC Part:	90.1323 / 2.1051
Test Method:	As detailed in ANSI TIA-603-C-2004 Section 2.2.13 referencing FCC Part 2.1051

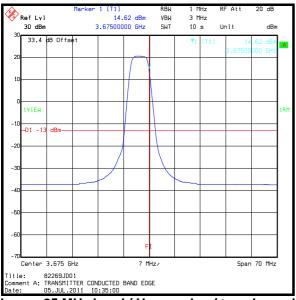
Environmental Conditions:

Temperature (°C):	31
Relative Humidity (%):	26

Note(s):


- Tests were initially performed with a 1 MHz measurement bandwidth. Where the band edge limit was
 exceeded on the bottom channels using a 1 MHz measurement bandwidth, the EUT was retested using
 the channel power function of a spectrum analyser centred on the 1 MHz block adjacent to and
 immediately outside the band edges. The measurement bandwidths were set automatically by the
 spectrum analyser.
- 2. Measurements were performed at the lower band edge (3650 MHz) with the EUT transmitting on the bottom channel, the upper band edge (3675 MHz) of the lower 25 MHz band with the EUT transmitting on the top channel for this band and the upper band edge (3700 MHz) of the 50 MHz band with the EUT transmitting on the top channel for this band.
- 3. The EUT was set to transmit on both the 5 MHz and 10 MHz bandwidths with 64QAM3/4 modulation applied as this was previously found to have the highest output power.
- 4. The Customer requested that this test was performed with the EUT using 64QAM3/4 modulation scheme only.

Results: Port 1 / 5 MHz Channel Bandwidth 64QAM3/4


Frequency (MHz)	Level in 1 MHz strip adjacent to band edge (dBm)	Limit (dBm)	Margin (dB)	Result
3650	-16.2	-13.0	3.2	Complied
3675	-18.3	-13.0	5.3	Complied
3700	-17.3	-13.0	4.3	Complied

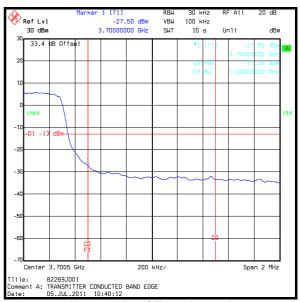
Page 46 of 67 RFI Global Services Ltd

Port 1 / 5 MHz Channel Bandwidth / 64QAM3/4

Lower edge / bottom channel

Lower 25 MHz band / Upper edge / top channel

Lower edge / bottom channel

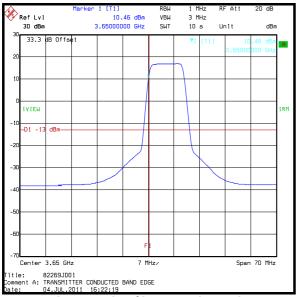

Lower 25 MHz band / Upper edge / top channel

RFI Global Services Ltd Page 47 of 67

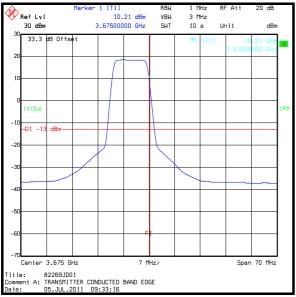
Port 1 / 5 MHz Channel Bandwidth / 64QAM3/4

Upper edge / Top channel

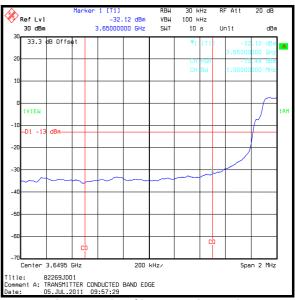
Upper edge / Top channel

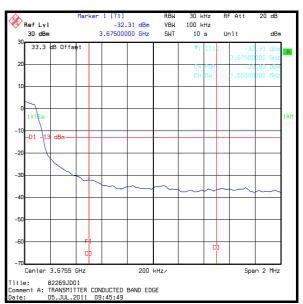

Page 48 of 67 RFI Global Services Ltd

Port 1 / 10 MHz Channel Bandwidth / 64QAM3/4

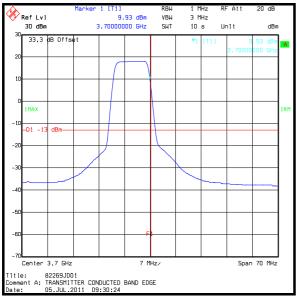

Frequency (MHz)	Level in 1 MHz strip adjacent to band edge (dBm)	Limit (dBm)	Margin (dB)	Result
3650	-19.4	-13.0	6.4	Complied
3675	-20.9	-13.0	7.9	Complied
3700	-19.5	-13.0	6.5	Complied

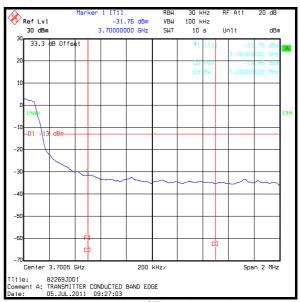
RFI Global Services Ltd Page 49 of 67


Port 1 / 10 MHz Channel Bandwidth / 64QAM3/4


Lower edge / bottom channel

Lower 25 MHz band / Upper edge / top channel

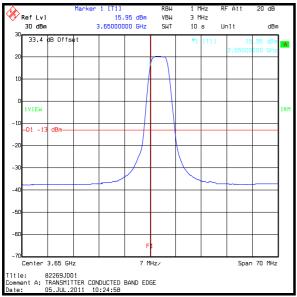

Lower edge / bottom channel


Lower 25 MHz band / Upper edge / top channel

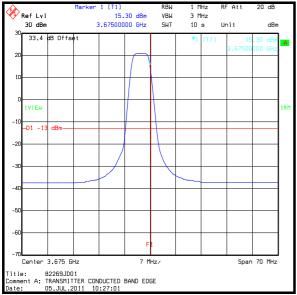
Page 50 of 67 RFI Global Services Ltd

Port 1 / 10 MHz Channel Bandwidth / 64QAM3/4

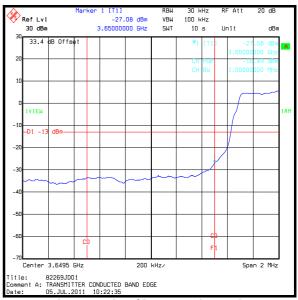
Upper edge / Top channel


RFI Global Services Ltd Page 51 of 67

Port 2 / 5 MHz Channel Bandwidth / 64QAM3/4

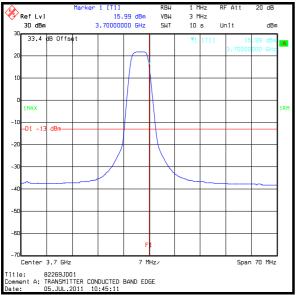

Frequency (MHz)	Level in 1 MHz strip adjacent to band edge (dBm)	Limit (dBm)	Margin (dB)	Result
3650	-18.5	-13.0	5.5	Complied
3675	-18.7	-13.0	5.7	Complied
3700	-17.6	-13.0	4.6	Complied

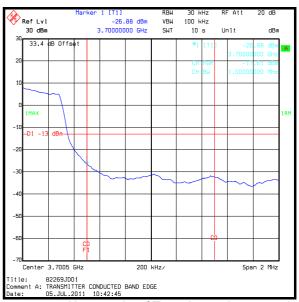
Page 52 of 67 RFI Global Services Ltd


Port 2 / 5 MHz Channel Bandwidth / 64QAM3/4

Lower edge / bottom channel

Lower 25 MHz band / Upper edge / top channel


Lower edge / bottom channel

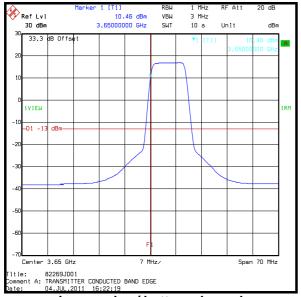

Lower 25 MHz band / Upper edge / top channel

RFI Global Services Ltd Page 53 of 67

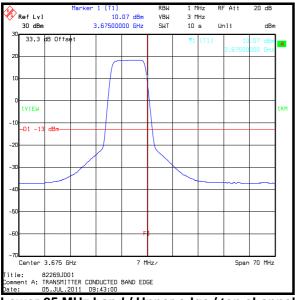
Port 2 / 5 MHz Channel Bandwidth / 64QAM3/4

Upper edge / Top channel

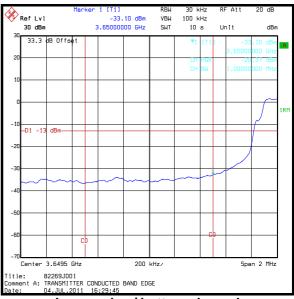
Upper edge / Top channel


Page 54 of 67 RFI Global Services Ltd

Port 2 / 10 MHz Channel Bandwidth / 64QAM3/4

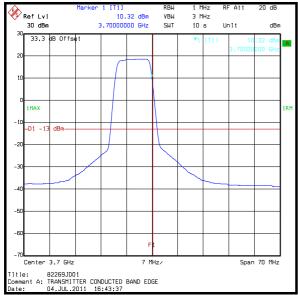

Frequency (MHz)	Level in 1 MHz strip adjacent to band edge (dBm)	Limit (dBm)	Margin (dB)	Result
3650	-20.4	-13.0	7.4	Complied
3675	-21.4	-13.0	8.4	Complied
3700	-19.0	-13.0	6.0	Complied

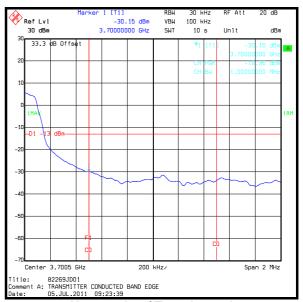
RFI Global Services Ltd Page 55 of 67


Port 2 / 10 MHz Channel Bandwidth / 64QAM3/4

Lower edge / bottom channel

Lower 25 MHz band / Upper edge / top channel


Lower edge / bottom channel


Lower 25 MHz band / Upper edge / top channel

Page 56 of 67 RFI Global Services Ltd

Port 2 / 10 MHz Channel Bandwidth / 64QAM3/4

Upper edge / Top channel

Upper edge / Top channel

RFI Global Services Ltd Page 57 of 67

VERSION NO. 1.0 ISSUE DATE: 17 AUGUST 2011

5.2.8. Transmitter Radiated Emissions (Out of Band)

Test Summary:

Test Engineer:	Andrew Edwards	Test Date:	01 July 2011 & 06 July 2011
Test Sample Serial No:	9B23B3FFFF28		

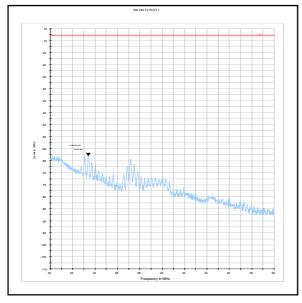
FCC Part:	90.1323
Test Method:	As detailed in ANSI TIA-603-C-2004 Section 2.2.12 referencing FCC Part 2.1053
Frequency Range:	30 MHz to 37 GHz

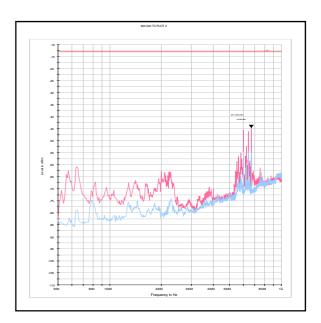
Environmental Conditions:

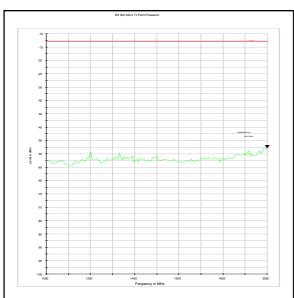
Temperature (°C):	31
Relative Humidity (%):	28

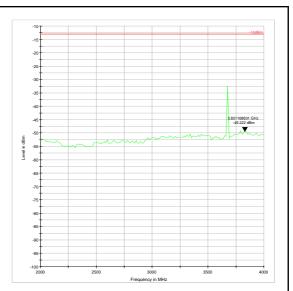
Results: 5 MHz Channel Bandwidth 64QAM3/4

Frequency	Peak Emission	Limit	Res	
(MHz)	Level (dBm)	(dBm)		
12551.948	-43.3	-13.0	30.0	Complied

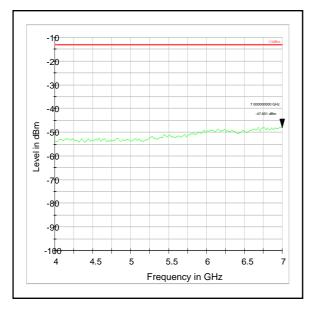

Note(s):

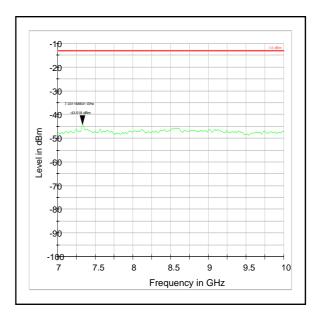

- 1. The EUT was set to transmit on the 5 MHz bandwidth with 64QAM3/4 modulation applied as this was found to have the highest output power.
- 2. Both RF ports were terminated into 50 Ohm loads during the test.
- 3. The emission seen on the 1 GHz to 4 GHz plot at approximately 3.6 GHz is the EUT carrier.
- 4. All other emissions were at least 20 dB below the specification limit or below the measurement system noise floor.
- 5. Measurements below 1 GHz were performed in a semi-anechoic chamber (RFI Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 6. Pre-scans above 1 GHz were performed in a fully anechoic chamber (RFI Asset Number K0002) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT. Final measurements above 1 GHz were performed in a semi-anechoic chamber (RFI Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.

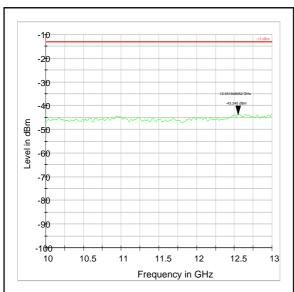

Page 58 of 67 RFI Global Services Ltd

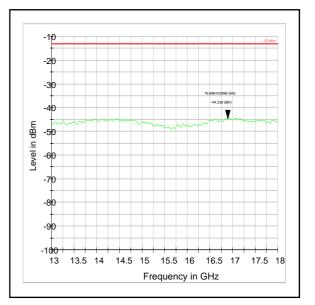

Transmitter Radiated Emissions (continued)

5 MHz Channel Bandwidth / 64QAM3/4

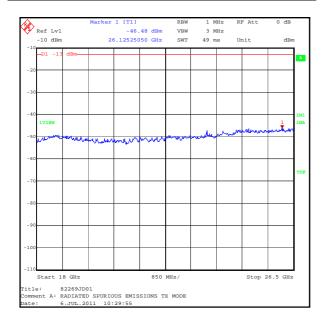


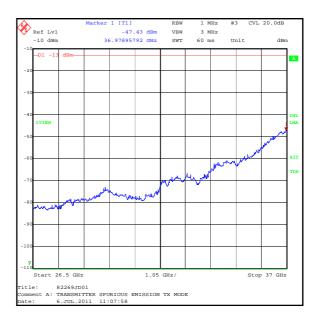





RFI Global Services Ltd Page 59 of 67

Transmitter Radiated Emissions (continued)





Page 60 of 67 RFI Global Services Ltd

Transmitter Radiated Emissions (continued)

RFI Global Services Ltd Page 61 of 67

VERSION NO. 1.0 ISSUE DATE: 17 AUGUST 2011

5.2.9. Transmitter Band Edge Radiated Emissions

Test Summary:

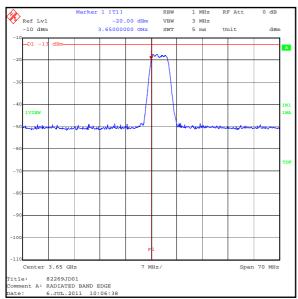
Test Engineer: Andrew Edwards		Test Date:	06 July 2011
Test Sample Serial No:	9B23B3FFFF28		

FCC Part:	90.1323
Test Method:	As detailed in ANSI TIA-603-C-2004 Section 2.2.12 referencing FCC Part 2.1053

Environmental Conditions:

Temperature (°C):	26
Relative Humidity (%):	23

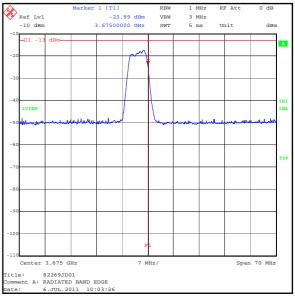
Note(s):


- 1. Measurements were performed at the lower band edge (3650 MHz) with the EUT transmitting on the bottom channel, the upper band edge (3675 MHz) of the lower 25 MHz band with the EUT transmitting on the top channel for this band and the upper band edge (3700 MHz) of the 50 MHz band with the EUT transmitting on the top channel for this band.
- 2. The EUT was set to transmit on both the 5 MHz and 10 MHz bandwidths with 64QAM3/4 modulation applied as this was previously found to have the highest output power.
- 3. The Customer requested that this test was performed with the EUT using 64QAM3/4 modulation scheme only.

Results: 5 MHz Channel Bandwidth


Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result
3650	-20.0	-13.0	7.0	Complied
3675	-24.0	-13.0	11.0	Complied
3700	-23.4	-13.0	10.4	Complied

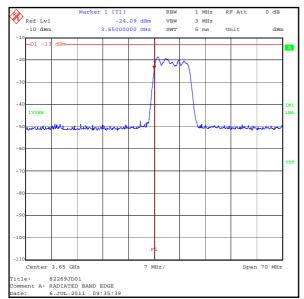
Page 62 of 67 RFI Global Services Ltd


Results: 5 MHz Channel Bandwidth

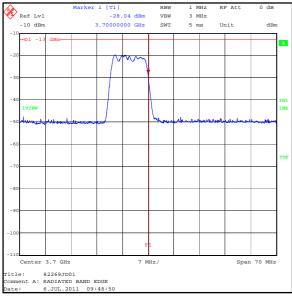
Lower edge / bottom channel

Upper edge / Top channel

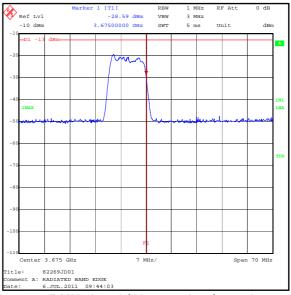
Lower 25 MHz band / Upper edge / top channel


RFI Global Services Ltd Page 63 of 67

Results: 10 MHz Channel Bandwidth


Frequency (MHz)	Peak Emission Level (dBm)	Limit (dBm)	Margin (dB)	Result	
3650	-24.1	-13.0	11.1	Complied	
3675	-28.6	-13.0	15.6	Complied	
3700	-28.0	-13.0	15.0	Complied	

Page 64 of 67 RFI Global Services Ltd


Results: 10 MHz Channel Bandwidth

Lower edge / bottom channel

Upper edge / Top channel

Lower 25 MHz band / Upper edge / top channel

RFI Global Services Ltd Page 65 of 67

6. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
Conducted Spurious Emissions	9 kHz to 37 GHz	95%	±2.64 dB
Radiated Spurious Emissions 30 GHz to 37 GHz		95%	±2.94 dB
Conducted Carrier Output Power	3650 MHz to 3700 MHz	95%	±0.27 dB
Occupied Bandwidth	3650 MHz to 3700 MHz	95%	±0.92 ppm

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

Page 66 of 67 RFI Global Services Ltd

Appendix 1. Test Equipment Used

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval Months
A1399	Attenuator	Weinschel	WA46-10	A126	09 Feb 2012	12
A1400	Attenuator	Weinschel	WA46-10	A127	18 Mar 2012	12
A1534	PreAmplifier	Hewlett Packard	8449B	3008A00405	20 Jun 2012	12
A1785	Low Noise Amplifier	Farran Technology	FLNA-28-30	FTL 6483	Calibrated before use	-
A1817	Antenna	EMCO	3115	00075694	03 Feb 2012	12
A1818	Antenna	EMCO	3115	00075692	05 Sep 2011	12
A1829	Pulse Limiter	Rhode & Schwarz	ESH3-Z2	100671	05 Mar 2012	12
A2001	Attenuator	Huber & Suhner	6830.17.B	07031	09 Feb 2012	12
A2055	Attenuator	Atlantic Microwave	WA-54-10-12	A2055	15 Jun 2012	12
A2056	Attenuator	Atlantic Microwave	WA-54-10-12	A2056	15 Jun 2012	12
A366	Isolator	MRI	FRR-400	169	Calibrated before use	-
A436	Antenna	Flann	20240-20	330	05 Sep 2011	12
A649	LISN	Rohde & Schwarz	ESH3-Z5	825562/008	05 Apr 2012	12
K0001	5m RSE Chamber	Rainford EMC	N/A	N/A	29 May 2012	12
K0002	3m RSE Chamber	Rainford EMC	N/A	N/A	05 Sep 2011	12
M1124	Spectrum Analyser	Rohde & Schwarz	ESI26	100046K	29 Jun 2012	12
M1242	Spectrum Analyser	Rohde & Schwarz	FSEM30	845986/022	03 Dec 2011	12
M1390	Harmonic Mixer	Farran Technology	WHMP 28	FTL1677B	Calibrated before use	-
M1590	Test Receiver	Rohde and Schwarz	ESU26	100239	15 Jun 2012	12

NB In accordance with UKAS requirements all the measurement equipment is on a calibration schedule.

RFI Global Services Ltd Page 67 of 67