

# Frequency Stability Measurements For Airspan Communications Ltd Airsynergy base stations

SC\_TR\_85\_B

28 June 2013



Page 2 of 7

### **Contents**

| 1 Revision History                       | 3 |
|------------------------------------------|---|
| 2 Associated Documents                   |   |
| 3 Products Covered                       | 3 |
| 4 Test Configuration                     | 4 |
| 4.1 Measurement method                   | 5 |
| 5 Test Results                           | 6 |
| 6 Test Location and Equipment            | 7 |
|                                          |   |
| Tables                                   |   |
| Table 1: Products covered by this report | 3 |
| Table 2: Equipment under test            |   |
| Table 3: Test results                    |   |
| Table 4: Test Equipment                  | 7 |
|                                          |   |
| Figures                                  |   |
| Figure 1: Test Configuration             | 4 |



# 1 Revision History

| Revision | Originator | Date        | Comment                                               |
|----------|------------|-------------|-------------------------------------------------------|
| Α        | C Blackham | 09 Jun 2013 | First Issue                                           |
| В        | C Blackham | 28 Jun 2013 | Addition of additional frequency variants in table 1. |

## 2 Associated Documents

| [1] | 47CFR2                    | Title 47 of FCC Rules Part 2                                                                             |
|-----|---------------------------|----------------------------------------------------------------------------------------------------------|
| [2] | ANSI / TIA-603-C-<br>2004 | TIA Standard: Land Mobile FM or PM – Communications<br>Equipment – Measurement and Performance Standards |

### 3 Products Covered

| AirSynergy variant   | Baseband bare PCB | Baseband PCA |
|----------------------|-------------------|--------------|
| SYN3-CN-00-A425a-000 | 328-02-143        | 900-02-242   |
| SYN3-CN-00-U38-000   | 328-02-143        | 900-02-242   |
| SYN3-CN-00-A25c-000  | 328-02-143        | 900-02-242   |
| SYN3-CN-00-A36-000   | 328-02-143        | 900-02-240   |
| SYN3-CN-00-A49-000   | 328-02-143        | 900-02-243   |

**Table 1: Products covered by this report** 

These products all show the same printed circuit board and same frequency determining circuitry. The only differences are that final Printed Circuit board Assemblies (PCA) contain different RF filter components to reflect operation at different frequencies.

SC\_TR\_85\_B Page 3 of 7



# 4 Test Configuration

Testing was performed on a A49, 4.9GHz unit, that was connected in a real-life representative manner as follows:

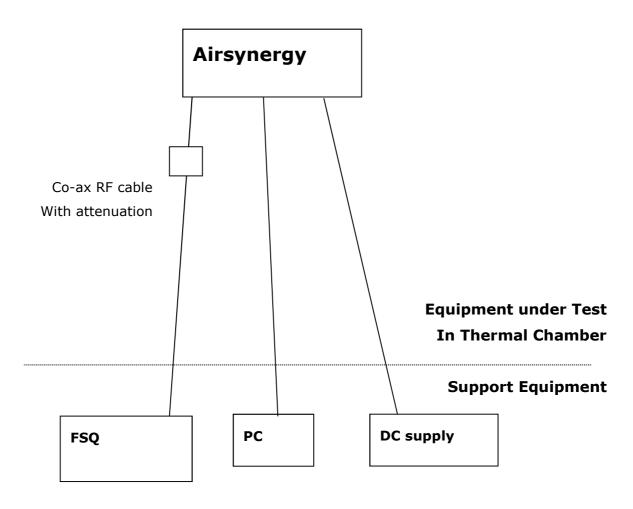



Figure 1: Test Configuration

| Item       | Part Number        | Serial Number |
|------------|--------------------|---------------|
| Airsynergy | SYN-3N-00-0A49-000 | 6BEAD5FFEFA8  |

**Table 2: Equipment under test** 

SC\_TR\_85\_B Page 4 of 7



### 4.1 Measurement method

- The EUT was placed into the thermal chamber and connected to a DC supply and FSQ measuring receiver outside the chamber
- The EUT was placed into commissioning mode and set to transmit a test waveform at 4950.0 MHz.
- The FSQ is fitted with the WiMAX 802.16e option and was set to reported frequency error in Hz relative to expected frequency of 4950.0 MHz
- The Temperature of the chamber was varied between -45°C and +60°C in 10°C steps and the EUT temperature allowed to stabilise for one hour at each. Measurements were recorded using ATE software
- Supply voltage was also varied when chamber was at 25°C.
- Frequency error was measured by the FSQ and the results shown in section 4.

SC\_TR\_85\_B Page 5 of 7



# 5 Test Results

| Voltage V) | Temp (°C) | Freq Error (Hz) | Freq Error (ppm) |
|------------|-----------|-----------------|------------------|
| 48.0       | -45       | -2014.87        | -0.40704         |
| 48.0       | -35       | -2266.89        | -0.45796         |
| 48.0       | -25       | -1516.82        | -0.30643         |
| 48.0       | -15       | 892.41          | 0.180285         |
| 48.0       | -5        | 2142.46         | 0.43282          |
| 48.0       | 5         | 2268.03         | 0.458188         |
| 48.0       | 15        | 2264.09         | 0.457392         |
| 40.8       | 25        | 2024.07         | 0.408903         |
| 48.0       | 25        | 2218.07         | 0.448095         |
| 55.2       | 25        | 2244.91         | 0.453517         |
| 48.0       | 35        | 2300.77         | 0.464802         |
| 48.0       | 45        | 2352.16         | 0.475184         |
| 48.0       | 55        | 2382.26         | 0.481265         |
| 48.0       | 60        | 4409.10         | 0.890727         |

**Table 3: Test results** 

SC\_TR\_85\_B Page 6 of 7



# **6 Test Location and Equipment**

Testing was performed at:

Airspan Communication Ltd:

Capital Point,

33 Bath Road

Slough,

SL1 3UF

UK

By Parimal Modeshia of Airspan Communications Ltd and Charlie Blackham of Sulis Consultants Ltd

| Item       | Serial Number | Calibration Due |
|------------|---------------|-----------------|
| R&S FSQ 26 | 100409        | 2014-07-03      |

**Table 4: Test Equipment** 

SC\_TR\_85\_B Page 7 of 7