

Engineering and Testing for EMC and Safety Compliance

Accredited under A2LA Certificate # 2653.01

**FCC Part 15.209
Certification Application Report**

Test Lab:		Applicant:	
Rhein Tech Laboratories, Inc. Tel: 703-689-0368 360 Herndon Parkway Fax: 703-689-2056 Suite 1400 Herndon, VA 20170 EMail: atcbinfo@rheintech.com Web: http://www.rheintech.com		Identec Solutions Inc. Tel: 250-860-6567 Suite 200, 1358 St. Paul Street Kelowna, BC V1Y 2E1 Canada Contact: Barry Allen Email: ballen@indentecsolutions.com	
FCC ID:	O2E-ILR-IM2	Test Report Date:	December 14, 2007
Platform:	N/A	RTL Work Order #:	2007279
Model:	i-Mark 2	RTL Quote #:	QRTL07-336, -351
American National Standard Institute:	ANSI C63.4-2003: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz		
FCC Classification:	DCD – Part 15 Low Power Transmitter Below 1705 kHz		
FCC Rule Part(s)/Guidance:	FCC Rules Part 15.209: Radiated emission limits; general requirements		
Digital Interface Information	Digital Interface was found to be compliant		
Frequency Range (MHz)	Output Power (W)	Frequency Tolerance	Emission Designator
0.125	N/A	N/A	10K8A1D

I, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this test report. No modifications were made to the equipment during testing in order to achieve compliance with these standards. Furthermore, there was no deviation from, additions to, or exclusions from, the applicable parts of FCC Part 2, FCC Part 15, and ANSI C63.4.

Signature:

Date: December 14, 2007

Typed/Printed Name: Desmond A. Fraser

Position: President

This report may not be reproduced, except in full, without the written approval of Rhein Tech Laboratories, Inc. and Identec Solutions Inc. The test results relate only to the item(s) tested.

Table of Contents

1	General Information	4
1.1	Scope	4
1.2	Description of EUT.....	4
1.3	Test Facility	4
1.4	Related Submittal(s)/Grant(s)	4
1.5	Modifications.....	4
2	Test Information	5
2.1	Description of Test Modes	5
2.2	Exercising the EUT.....	5
2.3	Test Result Summary	5
2.4	Test System Details.....	6
2.5	Configuration of Tested System	6
3	Radiated Emissions - §15.209	7
3.1	Limits of Radiated Emissions Measurement.....	7
3.2	Radiated Emissions Measurement Test Procedure.....	7
3.3	Distance Correction Factor	8
3.4	Intentional Radiated Emissions Test Results – §15.209.....	8
3.5	Unintentional Radiated Emissions Test Procedure.....	9
3.6	Unintentional Radiated Emissions Test Data.....	10
4	Conducted Emissions – FCC §15.207	11
4.1	Test Methodology for Conducted Line Emissions Measurements	11
4.2	Conducted Line Emissions Test Procedure.....	12
4.3	Conducted Line Emissions Test Data.....	12
5	Conclusion	14

Figure Index

Figure 2-1: Configuration of System Under Test.....	6
---	---

Table Index

Table 2-1: Channels Tested.....	5
Table 2-2: Test Result Summary – FCC Part 15, Subpart C (Section 15.247)	5
Table 2-3: Equipment Under Test.....	6
Table 3-1: Intentional Radiated Emissions Test Results.....	8
Table 3-2: Intentional Radiated Emissions Test Equipment.....	8
Table 3-3: Unintentional Radiated Emissions Test Results – §15.209.....	10
Table 3-4: Unintentional Radiated Emissions Test Equipment	10
Table 4-1: Conducted Line Emissions (Neutral Side)	12
Table 4-2: Conducted Line Emissions (Phase Side).....	13
Table 4-3: Conducted Line Emissions Test Equipment	13

Appendix Index

Appendix A: FCC/TCB Agency Authorization Letter	15
Appendix B: FCC Confidentiality Request Letter	16
Appendix C: Label and Label Location	17
Appendix D: Technical Operational Description.....	19
Appendix E: Schematics	20
Appendix F: Block Diagram	21
Appendix G: Manual.....	22
Appendix H: Test Photographs	23
Appendix I: External Photographs	25
Appendix J: Internal Photographs	27

Photograph Index

Photograph 1: ID Label Sample for EUT	17
Photograph 2: ID Label Location on EUT	18
Photograph 3: Radiated Testing – Front View	23
Photograph 4: Radiated Testing – Back View	24
Photograph 5: EUT Top View	25
Photograph 6: EUT Bottom View.....	26
Photograph 7: PCB with Cover in EUT	27
Photograph 8: PCB Top View without Cover in EUT	28
Photograph 9: PCB Top View without Cover	29
Photograph 10: PCB Bottom View.....	30

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Identec Solutions Inc.
Model Name: i-Mark 2
Standard: FCC 15.209
FCC ID: O2E-ILR-IM2
Report #: 2007279

1 General Information

1.1 Scope

This is an original certification application request.

Applicable Standards:

- FCC Rules Part 15.209: Radiated emission limits; general requirements.

1.2 Description of EUT

Equipment Under Test	Position Marker
Model Name/Number	i-Mark 2
Power Supply	10-30 VDC
Modulation Type	AM
Frequency Range	125 kHz
Antenna Connector Type	Internal
Antenna Type	Internal

1.3 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4-2003).

1.4 Related Submittal(s)/Grant(s)

This is an original application for Identec Solutions Inc., Model i-Mark 2, FCC ID: O2E-ILR-IM2.

1.5 Modifications

To pass unintentional radiated emissions, two ferrites were installed on the internal loopback/antenna cable.
Ferrites: Fair-Rite Brand, #0461164281.

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Identec Solutions Inc.
Model Name: i-Mark 2
Standard: FCC 15.209
FCC ID: O2E-ILR-IM2
Report #: 2007279

2 Test Information

2.1 Description of Test Modes

In accordance with FCC 15.31(m), and because the EUT utilizes an operating band less than 1 MHz, the frequencies in the following table were tested.

Table 2-1: Channels Tested

Channel	Frequency (kHz)
1	125

2.2 Exercising the EUT

The EUT was supplied with test firmware programmed to continuously transmit during testing. The carrier was also checked to verify that information was being transmitted. There were no deviations from the test standard(s) and/or methods. The test results reported relate only to the item tested.

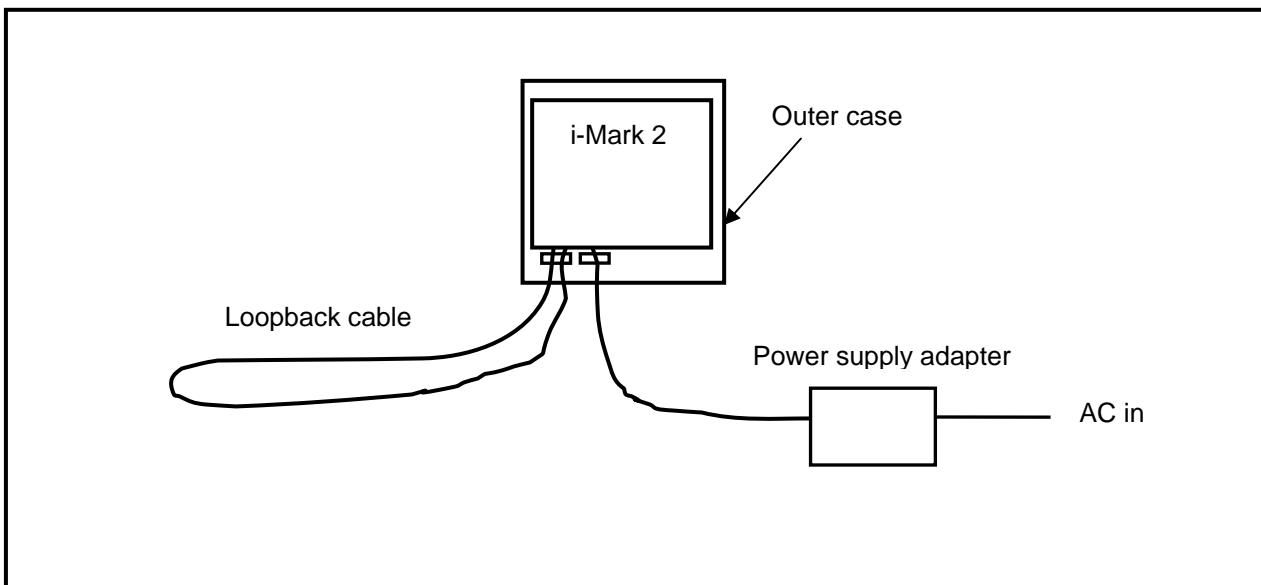
2.3 Test Result Summary

Table 2-2: Test Result Summary – FCC Part 15, Subpart C (Section 15.247)

Standard	Test	Pass/Fail or N/A
FCC 15.207	AC Power Conducted Emissions	Pass
FCC 15.209	Radiated Emissions	Pass

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Identec Solutions Inc.
Model Name: i-Mark 2
Standard: FCC 15.209
FCC ID: O2E-ILR-IM2
Report #: 2007279


2.4 Test System Details

The test samples were received on October 17, 2007. The FCC identifiers for all applicable equipment, plus descriptions of all cables used in the tested system, are identified in the following table.

Table 2-3: Equipment Under Test

Part	Manufacturer	Model	Serial Number	FCC ID	RTL Bar Code
Position Marker	Identec Solutions Inc.	i-Mark 2	N/A	O2E-ILR-IM2	18175
Power Supply	CUI, Inc.	3A-401DN24	N/A	N/A	18174

2.5 Configuration of Tested System

Figure 2-1: Configuration of System Under Test

3 Radiated Emissions - §15.209

3.1 Limits of Radiated Emissions Measurement

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009-0.490	2400/f (kHz)	300
0.490-1.705	2400/f (kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

As shown in 15.35(b), for frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any circumstances of modulation.

3.2 Radiated Emissions Measurement Test Procedure

Before final measurements of radiated emissions were made on the open-field three/ten meter range, the EUT was scanned indoors at one and three meter distances. This was done in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to ensure that maximum emission amplitudes were attained.

Final radiated emissions measurements were made on the three/ten-meter, open-field test site. The EUT was placed on a nonconductive turntable 0.8 meters above the ground plane. During testing, the EUT was positioned in 3 orthogonal axes and the measurements were performed with a loop antenna. The spectrum was examined from 9 kHz to the 10th harmonic of the highest fundamental transmitter frequency.

At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the emission's maximum level. Measurements were taken using both horizontal and vertical antenna polarizations.

3.3 Distance Correction Factor

Testing was performed on an OATS site at a distance of 3 m. The results were interpolated by using the square of an inverse linear distance factor DF (40 dB per decade).

$$DF = 20\log_{10} (d1^2/d2^2)$$

d1 = the 300 meter specified measurement distance

d2 = the 3 meter measurement distance

$$DF = 20\log_{10}(90000/9) = 80 \text{ dB}$$

3.4 Intentional Radiated Emissions Test Results – §15.209

Table 3-1: Intentional Radiated Emissions Test Results

Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Corrected Analyzer Reading (dBuV)	Distance Correction Factor (dB/m)	Analyzer Corrected Level (dBuV)	300 m Limit (dBuV/m)	Margin (dB)	Pass/Fail
0.125	Average	73.4	20.3	93.7	80.0	13.7	25.7	-12.0	Pass

All spurious emissions were greater than 20 dB below the limit; no data is being reported per 15.31(o).

Table 3-2: Intentional Radiated Emissions Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
900151	Rohde and Schwarz	HFH2-Z2	Loop Antenna (9 kHz - 30 MHz)	827525/019	09/15/09
900878	Rhein Tech Laboratories, Inc.	AM3-1197-0005	3 meter antenna mast, polarizing	Outdoor Range 1	Not Required
901242	Rhein Tech Laboratories, Inc.	WRT-000-0003	Wood rotating table	N/A	Not Required
900913	Hewlett Packard	85462A	EMI Receiver RF Section (9 KHz – 6.5 GHz)	3325A00159	03/21/08
901288	Belden	9273	Cables, 10 and 3 meters OATS 1	N/A	01/19/08

3.5 Unintentional Radiated Emissions Test Procedure

Before final measurements of radiated emissions were made on the open-field three/ten meter range, the EUT was scanned indoors at one and three meter distances. This was done in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to ensure that maximum emission amplitudes were attained.

Final radiated emissions measurements were made on the three/ten-meter, open-field test site. The EUT was placed on a nonconductive turntable 0.8 meters above the ground plane. During testing, the EUT was positioned in 3 orthogonal axes and the measurements were performed with a loop antenna. The spectrum was examined from 9 kHz to the 10th harmonic of the highest fundamental transmitter frequency.

At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the emission's maximum level. Measurements were taken using both horizontal and vertical antenna polarizations. For frequencies between 30 and 1000 MHz, the spectrum analyzer's 6 dB bandwidth was set to 120 kHz, and the analyzer was operated in the CISPR quasi-peak detection mode. For emissions above 1000 MHz, emissions are measured using the average detector function with a minimum resolution bandwidth of 1 MHz. No video filter less than 10 times the resolution bandwidth was used. The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.

Rhein Tech Laboratories, Inc.
 360 Herndon Parkway
 Suite 1400
 Herndon, VA 20170
<http://www.rheintech.com>

Client: Identec Solutions Inc.
 Model Name: i-Mark 2
 Standard: FCC 15.209
 FCC ID: O2E-ILR-IM2
 Report #: 2007279

3.6 Unintentional Radiated Emissions Test Data

Table 3-3: Unintentional Radiated Emissions Test Results – §15.209

Temperature: 77°F Humidity: 76%										
Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/Fail
348.360	Qp	H	100	1.0	51.2	-11.7	39.5	46.0	-6.5	Pass
447.900	Qp	H	110	1.0	49.8	-9.3	40.5	46.0	-5.5	Pass
547.433	Qp	H	85	1.2	50.0	-7.3	42.7	46.0	-3.3	Pass
646.985	Qp	H	55	1.0	44.6	-5.2	39.4	46.0	-6.6	Pass
746.480	Qp	H	190	1.1	40.5	-4.2	36.3	46.0	-9.7	Pass
846.030	Qp	H	270	1.0	42.5	-2.6	39.9	46.0	-6.1	Pass

Table 3-4: Unintentional Radiated Emissions Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901053	Schaffner-Chase	CBL6112	Antenna (25 MHz – 2 GHz)	2648	11/01/07
900905	Rhein Tech Laboratories, Inc.	PR-1040	Amplifier (10 MHz - 2 GHz)	1006	05/16/08
900878	Rhein Tech Laboratories, Inc.	AM3-1197-0005	3 meter antenna mast, polarizing	Outdoor Range 1	Not Required
901242	Rhein Tech Laboratories, Inc.	WRT-000-0003	Wood rotating table	N/A	Not Required
900913	Hewlett Packard	85462A	EMI Receiver RF Section (9 KHz – 6.5 GHz)	3325A00159	03/21/08
901288	Belden	9273	Cables, 10 and 3 meters OATS 1	N/A	01/19/08

Test Personnel:

Jon Wilson

Test Engineer

Signature

October 19, 23, 25, 26, 2007

Dates Of Test

4 Conducted Emissions – FCC §15.207

4.1 Test Methodology for Conducted Line Emissions Measurements

The power line conducted emission measurements were performed in a Series 81 type shielded enclosure manufactured by Rayproof. The EUT was assembled on a wooden table 80 centimeters high. Power was fed to the EUT through a 50 ohm / 50 microhenry Line Impedance Stabilization Network (EUT LISN). The EUT LISN was fed power through an A.C. filter box on the outside of the shielded enclosure. The filter box and EUT LISN housing are bonded to the ground plane of the shielded enclosure. A second LISN, the peripheral LISN, provides isolation for the EUT test peripherals. This peripheral LISN was also fed A.C. power. A metal power outlet box, which is bonded to the ground plane and electrically connected to the peripheral LISN, powers the EUT host peripherals.

The spectrum analyzer was connected to the A.C. line through an isolation transformer. The 50 ohm output of the EUT LISN was connected to the spectrum analyzer input through a Solar high-pass filter. The filter is used to prevent overload of the spectrum analyzer from noise below 100 kHz. Conducted emission levels were measured on each current-carrying line with the spectrum analyzer operating in the CISPR quasi-peak mode (or peak mode if applicable). The analyzer's 6 dB bandwidth was set to 9 kHz. No video filter less than 10 times the resolution bandwidth was used. Average measurements are performed in linear mode using a 10 kHz resolution bandwidth, a 1 Hz video bandwidth, and by increasing the sweep time in order to obtain a calibrated measurement. The emission spectrum was scanned from 150 kHz to 30 MHz. The highest emission amplitudes relative to the appropriate limit were measured and have been recorded in this report.

Note: Rhein Tech Laboratories, Inc. has implemented procedures to minimize errors that occur from test instruments, calibration, procedures, and test setups. Test instrument and calibration errors are documented from the manufacturer or calibration lab. Other errors have been defined and calculated within the Rhein Tech Quality Manual, section 6.1. Rhein Tech implements the following procedures to minimize errors that may occur: yearly as well as daily calibration methods, technician training, and emphasis to employees on avoiding error.

Rhein Tech Laboratories, Inc.
 360 Herndon Parkway
 Suite 1400
 Herndon, VA 20170
<http://www.rheintech.com>

Client: Identec Solutions Inc.
 Model Name: i-Mark 2
 Standard: FCC 15.209
 FCC ID: O2E-ILR-IM2
 Report #: 2007279

4.2 Conducted Line Emissions Test Procedure

The conducted test was performed with the EUT in hopping mode and the emissions were scanned between 150 kHz to 30 MHz on the NEUTRAL SIDE and PHASE SIDE.

4.3 Conducted Line Emissions Test Data

Table 4-1: Conducted Line Emissions (Neutral Side)

Temperature: 74°F Humidity: 43%									
Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)	Pass/Fail
0.197	Pk	48.5	0.2	48.7	63.7	-15.0	53.7	-5.0	Pass
0.328	Pk	45.4	0.2	45.6	59.5	-13.9	49.5	-3.9	Pass
0.391	Qp	47.0	0.2	47.2	58.0	-10.8	48.0	--	Pass
0.391	Av	35.1	0.2	35.3	58.0	-22.7	48.0	-12.7	Pass
0.462	Qp	42.8	0.2	43.0	56.7	-13.7	46.7	--	Pass
0.462	Av	24.0	0.2	24.2	56.7	-32.5	46.7	-22.5	Pass
1.621	Qp	33.1	0.8	33.9	56.0	-22.1	46.0	-12.1	Pass
2.480	Qp	38.0	1.1	39.1	56.0	-16.9	46.0	-6.9	Pass
4.480	Qp	32.7	1.3	34.0	56.0	-22.0	46.0	-12.0	Pass
7.640	Pk	39.8	1.6	41.4	60.0	-18.6	50.0	-8.6	Pass
17.200	Pk	41.5	2.3	43.8	60.0	-16.2	50.0	-6.2	Pass
24.010	Pk	36.1	2.7	38.8	60.0	-21.2	50.0	-11.2	Pass

Rhein Tech Laboratories, Inc.
 360 Herndon Parkway
 Suite 1400
 Herndon, VA 20170
<http://www.rheintech.com>

Client: Identec Solutions Inc.
 Model Name: i-Mark 2
 Standard: FCC 15.209
 FCC ID: O2E-ILR-IM2
 Report #: 2007279

Table 4-2: Conducted Line Emissions (Phase Side)

Temperature: 74°F Humidity: 43%									
Emission Frequency (MHz)	Test Detector	Analyzer Reading (dBuV)	Site Correction Factor (dB)	Emission Level (dBuV)	QP Limit (dBuV)	QP Margin (dBuV)	AV Limit (dBuV)	AV Margin (dBuV)	Pass/Fail
0.157	Pk	46.8	0.2	47.0	65.6	-18.6	55.6	-8.6	Pass
0.257	Pk	43.7	0.2	43.9	61.5	-17.6	51.5	-7.6	Pass
0.330	Qp	43.5	0.2	43.7	59.5	-15.8	49.5	-5.8	Pass
0.391	Qp	47.7	0.2	47.9	58.0	-10.1	48.0	--	Pass
0.391	Av	35.2	0.2	35.4	58.0	-22.6	48.0	-12.6	Pass
0.459	Qp	43.5	0.2	43.7	56.7	-13.0	46.7	--	Pass
0.459	Av	26.6	0.2	26.8	56.7	-29.9	46.7	-19.9	Pass
4.188	Qp	42.7	1.3	44.0	56.0	-12.0	46.0	--	Pass
4.176	Av	23.6	1.3	24.9	56.0	-31.1	46.0	-21.1	Pass
5.250	Pk	43.2	1.4	44.6	60.0	-15.4	50.0	-5.4	Pass
9.170	Pk	40.5	1.7	42.2	60.0	-17.8	50.0	-7.8	Pass
17.370	Pk	41.7	2.3	44.0	60.0	-16.0	50.0	-6.0	Pass
25.250	Pk	34.7	2.7	37.4	60.0	-22.6	50.0	-12.6	Pass

Table 4-3: Conducted Line Emissions Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
900968	Hewlett Packard	8567A	Spectrum Analyzer (10 kHz - 1.5 GHz)	2602A00160	9/7/2008
900970	Hewlett Packard	85662A	Spectrum Analyzer Display Section	2542A11239	9/7/2008
900339	Hewlett Packard	85650A	Quasi-Peak Adapter	2521A00743	9/7/2008
900729	Solar	8130	Filter	947306	N/A
901082	AFJ International	LS16/110VAC	16A LISN	16010020081	1/6/2008
900894	Fischer Custom Communications	F-33-1	Current Probe (Telecom conducted)	3003	4/10/2008

Test Personnel:

Jon Wilson

Test Engineer

Signature

October 19, 23, 2007

Dates Of Test

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Identec Solutions Inc.
Model Name: i-Mark 2
Standard: FCC 15.209
FCC ID: O2E-ILR-IM2
Report #: 2007279

5 Conclusion

The data in this measurement report shows that the EUT as tested, Identec Solutions Inc., Model: i-Mark 2, FCC ID: O2E-ILR-IM2, complies with all the applicable requirements of Parts 2 and 15 of the FCC Rules and Regulations.