

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: February 9 ~ 27, 2007 Test Report S/N: LR500190703B Test Site: LTA CO., LTD.

CERTIFICATIO OF COMPLIANCE

FCC ID.

O25PK-400NW

APPLICANT

UNIMO Technology Co., Ltd.

Device Category : UHF FM Handheld Transceiver

Manufacturing Description : UHF FM TRANSCEIVER

Manufacturer : UNIMO Technology Co., Ltd.

Trade mark : UNIMO

Model name : PK-400NW

Serial number : Identical prototype FCC Rule Part(s) : \$2, \$22, \$74, \$90 Frequency Range : 400 ~ 512MHz

RF Output Power : 4W / 1W

Channel Separation : 12.5kHz / 25.0kHz
Emission Designators: : 10K7F3E, 15K1F3E
Data of issue : February 28, 2007

This test report is issued under the authority of:

The test was supervised by:

Dong -Min JUNG, Technical Manager

Kyung-Taek LEE, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 REQUIREMENTS	6
3.2.1 CARRIER OUTPUT POWER (CONDUCTED)	6
3.2.2 UNWANTED EMISSIONS (TRANSMITTER CONDUCTED) (CONDUCTED)	7
3.2.3 FIELD STRENGTH OF SPURIOUS RADIATION	11
3.2.4 EMISSION MASKS (OCCUPIED BANDWIDTH)	14
3.2.5 TRANSIENT FREQUENCY BEHAVIOR	15
3.2.6 AUDIO FREQUENCY RESPONSE	16
3.2.7 MODULATION LIMITING	17
3.2.8 FREQUENCY STABILITY (TEMPERATURE VARIATION)	18
3.2.9 FREQUENCY STABILITY (VOLTAGE VARIATION)	. 19
3.2.10 NECESSARY BANDWIDTH AND EMISSION BANDWIDTH	20
APPENDIX	
APPENDIX I TEST EQUIPMENT USED FOR TESTS	
APPENDIX II TEST PLOTS	24

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2007-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2007-07-13	EMC accredited Lab.
FCC	U.S.A	610755	2008-03-28	FCC filing
VCCI	JAPAN	R2133, C2307	2008-06-22	VCCI registration
IC	CANADA	IC5799	2008-04-23	IC filing

2. Information's about test item

2-1 Client & Manufacturer

Company name : UNIMO Technology Co., Ltd.

Address : 479-12 Bangbae-3Dong, Seocho-Gu, Seoul 137-820, Korea

TEL / FAX : +82-2-3470-4606 / +82-2-3470-4609

2-2 Equipment Under Test (EUT)

Trade name : UHF FM Handheld Transceiver

FCC ID : O25PK-400NW

Model name : PK-400NW

Serial number : Identical prototype

Date of receipt : February 01, 2007

EUT condition : Pre-production, not damaged

Antenna type : $\lambda/4$ Whip Antenna

Frequency Range : $400 \sim 512 \text{ MHz}$

RF output power : 4W (High Power) / 1W(Low Power)

Channel Separation : 12.5kHz / 25.0kHz

Duty cycle TX power : 5(Tx): 5(Rx): 90(Stand-by)

Speaker Impedance : 16 ohm

Audio Output Power : 1.0Watt across an 16-ohm load

Power Source : 7.5V DC rechargeable Li-NH battery

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz)	400.025	456.025	511.975

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
-	-	-	-
-	-	-	-

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Status (note 1)
2.1046 (a)	Carrier Output Power (Conducted)	С
2.1051	Unwanted Emissions (Transmitter Conducted)	С
2.1053 (a)	Field Strength of Spurious Radiation	С
2.1049 (c) (1)	Emission Masks (Occupied Bandwidth)	С
90.214	Transient Frequency Behavior	С
2.1047 (a)	Audio Low Pass Filter (Voice Input)	С
2.1047 (a)	Audio Frequency Response	С
2.1047 (b)	Modulation Limiting	С
2.1055 (a) (1)	Frequency Stability (Temperature Variation)	С
2.1055 (b) (1)	Frequency Stability (Voltage Variation)	С
2.202 (g)	Necessary Bandwidth and Emission Bandwidth	С
Note 1: C=Complies	NC=Not Complies NT=Not Tested NA=Not Applicable	·

reserved for the complete for the rested for the rested

The sample was tested according to the following specification:

FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and Part 22, Part 74 Subpart H, Part 90.

3.2 Transmitter requirements

3.2.1 Carrier Output Power (Conducted)

Definition:

- The carrier power output for a transmitter for this service is the power available at the output terminals of the transmitter when the output terminals are connected to the standard transmitter load.

Specification : 47 CFR 2.1046 (a)

Test method : ANSI/TIA/EIA-603-C-2004

Measurement Procedure:

- The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the unmodulated output power was measured by means of an R.F. Power Meter.

TEST CONDITIONS		Carrier power(W)			
Power level (W)	Channel Spacing (kHz)	400.025 MHz	456.025 MHz	511.975 MHz	
1	12.5	1.12	0.82	1.01	
4	12.5	4.22	3.69	3.97	
1	25	1.13	0.82	1.02	
4	25	4.26	3.72	3.96	
Measuren	Measurement uncertainty		± 0,45dB		

3.2.2 Unwanted Emissions (Transmitter Conducted)

Definition:

- Conducted spurious emissions are emissions at the antenna terminals on a frequency or frequencies which are outside a band sufficient to ensure transmission of information of required quality for the class of communication desired.

Specification : 47 CFR 2.1051

Test method : ANSI/TIA/EIA-603-C-2004

Measurement Procedure:

- The emissions were measured for the worst case as follows:
- (1) Within a band of frequencies defined by the carrier frequency plus and minus one channel.
- (2) From the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40GHz, whichever is lower.
- The magnitude of spurious emissions that are attenuated more than 20dB below the permissible value need not be specified.

LIMIT

 $= 43 + 10 \log_{10} (P) dBc (or -13 dBm)$

Measurement Data:

OPERATING FREQUENCY : 400.025 MHz

POWER : Low Power

MEASURED OUTPUT POWER: 30.53 dBm = 1.13 W

MODULATION SIGNAL : FM

LIMIT : $43 + 10 \log_{10} (W) = 43.53$ dBc

Freq. (MHz)	Level (dBm)	Level (dBc)	Freq. (MHz)	Level (dBm)	Level (dBc)
800.05	-49.33	79.96			

Remarks

No other emissions were detected at a level greater than 20dB below limit.

OPERATING FREQUENCY : 400.025 MHz

POWER : High Power

MEASURED OUTPUT POWER: 36.29 dBm = 4.26 W

MODULATION SIGNAL : FM

LIMIT : $43 + 10 \log_{10} (W) = 49.29$ dBc

Freq. (MHz)	Level (dBm)	Level (dBc)	Freq. (MHz)	Level (dBm)	Level (dBc)
800.05	-47.83	84.51			

Remarks

No other emissions were detected at a level greater than 20dB below limit.

Measurement Data:

OPERATING FREQUENCY : 456.025 MHz

POWER : Low Power

MEASURED OUTPUT POWER: 30.53 dBm = 1.13 W

MODULATION SIGNAL : FM

LIMIT : $43 + 10 \log_{10} (W) = 43.53$ dBc

Freq. (MHz)	Level (dBm)	Level (dBc)	Freq. (MHz)	Level (dBm)	Level (dBc)
912.05	-47.5	78.13			

Remarks

No other emissions were detected at a level greater than 20dB below limit.

OPERATING FREQUENCY : 456.025 MHz

POWER : High Power

MEASURED OUTPUT POWER: 36.29 dBm = 4.26 W

MODULATION SIGNAL : FM

LIMIT : $43 + 10 \log_{10} (W) = 49.29$ dBc

Freq. (MHz)	Level (dBm)	Level (dBc)	Freq. (MHz)	Level (dBm)	Level (dBc)
912.05	-48.5	85.18			

Remarks

No other emissions were detected at a level greater than 20dB below limit.

Measurement Data:

OPERATING FREQUENCY : 511.975 MHz

POWER : Low Power

MEASURED OUTPUT POWER: 30.53 dBm = 1.13 W

MODULATION SIGNAL : FM

LIMIT : $43 + 10 \log_{10} (W) = 43.53$ dBc

Freq. (MHz)	Level (dBm)	Level (dBc)	Freq. (MHz)	Level (dBm)	Level (dBc)
1023.95	-48.17	78.8			

Remarks

No other emissions were detected at a level greater than 20dB below limit.

OPERATING FREQUENCY : 511.975 MHz

POWER : High Power

MEASURED OUTPUT POWER: 36.29 dBm = 4.26 W

MODULATION SIGNAL : FM

LIMIT : $43 + 10 \log_{10} (W) = 49.29$ dBc

Freq. (MHz)	Level (dBm)	Level (dBc)	Freq. (MHz)	Level (dBm)	Level (dBc)
1023.95	-47.00	83.68			
3583.825	-45.83	82.51			

Remarks

No other emissions were detected at a level greater than 20dB below limit.

3.2.3 Field Strength of Spurious Radiation

Definition:

- Radiated spurious emissions are emissions from the equipment when transmitting into a non-radiating load on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desire.

Specification : 47 CFR 2.1053(a)

Test method : ANSI/TIA/EIA-603-C-2004

Measurement Procedure:

- The test sample was set up at a distance of three meters from the test instrument. Valid spurious signals were determined by switching the power on and off.
- In the field, the test sample was placed on a wooden turntable above ground at three meters away from the search antenna.
- The cables were oriented in order to obtain the maximum response. At each emission frequency, the turntable was rotated and the search antennas were raised and lowered vertically.
- The emission was observed with both a vertically polarized and a horizontally polarized search antenna and the worst case was used.
- The field strength of each emission within 20dB of the limit was recorded and corrected with the appropriate cable and transducer factors.
- From the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40GHz, whichever is lower.
- The worst case for all channels is shown.

LIMIT

 $= 43 + 10 \log_{10} (P) dBc (or -13 dBm)$

Measurement Data: Attached for Worst Case

OPERATING FREQUENCY : 456.025 MHz

POWER : Low Power

MEASURED OUTPUT POWER: 30.53 dBm = 1.13 W

MODULATION SIGNAL : FM

LIMIT : $43 + 10 \log_{10} (W) = 43.53$ dBc

Freq.	LEVEL@ ANTENNA	SUBSTITUTE ANTENNA	CORRECT GENERATOR	POL	(dBc)
(MHz)	TERMINALS	GAIN	LEVEL	(H/V)	, ,
	(dBm)	(dBd)	(dBm)		

Remarks

No emissions were detected at a level greater than 20dB below limit.

Measurement Data: Attached for Worst Case

OPERATING FREQUENCY : 456.025 MHz

POWER : High Power

MEASURED OUTPUT POWER: 36.29 dBm = 4.26 W

MODULATION SIGNAL : FM

LIMIT : $43 + 10 \log_{10} (W) = 49.29$ dBc

Freq. (MHz)	LEVEL@ ANTENNA TERMINALS	SUBSTITUTE ANTENNA GAIN	CORRECT GENERATOR LEVEL	POL (H/V)	(dBc)
(IVII 12)				(117 0)	
	(dBm)	(dBd)	(dBm)		

Remarks

No emissions were detected at a level greater than 20dB below limit.

3.2.4 Emission Masks (Occupied Bandwidth)

Definition:

- The term transmitter Sideband Spectrum denotes the sideband energy produced at a discrete frequency separation from the carrier up to the test bandwidth due to all sources of unwanted noise within the transmitter in a modulated condition.

Specification : 47 CFR 2.1049(c)(1)

Test method : ANSI/TIA/EIA-603-C-2004

Measurement Procedure:

- The EUT and test equipment were set up as shown on the following page, with the Spectrum Analyzer connected.
- For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for ± 2.5 / ± 1.25 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16dB.
- For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.

Measurement Data:

3.2.5 Transient Frequency Behavior

Definition:

- The transient frequency behavior is a measure of the difference, as a function in time. of the actual transmitter frequency to the assigned transmitter frequency when the transmitted RF output power is switched on or off.

Specification : 47 CFR 90.214

Test method : ANSI/TIA/EIA-603-C-2004

Measurement Procedure:

- The EUT was set up as shown on the attached page, following TIA/EIA-603 steps a, b, and c as a guide.
- The transmitter was turned on.
- Sufficient attenuation was provided so that the transmitter carrier level measured at the output of the combiner was 40 dB below the maximum input level of the test receiver. This level was recorded as step f.
- The transmitter was turned off.
- An RF signal generator (1) modulated with a 1 kHz tone at either 25, 12.5, or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -20 dB below the level recorded for step f, as measured at the output of the combiner. This level was then fixed for the remainder of the test and is recorded at step h.
- The oscilloscope was set up using TIA/EIA-603 steps j and k as a guide, and to either 10 ms/div (UHF) of 5ms/div (VHF).
- The 30 dB attenuator was removed, the transmitter was turned on, and the level of the carrier at the output of the combiner was recorded as step l.
- The carrier on-time as referenced in TIA/EIA-603 steps m, n, and o was captured and plotted. The carrier off-time as referenced in TIA/EIA-603 steps p, q, r, and s was captured and plotted.
- For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for ± 2.5 / ± 1.25 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16dB.
- For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.

Measurement Data:

3.2.6 Audio Low Pass Filter (Voice Input)

Definition:

- The Audio Low Pass Filter Response is the frequency response of the post limiter low pass filter circuit above 3000Hz.

Specification : 47 CFR 2.1047(a)

Test method : ANSI/TIA/EIA-603-C-2004

Measurement Procedure:

- The EUT and test equipment were set up such that the audio input was connected at the input to the modulation limiter, and the modulated stage.
- The audio output was connected at the output to the modulated stage.

Measurement Data:

3.2.7 Audio Frequency Response

Definition:

- The audio frequency response is the degree of closeness to which the frequency deviation of the transmitter follows a prescribed characteristic.

Specification : 47 CFR 2.1047(a)

Test method : ANSI/TIA/EIA-603-C-2004

Measurement Procedure:

- The audio signal input was adjusted to obtain 20% modulation at 1kHz, and this point was taken as the 0dB reference level.
- With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 300 Hz to 30 kHz.
- The response in dB relative to 1 kHz was then measured, using the HP 8901A Modulation Analyzer.

Measurement Data:

3.2.8 Modulation Limiting

Definition:

- Modulation limiting refers to the transmitter circuits ability to limit the transmitter from producing deviations due to modulation in excess of a rated system deviation.

Specification : 47 CFR 2.1047(b)

Test method : ANSI/TIA/EIA-603-C-2004

Measurement Procedure:

- The signal generator was connected to the input of the EUT as for "Frequency Response of the Modulating Circuit."
- The modulation response was measured for each of three frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
- The input level was varied from 30% modulation (± 1.5 kHz deviation) to at least 20 dB higher than the saturation point.

Measurement Data:

3.2.9 Frequency Stability

Definition:

- Modulation limiting refers to the transmitter circuits ability to limit the transmitter from producing deviations due to modulation in excess of a rated system deviation.

Specification : 47 CFR 2.1055

Test method : ANSI/TIA/EIA-603-C-2004

Measurement Procedure:

The frequency stability of the transmitter is measured by:

- a) Temperature: The temperature is varied from -30°C to +60°C using an environmental chamber.
- b) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification- The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025(\pm 2.5 \text{ppm})$ of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter and the individual oscillators is measured at room temperature (25°C to 27°C to provide a reference).
- 2. The equipment is subjected to an overnight "soak" at -30°C without power applied.
- 3. After the overnight "soak" at 30°C (usually 14-16 hours), the equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter and the individual oscillators is made within a three minute interval after applying power to the transmitter.
- 4. Frequency measurements are made at 10°C interval up to room temperature. At least a period of one and one half-hour is provided to allow stabilization of the equipment at each temperature level.
- 5. Again the transmitter carrier frequency and the individual oscillators is measured at room temperature to begin measurement of the upper temperature levels.
- 6. Frequency measurements are at 10 intervals starting at -30°C up to +60°C allowing at least two hours at each temperature for stabilization. In all measurements the frequency is measured within three minutes after reapplying power to the transmitter.
- 7. The artificial load is mounted external to the temperature chamber.

NOTE: The EUT is tested down to the battery endpoint.

Measurement Data:

3.2.10 Necessary Bandwidth and Emission Bandwidth

Specification : 47 CFR 2.202 (g)

MODULATION = 15K1F3E

NECESSARY BANDWIDTH CALCULATION:

MAXIMUM MODULATION (M), kHz = 3MAXIMUM DEVIATION (D), kHz = 4.57CONSTANT FACTOR (K) = 1

NECESSARY BANDWIDTH (BN), kHz = (2 * M) + (2 * D * K)

= 15.14

MODULATION = 10K7F3E

NECESSARY BANDWIDTH CALCULATION:

MAXIMUM MODULATION (M), kHz = 3 MAXIMUM DEVIATION (D), kHz = 2.37CONSTANT FACTOR (K) = 1

NECESSARY BANDWIDTH (BN), kHz = (2 * M) + (2 * D * K)

= 10.74

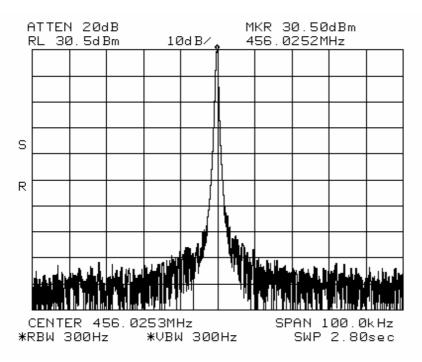
APPENDIX I

TEST EQUIPMENT USED FOR TESTS

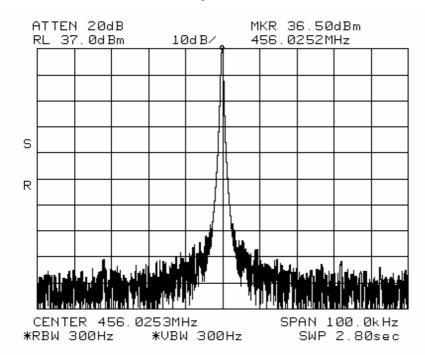
	Description	Model No.	Serial No.	Manufacturer	Next Cal. Date
1	Spectrum Analyzer	8594E	3649A03649	HP	Mar-07
2	Signal Generater	8657A	3430U02049	HP	Dec-07
3	Attenuator (3dB)	8491A	37822	HP	Nov-07
4	Attenuator (3dB)	8491A	28881	HP	Nov-07
5	EMI Test Receiver	ESVD	843748/001	R&S	Jan-08
6	LISN	KNW-407	8-1430-1	Kyoritsu	Jan-08
7	Two-Line V-Network	ESH3-Z5	893045/017	R&S	Jan-08
8	RF Amplifier	8447D	2949A02670	HP	Jan-08
9	RF Amplifier	8447D	2439A09058	HP	Jan-08
10	RF Amplifier	8449B	3008A02126	HP	Jun-07
11	Test Receiver	ESHS10	828404009	R&S	Jan-08
12	TRILOG Antenna	VULB 9160	9160-3172	SCHWARZBECK	Feb-08
13	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	Feb-08
14	Biconical Antenna	BBA 9106	VHA 9103-2315	SCHWARZBECK	Feb-08
15	Horn Antenna	3115	00055005	ETS LINDGREN	Jun-07
16	Horn Antenna	BBHA 9120D	0499	Schwarzbeck	Jun-07
17	Dipole Antenna	VHA9103	2116	Schwarzbeck	Nov-07
18	Dipole Antenna	VHA9103	2117	Schwarzbeck	Nov-07
19	Dipole Antenna	UHA9105	2261	Schwarzbeck	Nov-07
20	Dipole Antenna	UHA9105	2262	Schwarzbeck	Nov-07
21	Spectrum Analyzer	8591E	3649A05888	HP	Jan-08
22	Spectrum Analyzer	8563E	3425A02505	HP	Jan-08
23	Hygro-Thermograph	THB-36	0041557-01	ISUZU	Feb-08
24	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	Jun-07
25	RF Switch	MP59B	6200414971	ANRITSU	Jun-07
26	RF Switch	MP59B	6200438565	ANRITSU	Jun-07
27	Power Divider	11636A	6243	HP	Nov-07
28	DC Power Supply	6622A	3448A03079	HP	Oct-07
29	Attenuator (30dB)	11636A	6243	HP	Nov-07
30	Attenuator (10dB)	8491A	63196	НР	Nov-07

	Description	Model No.	Serial No.	Manufacturer	Next Cal. Date
31	Power Meter	EPM-441A	GB32481702	НР	Apr-07
32	Power Sensor	8481A	2702A64048	НР	Apr-07
33	Audio Analyzer	8903B	3729A18901	НР	Nov-07
34	Modulation Analyzer	8901B	3749A05878	НР	Nov-07
35	TEMP & HUMIDITY Chamber	YJ-500	L05022	JinYoung Tech	Oct-07
36	Signal Generater	8648C	3623A02597	НР	Mar-08
37	High Pass Filter	MP526D	M95163	ANRITSU	Oct-07
38	High Pass Filter	MP526B	M93662	ANRITSU	Oct-07
39	Oscillo Scope	TDS340A	B013937	Tektronics	Apr-07
40	Frequency Counter	5342A	2826A12411	H.P	Mar-08

APPENDIX II


TEST PLOTS

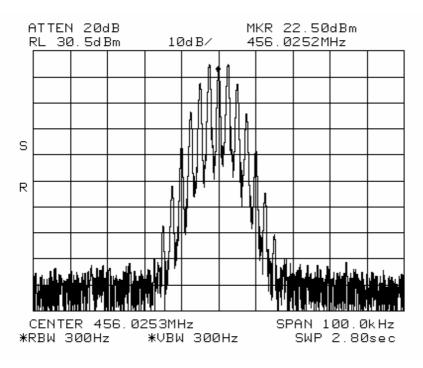
Emission Masks Measurement Data:


OPERATING FREQUENCY : 456.025 MHz

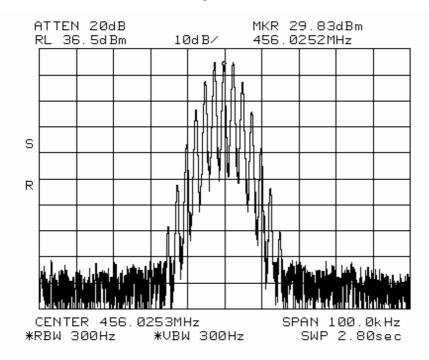
MODULATION : None

POWER : Low Power

POWER : High Power



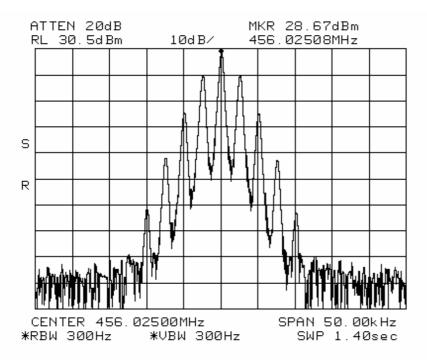
OPERATING FREQUENCY : 456.025 MHz


MODULATION : Voice: 2500 Hz, Sine Wave

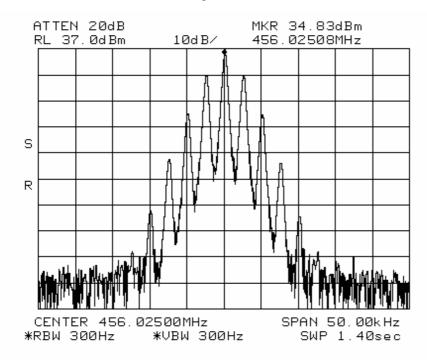
MASK: B, VHF/UHF 25 kHz, w/LPF

POWER : Low Power

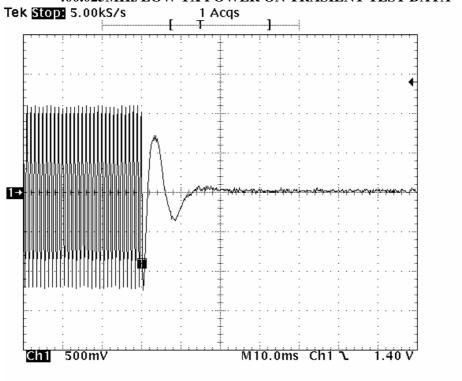
POWER : High Power

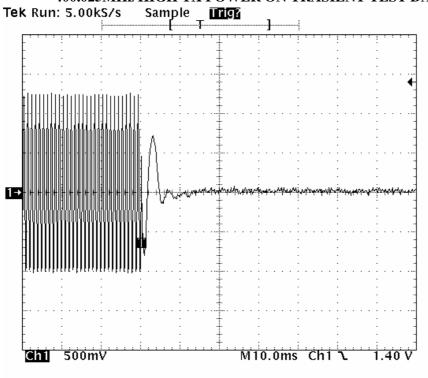


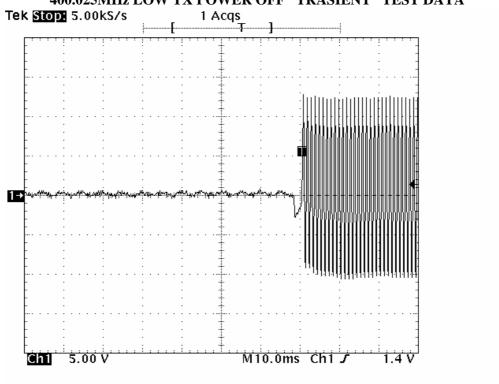
OPERATING FREQUENCY : 456.025 MHz

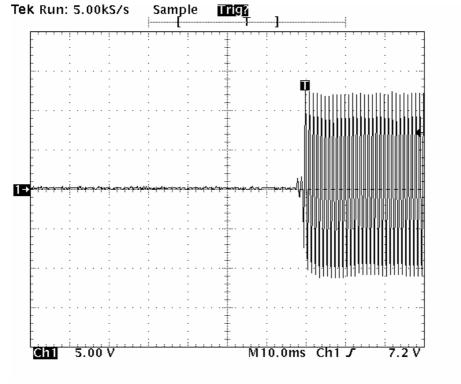

MODULATION : Voice: 2500 Hz, Sine Wave

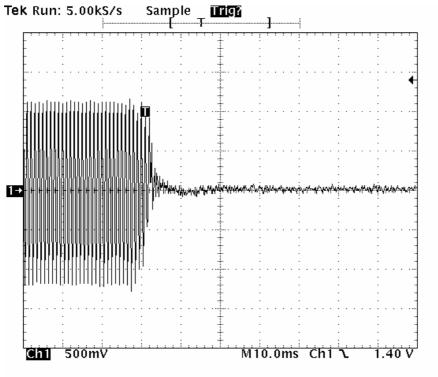
MASK: D, VHF/UHF 12.5 kHz BW

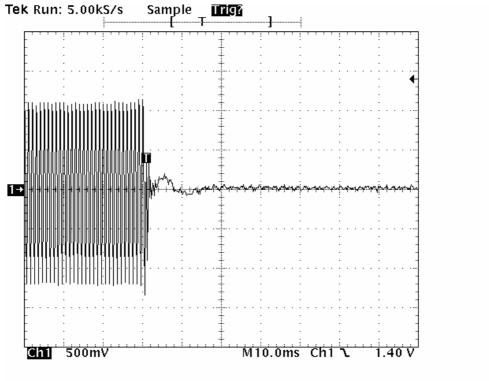

POWER : Low Power

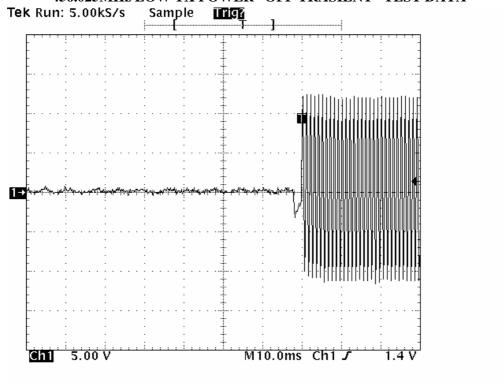

POWER : High Power


400.025MHz LOW TX POWER ON TRASIENT TEST DATA

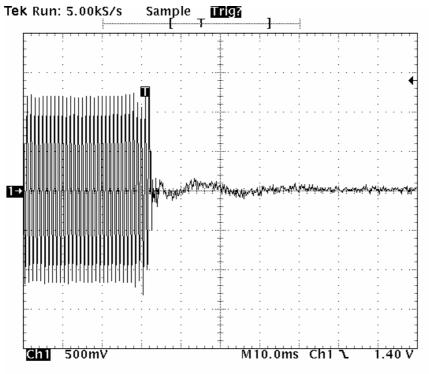

400.025MHz HIGH TX POWER ON TRASIENT TEST DATA

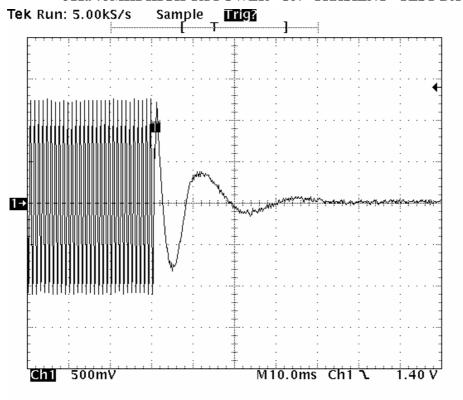

400.025MHz LOW TX POWER OFF TRASIENT TEST DATA

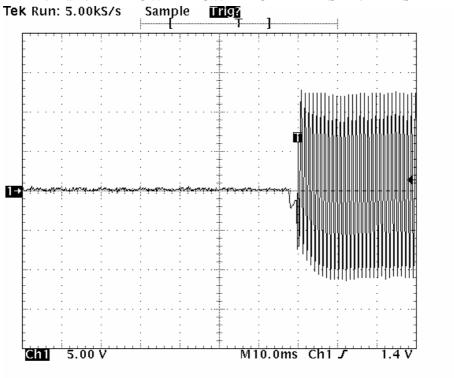

400.025MHz HIGH TX POWER OFF TRASIENT TEST DATA


456.025MHz LOW TX POWER ON TRASIENT TEST DATA


456.025MHz HIGH TX POWER ON TRASIENT TEST DATA


456.025MHz LOW TX POWER OFF TRASIENT TEST DATA

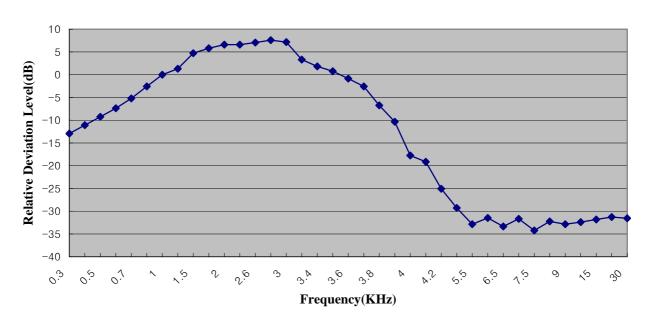

456.025MHz HIGH TX POWER OFF TRASIENT TEST DATA


511.975MHz LOW TX POWER ON TRASIENT TEST DATA

511.975MHz HIGH TX POWER ON TRASIENT TEST DATA

511.975MHz LOW TX POWER OFF TRASIENT TEST DATA

173.950MHz HIGH TX POWER OFF TRASIENT TEST DATA

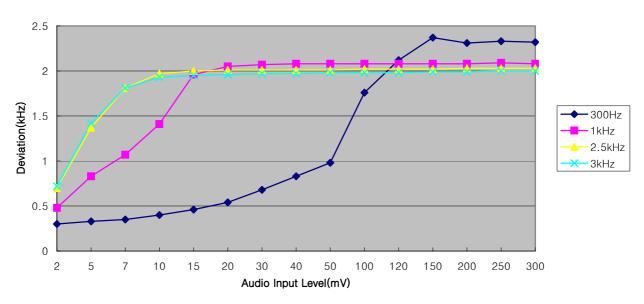

Audio Frequency Response Measurement Data:

OPERATING FREQUENCY : 456.025 MHz

REFERENCE LEVEL : 0dB @ 1kHz

Audio Frequency Response						
Freq., kHz	Level, dB	Freq., kHz	Level, dB	Freq., kHz	Level, dB	
0.3	-12.93	2.8	7.59	5.5	-32.86	
0.4	-11.08	3.0	7.16	6.0	-31.48	
0.5	-9.26	3.3	3.32	6.5	-33.35	
0.6	-7.37	3.4	1.82	7.0	-31.68	
0.7	-5.21	3.5	0.77	7.5	-34.23	
0.8	-2.57	3.6	-0.85	8.0	-32.25	
1.0	0	3.7	-2.57	9.0	-32.86	
1.2	1.31	3.8	-6.74	10.0	-32.40	
1.5	4.72	3.9	-10.35	15.0	-31.82	
1.7	5.82	4.0	-17.76	20.0	-31.28	
2.0	6.61	4.1	-19.15	30.0	-31.55	
2.3	6.61	4.2	-25.06			
2.6	7.07	4.8	-29.29			

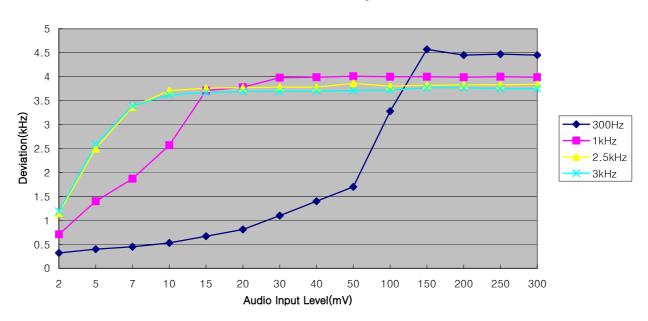
Audio Frequency Response



Modulation Limiting Measurement Data:

OPERATING FREQUENCY : 456.025 MHz
CHANNEL SPACING : 12.5 kHz

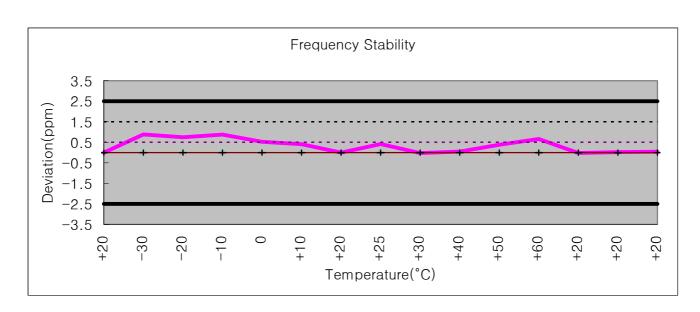
Input Level	FM Deviation in kHz at Indicated Modulating Frequency					
(mV)	300Hz	1KHz	2.5KHz	3KHz		
2	0.30	0.48	0.70	0.72		
5	0.33	0.83	1.37	1.42		
7	0.35	1.07	1.81	1.81		
10	0.40	1.41	1.97	1.93		
15	0.46	1.96	2.00	1.95		
20	0.54	2.05	2.01	1.96		
30	0.68	2.07	2.01	1.97		
40	0.83	2.08	2.01	1.97		
50	0.98	2.08	2.01	1.98		
100	1.76	2.08	2.02	1.98		
120	2.12	2.08	2.02	1.98		
150	2.37	2.08	2.02	1.99		
200	2.31	2.08	2.03	1.99		
250	2.33	2.09	2.03	2.00		
300	2.32	2.08	2.03	2.00		


Deviation Limiting

OPERATING FREQUENCY : 456.025 MHz
CHANNEL SPACING : 25.0 kHz

Input Level	FM Devia	FM Deviation in kHz at Indicated Modulating Frequency					
(mV)	300Hz	1KHz	2.5KHz	3KHz			
2	0.32	0.71	1.15	1.19			
5	0.40	1.40	2.50	2.59			
7	0.45	1.87	3.37	3.39			
10	0.53	2.57	3.71	3.62			
15	0.67	3.71	3.76	3.67			
20	0.81	3.78	3.77	3.69			
30	1.10	3.98	3.78	3.69			
40	1.40	3.99	3.78	3.70			
50	1.70	4.01	3.86	3.71			
100	3.28	4.00	3.80	3.72			
150	4.57	4.00	3.82	3.77			
200	4.45	3.99	3.83	3.77			
250	4.47	4.00	3.83	3.75			
300	4.45	3.99	3.84	3.75			

Deviation Limiting

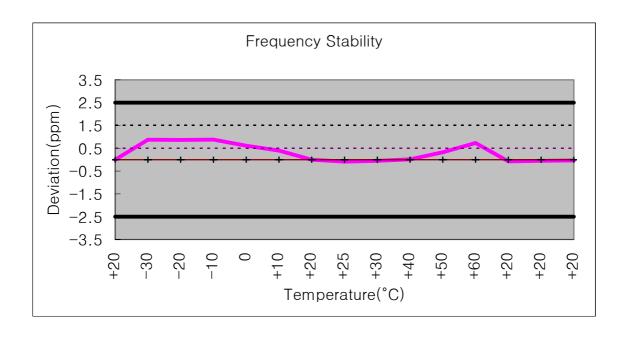

Frequency Stability Measurement Data:

OPERATING FREQUENCY : 456.025 MHz

REFERENCE VOLTAGE: 7.5 VDC CHANNEL SPACING: 12.5 kHz

DEVIATION LIMIT: ± 0.00025 % or 2.5ppm

VOLTAGE (%)	POWER (VDC)	TEMP (dB)	FREQ (Hz)	Deviation (%)
100%	7.5	+20(Ref)	456,025,012	0.000000
100%		-30	456,024,610	0.000088
100%		-20	456,024,671	0.000075
100%		-10	456,024,613	0.000087
100%		0	456,024,772	0.000053
100%		+10	456,024,827	0.000041
100%		+20	456,025,012	0.000000
100%		+25	456,024,822	0.000042
100%		+30	456,025,024	-0.000003
100%		+40	456,024,989	0.000005
100%		+50	456,024,839	0.000038
100%		+60	456,024,710	0.000066
85%	6.38	+20	456,025,021	-0.000002
115%	8.63	+20	456,025,003	0.000002
BATT.ENDPOINT	5.90	+20	456,024,993	0.000004



OPERATING FREQUENCY : 456.025 MHz

REFERENCE VOLTAGE: 7.5 VDC CHANNEL SPACING: 25.0 kHz

DEVIATION LIMIT: ± 0.00025 % or 2.5ppm

VOLTAGE (%)	POWER (VDC)	TEMP (dB)	FREQ (Hz)	Deviation (%)
100%	7.5	+20(Ref)	456,024,999	0.000000
100%		-30	456,024,600	0.000087
100%		-20	456,024,605	0.000086
100%		-10	456,024,598	0.000088
100%		0	456,024,719	0.000061
100%		+10	456,024,818	0.000040
100%		+20	456,024,999	0.000000
100%		+25	456,025,039	-0.000009
100%		+30	456,025,023	-0.000005
100%		+40	456,024,991	0.000002
100%		+50	456,024,851	0.000032
100%		+60	456,024,665	0.000073
85%	6.38	+20	456,025,034	-0.000008
115%	8.63	+20	456,025,023	-0.000005
BATT.ENDPOINT	5.90	+20	456,025,015	-0.000004

