

TABLE OF CONTENTS

APPLICANT: ARTCHIEF INDUSTRIES LTD.

FCC ID: NZT-1119

TEST REPORT CONTAINING:

PAGE 1.....TEST PROCEDURE
PAGE 2.....CIRCUIT DESCRIPTION & TEST PROCEDURE
PAGE 3.....RADIATION INTERFERENCE TEST DATA
PAGE 4.....CALCULATION OF DUTY CYCLE
PAGE 5.....OCCUPIED BANDWIDTH

EXHIBIT ATTACHMENTS:

EXHIBIT 1.....POWER OF ATTORNEY LETTER
EXHIBIT 2.....BLOCK DIAGRAM
EXHIBIT 3.....SCHEMATIC
EXHIBIT 4A-4B.....INSTRUCTION MANUAL
EXHIBIT 5.....LABEL SAMPLE AND SKETCH OF LOCATION
EXHIBIT 6.....DUTY CYCLE PLOT
EXHIBIT 7.....DUTY CYCLE PLOT
EXHIBIT 8.....DUTY CYCLE PLOT
EXHIBIT 9.....OCCUPIED BANDWIDTH PLOT
EXHIBIT 10.....FRONT VIEW EXTERNAL PHOTO
EXHIBIT 11.....REAR VIEW EXTERNAL PHOTO
EXHIBIT 12.....COMPONENT SIDE INTERNAL PHOTO
EXHIBIT 13.....COPPER SIDE INTERNAL PHOTO

APPLICANT: ARTCHIEF INDUSTRIES LTD.

FCC ID: NZT-1119

REPORT #: T:\CUS\A\ARTCHIEF\AIL440U9\AIL440U9.RPT

PAGE: TABLE OF CONTENTS LIST

APPLICANT: ARTCHIEF INDUSTRIES LTD.
FCC ID: NZT-1119

TEST EQUIPMENT LIST

1. Spectrum Analyzer: Hewlett Packard 8566B - Opt 462, w/ preselector 85685A, & Quasi-Peak Adapter HP 85650A, & HP 8449B - OPT H02 Cal. 10/17/99
2. Signal Generator, Hewlett Packard 8640B, cal. 9/23/99
3. Signal Generator, HP 8614A Serial No.2015A07428 cal. 5/27/99
3. Eaton Biconical Antenna Model 94455-1
20-200 MHz Serial No. 0997 Cal. 9/30/99
4. Electro-Metric Log-Periodic Model No. EM-6950 Ser#632 9/18/99
5. Electro-Metric Dipole Kit, 20-1000 MHz, Model TDA-30 10/31/98
6. Electro-Metric Horn 1-18 GHz, Model RGA-180, Cal. 4/27/99
7. Systron Donner Horn 18-26.3GHz Model DBE-520-20 7/14/99
8. Systron Donner Horn 26.5-40.2GHz Model DBD-520-20 7/14/99
9. ATM HOrn 40-60GHz Part #19-443-6R 9/15/99
10. Electro-Metric Antennas Model TDA-30/1-4,Cal. 10/15/98
11. Electro-Metric Line Impedance Stabilization Network Model No. EM-7821, Serial No. 101; 100KHz-30MHz 50uH. Cal.11/19/98
12. Electro-Metric Line Impedance Stabilization Network Model No. EM-7820, Serial No. 2682; 10KHz-30MHz 50uH. Cal. 11/19/98
13. Special low loss cable was used above 1 GHz
14. Tenney Temperature Chamber
15. AC Voltmeter, HP 400FL, Serial No 2213A14499. Cal. 9/21/99
16. Digital Multimeter, Fluke 8010A/12A, Serial No. 4810047. Cal 9/21/99
17. Digital Multimeter, Fluke 77, Serial No. 43850817. Cal 9/21/99
18. Oscilloscope, Tektronix 2230, Serial No. 300572. Cal 9/23/99
19. Frequency Counter, HP 5385A, Serial No. 3242A07460. Cal 10/6/99

TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-1992 using a HEWLETT PACKARD spectrum analyzer with a preselector. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz. The ambient temperature of the UUT was 78.3oF with a humidity of 40%.

APPLICANT: ARTCHIEF INDUSTRIES LTD.
FCC ID: NZT-1119
REPORT #: T:\CUS\A\ARTCHIEF\AIL440U9\AIL440U9.RPT
PAGE #: 1

TEST PROCEDURES CONTD.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS
33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI STANDARD C63.4-1992 10.1.7 MEASUREMENT PROCEDURES: The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The UUT was placed in the center of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to 10th harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes and the highest readings were converted to average readings based on the duration of "ON" time.

Measurements were made by TIMCO ENGINEERING INC. at the registered open field test site located at 6051 N.W. 19th Lane, Gainesville, Fl 32605.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

RULES:2.1033(b)(4) CIRCUIT DESCRIPTION

This unit is a low power security device transmitter. The oscillator is a SAW oscillator formed by the transistor T3 and the SAW filter Q2 tuned circuit made up of antenna L4, C5, C9, & C182. The inductor is printed on the PCB. The digital code is provided by the integrated circuit IC1. The unit is completely self contained and is powered by a 12Volt batteries. The calculations are shown in the report and the duty cycle was 47.3%.

ANTENNA & GROUND:

This unit uses the PCB inductor as the antenna. There is no provision for an external antenna.

APPLICANT: ARTCHIEF INDUSTRIES LTD.

FCC ID: NZT-1119

REPORT #: T:\CUS\A\ARTCHIEF\AIL440U9\AIL440U9.RPT

PAGE #: 2

APPLICANT: ARTCHIEF INDUSTRIES LTD.

FCC ID: NZT-1119

NAME OF TEST: RADIATION INTERFERENCE

RULES PART NO.: 15.231

REQUIREMENTS:

Fundamental Frequency MHz	Field Strength of Fundamental dBuV	Field Strength of Harmonics and Spurious Emissions (dBuV/m @ 3m)
40.66 to 40.70	67.04	47.04
70 to 130	61.94	41.94
130 to 174	61.94 to 71.48	41.94 to 51.48
174 to 260	71.48	51.48
260 to 470	71.48 to 81.94	51.48 to 61.94
470 and above	81.94	61.94

THE LIMIT FOR AVERAGE FIELD STRENGTH dBuV/m FOR THE FUNDAMENTAL FREQUENCY= 75.55 dBuV/m. NO FUNDAMENTAL IS ALLOWED IN THE RESTRICTED BANDS.

THE LIMIT FOR AVERAGE FIELD STRENGTH dBuV/m FOR THE HARMONICS AND SPURIOUS FREQUENCIES = 55.55 dBuV/m. SPURIOUS IN THE RESTRICTED BANDS MUST BE LESS THAN 54dBuV/m OR 15.209.

TEST DATA:

EMISSION FREQ. MHz	METER READING @ 3m dBuV	COAX LOSS dB	PEAK FIELD STRNGTH dBuV/m	AVERAGE FIELD STRNGTH dBuV/m	MARGIN dB	ANT.
313.80	59.30	1.40	15.20	75.90	69.40	V
628.30	29.00	1.60	20.72	51.32	44.82	V
942.40	18.50	2.90	24.24	45.64	39.14	V
1256.50	19.20	1.00	25.03	45.23	38.72	V
1569.00R	11.10	1.00	26.28	38.38	31.87	V

SAMPLE CALCULATION OF LIMIT @ 303 MHz:

$$(470 - 260)\text{MHz} = 210 \text{ MHz}$$

$$(12500 - 3750)\text{uV/m} = 8750 \text{ uV/m}$$

$$8750\text{uV/m}/210\text{MHz} = 41.67 \text{ uV/m/MHz}$$

$$(303-260)\text{MHz} = 43 \text{ MHz}$$

$$43 \text{ MHz} * 41.67 \text{ uV/m/MHz} = 1791.81 \text{ uV/m}$$

$$(1791.81 + 3750)\text{uV/m} = 5541.81 \text{ uV/m limit @ 303 MHz}$$

The transmitter ceases transmitting when the button is released.

TEST RESULTS: The unit DOES meet the FCC requirements.

PERFORMED BY: _____ DATE TESTED: NOVEMBER 1, 1999

REPORT #: T:\CUS\A\ARTCHIEF\AIL440U9\AIL440U9.RPT

PAGE #: 3

APPLICANT: ARTCHIEF INDUSTRIES LTD.

FCC ID: NZT-1119

CALCULATION OF DUTY CYCLE:

The period of the pulse train is determined by observing it on an oscilloscope or a spectrum analyzer with zero(0) frequency span. A plot is then made of the pulse train with a sweep time of 100milliseconds. This sweep determines the duration of the pulse train, which in this case is milliseconds. This sweep allows the determination of the number of and type of pulses, i.e. long & short. Plots are then made showing the duration of each type of pulse and its duration. From the 100millisecond Plot the number of a given type of pulse is then multiplied by the duration of that type pulse. This allows the calculation of the amount of time the UUT is on within 100milliseconds. If the pulse train is longer than 100milliseconds then this number is multiplied by 100 to determine the percentage ON TIME. If the pulse train is less than 100milliseconds the total on-time is divided by the length of the pulse train and then multiplied by 100 to determine the percentage ON TIME. In this case there were 27 pulses 2.15milliseconds long and 22pulses 2.3milliseconds long for a total of 100milliseconds on time within either the 100milliseconds or the pulse train. The average field strength is determined by multiplying the peak field strength by the percent on time. In this case the percentage ON time was 47.3%percent.

APPLICANT: ARTCHIEF INDUSTRIES LTD.

FCC ID: NZT-1119

REPORT #: T:\CUS\A\ARTCHIEF\AIL440U9\AIL440U9.RPT

PAGE #: 4

APPLICANT: ARTCHIEF INDUSTRIES LTD.

FCC ID: NZT-1119

NAME OF TEST: Occupied Bandwidth

RULES PART NO.: 15.231(C)

REQUIREMENTS: The bandwidth of the emission shall be no wider than .25% of the center frequency for devices operating between 70 and 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

$$313.80 \text{ MHz} * .0025 = .7845 \text{ MHz}$$
$$.7845 \text{ MHz}/2 = +/- 392.25$$

THE GRAPH IN EXHIBIT 11 REPRESENTS THE EMISSIONS TAKEN FOR THE DEVICE.

METHOD OF MEASUREMENT: A small sample of the transmitter output was fed into the spectrum analyzer and the above photo was taken. The vertical scale is set to 10 dB per division: the horizontal scale is set to 100 kHz per division.

TEST RESULTS: The unit meets the FCC requirements.

PERFORMED BY: DATE: NOVEMBER 1, 1999

APPLICANT: ARTCHIEF INDUSTRIES LTD.
FCC ID: NZT-1119
REPORT #: T:\CUS\A\ARTCHIEF\AIL440U9\AIL440U9.RPT
PAGE #: 5