

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

# **FCC/ISED Test Report**

Prepared for: Gentex Corporation

Address: 380 Riley Street

Zeeland, MI 49464

Product: EG-01-AC-00

Test Report No: R20220506-20-E1 Rev: C

Approved by:

Fox Lane

**EMC Test Engineer** 

DATE: May 15, 2024

Total Pages: 31

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above-named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.





Prepared for: Gentex Corporation

## **REVISION PAGE**

| Rev. No. | Date                             | Description                                               |  |  |
|----------|----------------------------------|-----------------------------------------------------------|--|--|
|          |                                  | Issued by FLane                                           |  |  |
| 0        | 8 April 2024 Reviewed by KVepuri |                                                           |  |  |
|          |                                  | Prepared by Flane/ESchmidt                                |  |  |
| Α        | 8 April 2024                     | Updated Model Number                                      |  |  |
| С        | 15 May 2024                      | Added power values and statements to EUT Description – FL |  |  |

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 2 of 31



Report Number:

Prepared for:

R20220506-20-E1

**Gentex Corporation** 

Rev

С

## CONTENTS

| Rev | ision Pa | ge                                                     | 2  |
|-----|----------|--------------------------------------------------------|----|
| 1.0 | Sun      | nmary of test results                                  | 2  |
| 2.0 |          | Description                                            |    |
| 2.0 |          |                                                        |    |
|     | 2.1      | Equipment under test                                   | 5  |
|     | 2.2      | Description of test modes                              | 5  |
|     | 2.3      | Description of support units                           | 5  |
| 3.0 | Lab      | oratory and General Test Description                   | е  |
|     | 3.1      | Laboratory description                                 | е  |
|     | 3.2      | Test personnel                                         | 6  |
|     | 3.3      | Test equipment                                         | 7  |
|     | 3.4      | General Test Procedure and Setup for Radio Measuremnts | 8  |
| 4.0 | Res      | ults                                                   | 9  |
|     | 4.1      | Radiated emissions                                     | 10 |
|     | 4.2      | Output Power                                           | 14 |
|     | 4.3      | Band edges                                             | 25 |
| Арр | endix A  | x: Sample Calculation                                  | 27 |
| Арр | endix E  | B – Measurement Uncertainty                            | 29 |
| Арр | endix C  | C – Graphs and Tables                                  | 30 |
| DEC | ODT EI   | NID.                                                   | 21 |



Report Number: R20220506-20-E1 Rev C

Prepared for: Gentex Corporation

## 1.0 SUMMARY OF TEST RESULTS

The purpose of this report is to verify compliance due to changes in device. The worst case spurious was investigated and found to be compliant.

The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section:

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-247, Issue 3

| APPLIED STANDARDS AND REGULATIONS                                                                                   |                                |      |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------|------|--|--|--|--|
| Standard Section Test Type Result                                                                                   |                                |      |  |  |  |  |
| FCC Part 15.35<br>RSS Gen, Issue 5, Section 6.10                                                                    | Duty Cycle                     | NA*  |  |  |  |  |
| FCC Part 15.209<br>RSS-Gen Issue 5, Section 7.3                                                                     | Receiver Radiated Emissions    | Pass |  |  |  |  |
| FCC Part 15.209 (restricted bands), 15.247 (unrestricted) RSS-247 Issue 3 Section 5.5, RSS-Gen Issue 5, Section 8.9 | Transmitter Radiated Emissions | Pass |  |  |  |  |
| FCC Part 15.209, 15.247(d)<br>RSS-247 Issue 3 Section 5.5                                                           | Band Edge Measurement          | Pass |  |  |  |  |

<sup>\*</sup>No limit



| Report Number: | Report Number: R20220506-20-E1 |  |  |
|----------------|--------------------------------|--|--|
| Prepared for:  | Gentex Corporation             |  |  |

## 2.0 EUT DESCRIPTION

#### 2.1 EQUIPMENT UNDER TEST

#### **Summary and Operating Condition:**

Purpose of this report was to ensure compliance of the following pre-approved module;

FCCID: VPYLB1DX

Transmitter power was lowered from grant to ensure compliance with Exposure requirements, power data can be found in section 4.2.

| EUT                               | EG-01-AC-00                                                        |
|-----------------------------------|--------------------------------------------------------------------|
| FCC ID (Pre-<br>Certified Module) | VPYLB1DX                                                           |
| EUT Received                      | 24 October 2023                                                    |
| EUT Tested                        | 24 October 2023 - 11 December 2023                                 |
| Serial No.                        | 129595-2 (Radiated Measurements) 129593-1 (Conducted Measurements) |
| Operating Band                    | 2400 – 2483.5 MHz                                                  |
| Device Type                       | ☑ GMSK ☐ GFSK ☐ BT BR ☐ BT EDR 2MB ☐ BT EDR 3MB ☑ 802.11x          |
| Power Supply /<br>Voltage         | 5VDC USB<br>Intertek AC Adapter<br>Model: SPF20-TC                 |

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

#### 2.2 DESCRIPTION OF TEST MODES

The unit was set to recording mode and transmitter was activated for duration of testing.

#### 2.3 DESCRIPTION OF SUPPORT UNITS

None

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 5 of 31



| Report Number: | R20220506-20-E1 | Rev | С |
|----------------|-----------------|-----|---|
|                |                 |     |   |

Prepared for: Gentex Corporation

#### 3.0 LABORATORY AND GENERAL TEST DESCRIPTION

#### 3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number: 1953.01
FCC Accredited Test Site Designation No: US1060
Industry Canada Test Site Registration No: 4294A-1
NCC CAB Identification No: US0177

Environmental conditions varied slightly throughout the tests:

Relative humidity of  $35 \pm 4\%$ Temperature of  $22 \pm 3^{\circ}$  Celsius



#### 3.2 TEST PERSONNEL

| No. | PERSONNEL      | TITLE           | ROLE                        |
|-----|----------------|-----------------|-----------------------------|
| 1   | Fox Lane       | Test Engineer   | Testing, Review, and Report |
| 2   | Blake Winter   | Test Engineer   | Testing                     |
| 3   | Ethan Schmidt  | Test Technician | Testing and Report          |
| 4   | Karthik Vepuri | Test Engineer   | Review/Testing              |

#### Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 6 of 31



Report Number: R20220506-20-E1 Rev C

Prepared for: Gentex Corporation

## 3.3 TEST EQUIPMENT

| DESCRIPTION AND MANUFACTURER                             | MODEL NO.                             | SERIAL NO.                 | LAST CALIBRATION DATE | CALIBRATION<br>DUE DATE |
|----------------------------------------------------------|---------------------------------------|----------------------------|-----------------------|-------------------------|
| Keysight MXE Signal Analyzer (44GHz)                     | N9038A                                | MY59050109                 | July 17, 2023         | July 17, 2025           |
| Keysight MXE Signal Analyzer (26.5GHz)                   | N9038A                                | MY56400083                 | July 17, 2023         | July 17, 2025           |
| Keysight EXA Signal Analyzer                             | N9010A                                | MY56070862                 | July 18, 2023         | July 17, 2025           |
| SunAR RF Motion                                          | JB1                                   | A091418                    | July 27, 2023         | July 26, 2024           |
| ETS-Lindgren Red Horn Antenna                            | 3115                                  | 218576                     | July 31, 2023         | July 30, 2024           |
| EMCO Horn Antenna                                        | 3116                                  | 2576                       | July 31, 2023         | July 30, 2024           |
| Com-Power LISN, Single Phase                             | LI-220C                               | 20070017                   | July 17, 2023         | July 17, 2025           |
| Agilent Preamp*                                          | 87405A                                | 3950M00669                 | June 5, 2023          | June 5, 2025            |
| Rohde & Schwarz Preamplifier*                            | TS-PR18                               | 3545700803                 | June 5, 2023          | June 5, 2025            |
| Trilithic High Pass Filter*                              | 6HC330                                | 23042                      | June 5, 2023          | June 5, 2025            |
| RF Cable (antenna to 10m chamber bulkhead)               | FSCM 64639                            | 01E3872                    | June 5, 2023          | June 5, 2025            |
| RF Cable (10m chamber bulkhead to control room bulkhead) | FSCM 64639                            | 01E3874                    | June 5, 2023          | June 5, 2025            |
| RF Cable (control room bulkhead to test receiver)        | FSCM 64639                            | 01F1206                    | June 5, 2023          | June 5, 2025            |
| N connector bulkhead (10m chamber)                       | PE9128                                | NCEEBH1                    | June 5, 2023          | June 5, 2025            |
| N connector bulkhead (control room)                      | PE9128                                | NCEEBH2                    | June 5, 2023          | June 5, 2025            |
| TDK Emissions Lab Software                               | V11.25                                | 700307                     | NA                    | NA                      |
| ETS – Lindgren- VSWR on 10m<br>Chamber                   | 10m Semi-<br>anechoic<br>chamber-VSWR | 4740<br>Discovery<br>Drive | July 30, 2020         | July 30, 2024           |
| NCEE Labs-NSA on 10m<br>Chamber                          | 10m Semi-<br>anechoic<br>chamber-NSA  | NCEE-001                   | May 25, 2022          | May 25, 2025            |


<sup>\*</sup>Internal Characterization

#### Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 7 of 31



#### 3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS

Measurement type presented in this report (Please see the checked box below):

#### Conducted

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. Information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.



Figure 1 - Bandwidth Measurements Test Setup

## Radiated ⊠

All the radiated measurements were taken at a distance of 3m from the EUT. Information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

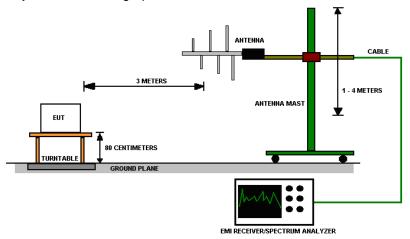



Figure 2 - Radiated Emissions Test Setup

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 8 of 31



Report Number: R20220506-20-E1 Rev C

Prepared for: Gentex Corporation

## 4.0 RESULTS

|                                                                                                                  | Restricted Band-Edge, WIFI B Low Data Rate                |         |        |      |       |        |      |  |  |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------|--------|------|-------|--------|------|--|--|
| CHANNEL Mode Band edge /Measurement / Measurement / Measurement / Measurement / Measurement / Measurement / Type |                                                           |         |        |      |       |        |      |  |  |
| High                                                                                                             | 802.11 b                                                  | 2483.50 | 51.193 | Peak | 73.98 | 22.787 | PASS |  |  |
| High                                                                                                             | High 802.11 b 2483.50 40.125 Average 53.98 13.855 PASS    |         |        |      |       |        |      |  |  |
| *Limit shown                                                                                                     | *Limit shown is the peak limit taken from FCC Part 15.209 |         |        |      |       |        |      |  |  |

The worst-case spurious emissions were investigated and found to be compliant.

| DTS Radio Measurements    |         |                                           |                     |                            |                                 |        |  |
|---------------------------|---------|-------------------------------------------|---------------------|----------------------------|---------------------------------|--------|--|
| Modulation /<br>Data Rate | CHANNEL | Raw<br>Conducted<br>Output<br>Power (dBm) | DCCF (for<br>Power) | EIRP OUTPUT<br>POWER (dBm) | AVERAGE<br>OUTPUT<br>POWER (mW) | RESULT |  |
| 802.11b 1MB               | Low     | 13.01                                     | 0                   | 13.010                     | 20.00                           | PASS   |  |
| 802.11b 1MB               | Mid     | 12.98                                     | 0                   | 12.980                     | 19.86                           | PASS   |  |
| 802.11b 1MB               | High    | 12.93                                     | 0                   | 12.930                     | 19.63                           | PASS   |  |
| 802.11b 11MB              | Low     | 13.05                                     | 0                   | 13.050                     | 20.18                           | PASS   |  |
| 802.11b 11MB              | Mid     | 12.91                                     | 0                   | 12.910                     | 19.54                           | PASS   |  |
| 802.11b 11MB              | High    | 12.92                                     | 0                   | 12.920                     | 19.59                           | PASS   |  |
| 802.11g 6MB               | Low     | 12.99                                     | 0.106               | 13.096                     | 20.40                           | PASS   |  |
| 802.11g 6MB               | Mid     | 13.01                                     | 0.106               | 13.116                     | 20.49                           | PASS   |  |
| 802.11g 6MB               | High    | 12.79                                     | 0.106               | 12.896                     | 19.48                           | PASS   |  |
| 802.11g 54MB              | Low     | 12.97                                     | 0.106               | 13.076                     | 20.30                           | PASS   |  |
| 802.11g 54MB              | Mid     | 12.73                                     | 0.106               | 12.836                     | 19.21                           | PASS   |  |
| 802.11g 54MB              | High    | 12.85                                     | 0.106               | 12.956                     | 19.75                           | PASS   |  |
| 802.11n MCS0              | Low     | 12.86                                     | 0.114               | 12.974                     | 19.83                           | PASS   |  |
| 802.11n MCS0              | Mid     | 12.83                                     | 0.114               | 12.944                     | 19.70                           | PASS   |  |
| 802.11n MCS0              | High    | 12.74                                     | 0.114               | 12.854                     | 19.29                           | PASS   |  |
| 802.11n MCS7              | Low     | 12.88                                     | 0.114               | 12.994                     | 19.93                           | PASS   |  |
| 802.11n MCS7              | Mid     | 12.79                                     | 0.114               | 12.904                     | 19.52                           | PASS   |  |
| 802.11n MCS7              | High    | 12.71                                     | 0.114               | 12.824                     | 19.16                           | PASS   |  |



Prepared for:

**Gentex Corporation** 

#### 4.1 RADIATED EMISSIONS

#### Test Method:

ANSI C63.10-2013, Section 6.5, 6.6

#### Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

| FREQUENCIES<br>(MHz) | FIELD<br>STRENGTH<br>(µV/m) | MEASUREMENT<br>DISTANCE (m) |
|----------------------|-----------------------------|-----------------------------|
| 0.009-0.490          | 2400/F(kHz)                 | 300                         |
| 0.490-1.705          | 24000/F(kHz)                | 30                          |
| 1.705-30.0           | 30                          | 3                           |
| 30-88                | 100                         | 3                           |
| 88-216               | 150                         | 3                           |
| 216-960              | 200                         | 3                           |
| Above 960            | 500                         | 3                           |

#### NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 \* log \* Emission level ( $\mu$ V/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

Page 10 of 31



Report Number: R20220506-20-E1 Rev C

Prepared for: Gentex Corporation

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.
- d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.
- e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise, the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.



 Report Number:
 R20220506-20-E1
 Rev
 C

 Prepared for:
 Gentex Corporation

Test setup:

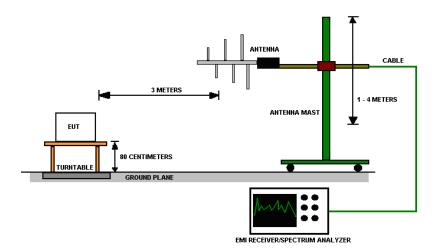



Figure 3 - Radiated Emissions Test Setup

#### NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.
- 2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

#### **Deviations from test standard:**

No deviation.

## **EUT operating conditions**

Details can be found in section 2.1 of this report.

Page 12 of 31



Prepared for: Gentex Corporation

#### Test results:

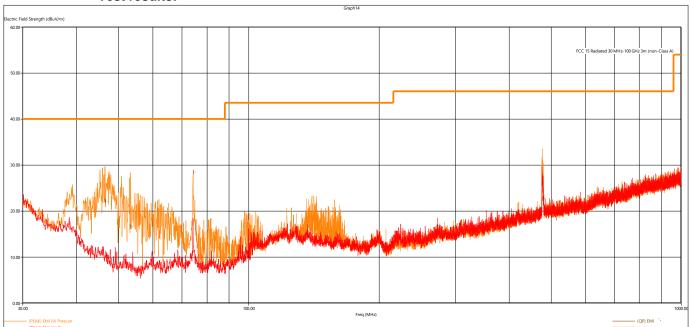



Figure 4 - Radiated Emissions Plot

#### **REMARKS**:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

| Quasi-Peak Measurements, 802.11x                                 |        |        |       |        |        |   |     |            |
|------------------------------------------------------------------|--------|--------|-------|--------|--------|---|-----|------------|
| Frequency Level Limit Margin Height Angle Pol Channel Modulation |        |        |       |        |        |   |     | Modulation |
| MHz                                                              | dBμV/m | dBµV/m | dB    | cm.    | deg.   |   |     |            |
| 46.492560                                                        | 22.01  | 40.00  | 17.99 | 113.04 | 43.50  | V | Mid | WIFI B 1MB |
| 53.155680                                                        | 16.48  | 40.00  | 23.52 | 120.86 | 144.75 | V | Mid | WIFI B 1MB |
| 74.249520                                                        | 28.35  | 40.00  | 11.65 | 175.25 | 165.50 | V | Mid | WIFI B 1MB |
| 478.260480                                                       | 22.61  | 46.02  | 23.41 | 290.53 | 170.50 | V | Mid | WIFI B 1MB |

The EUT was maximized on all 3 orthogonal axes. The worst-case is shown in the plot and table above. All other measurements were found to be at least 6 dB below the limit. Worst case emissions are reported.



R20220506-20-E1 Report Number: Rev C

Prepared for:

**Gentex Corporation** 

#### **OUTPUT POWER** 4.2

Test Method: Power measurements were performed using ANSI C63.10, Section 11.9.2.2.2.

### Limits of power measurements:

#### For FCC Part 15.247 Device:

The maximum allowed output power is 30 dBm.

## Test procedures:

Details can be found in section 3.4 of this report.

#### **Deviations from test standard:**

No deviation.

#### Test setup:

Details can be found in section 3.4 of this report.

## **EUT operating conditions:**

Details can be found in section 2.1 of this report.

#### Test results:

## **Pass**

Comments:

- 1. All the output power plots can be found below.
- 2. All the measurements were found to be compliant.
- 3. The measurements are listed in the tables in section 4.0.

Page 14 of 31



Prepared for: Gentex Corporation

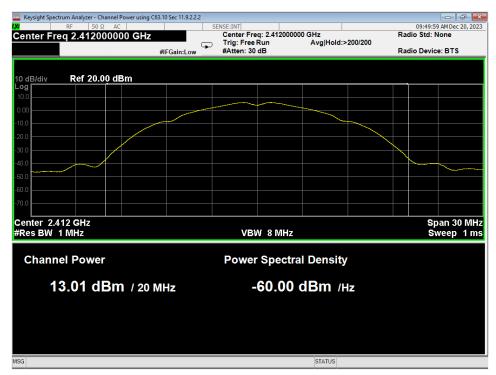



Figure 5 - Conducted Average Power, Wifi B 1MB, Low



Figure 6 - Conducted Average Power, Wifi B 1MB, Mid

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 15 of 31



Prepared for: Gentex Corporation

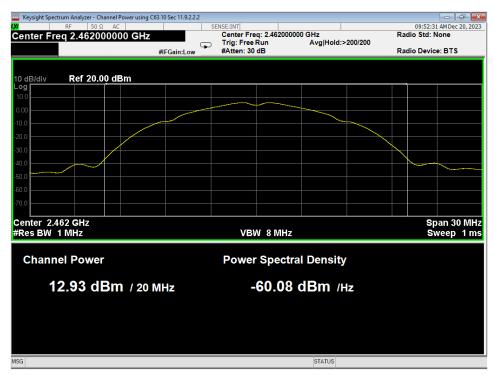



Figure 7 - Conducted Average Power, Wifi B 1MB, High

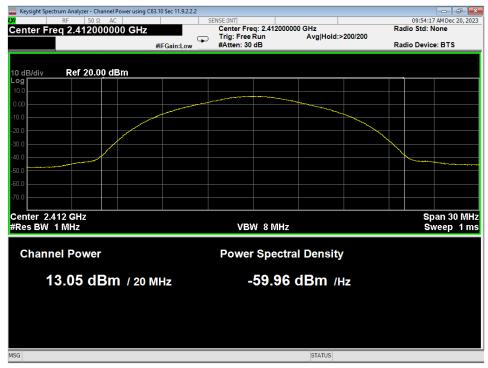



Figure 8 - Conducted Average Power, Wifi B 11MB, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 16 of 31



Prepared for: Gentex Corporation

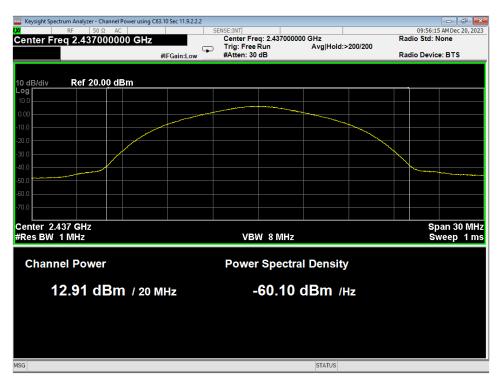



Figure 9 - Conducted Average Power, Wifi B 11MB, Mid

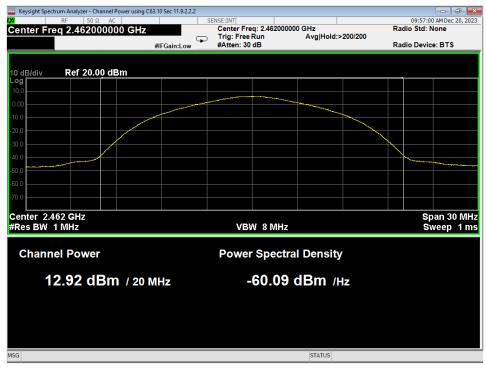



Figure 10 - Conducted Average Power, Wifi B 11MB, High

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 17 of 31



Prepared for: Gentex Corporation

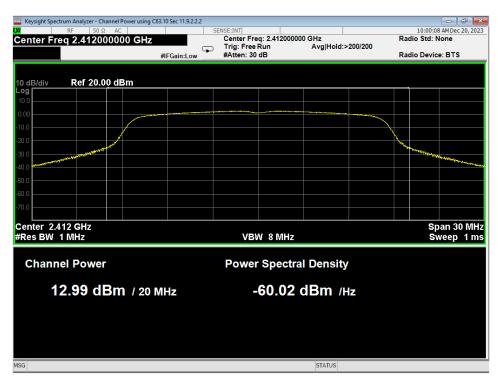



Figure 11 - Conducted Average Power, Wifi G 6MB, Low

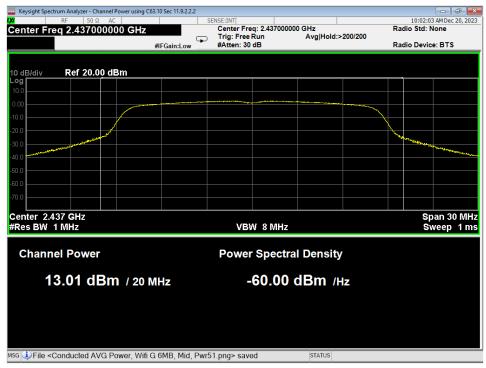



Figure 12 - Conducted Average Power, Wifi G 6MB, Mid

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 18 of 31



Prepared for: Gentex Corporation

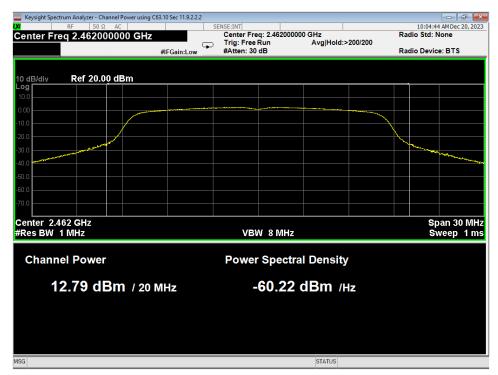



Figure 13 - Conducted Average Power, Wifi G 6MB, High

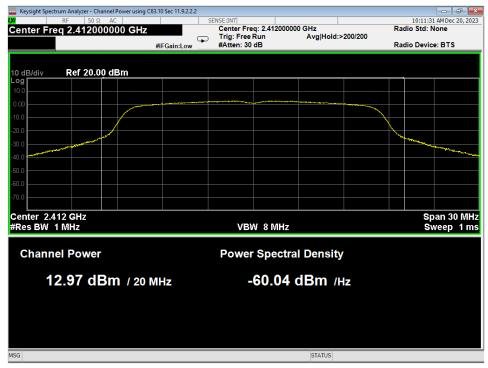



Figure 14 - Conducted Average Power, Wifi G 54MB, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 19 of 31



Prepared for: Gentex Corporation

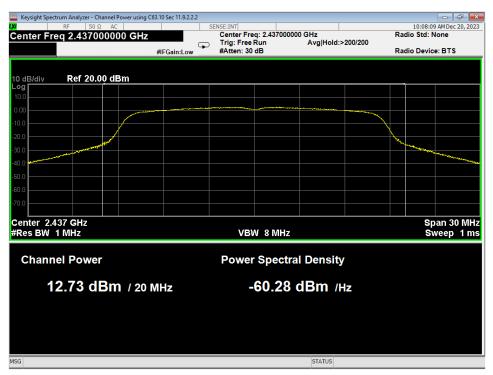



Figure 15 - Conducted Average Power, Wifi G 54MB, Mid

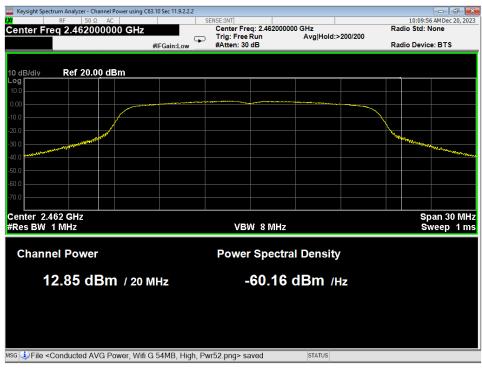



Figure 16 - Conducted Average Power, Wifi G 54MB, High

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 20 of 31



Prepared for: Gentex Corporation

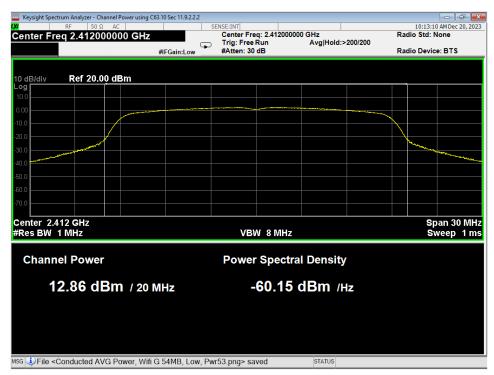



Figure 17 - Conducted Average Power, Wifi N MCS0, Low

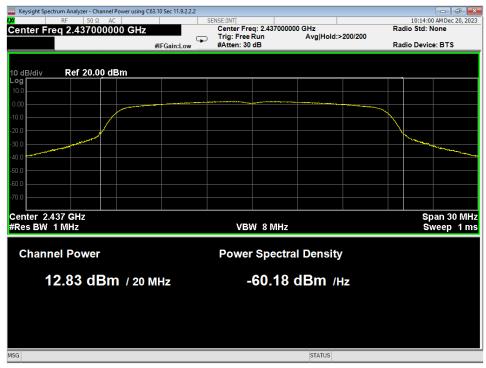



Figure 18 - Conducted Average Power, Wifi N MCS0, Mid

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 21 of 31



Prepared for: Gentex Corporation

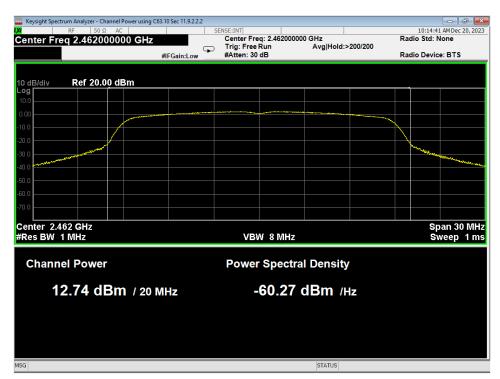



Figure 19 - Conducted Average Power, Wifi N MCS0, High

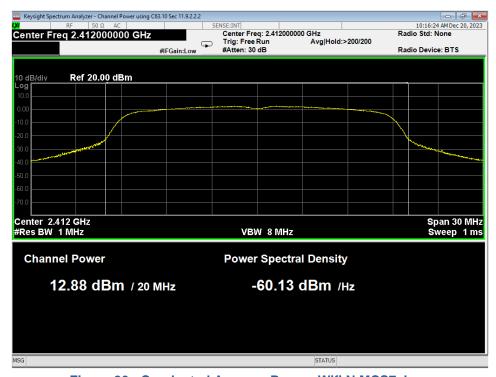



Figure 20 - Conducted Average Power, Wifi N MCS7, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 22 of 31



Prepared for: Gentex Corporation

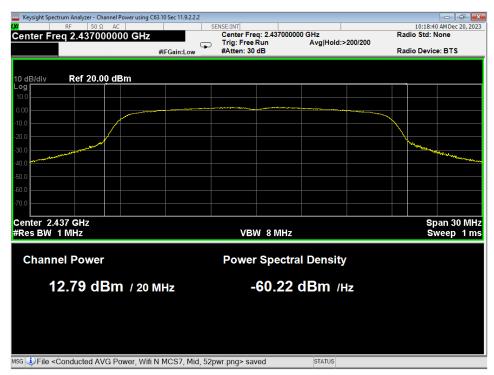



Figure 21 - Conducted Average Power, Wifi N MCS7, Mid

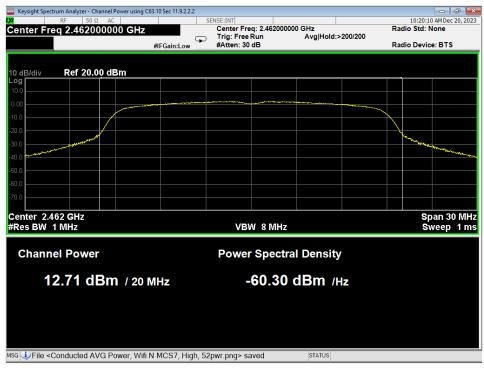



Figure 22 - Conducted Average Power, Wifi N MCS7, High

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 23 of 31



 Report Number:
 R20220506-20-E1
 Rev
 C

 Prepared for:
 Gentex Corporation

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 24 of 31



Prepared for: Gentex Corporation

#### 4.3 BAND EDGES

#### Test Method:

All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

#### Limits of band-edge measurements:

#### For FCC Part 15.247 Device:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

#### Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

#### **Deviations from test standard:**

No deviation.

## Test setup:

Test setup details can be found in section 3.4 of this report.

#### **EUT operating conditions:**

Details can be found in section 2.1 of this report.

Page 25 of 31



 Report Number:
 R20220506-20-E1
 Rev
 C

 Prepared for:
 Gentex Corporation

## Test results:

## **Pass**

#### Comments:

- 1. All the band edge plots can be found in Appendix C.
- 2. If the device falls under FCC Part 15.247 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 20 dB between peak and the band edge.
- 3. The restricted band edge compliance is shown by comparing it to the general limit defined in Part 15.209. The limit shown in the graph accounts for the antenna gain of the device.



| Report Number: | : R20220506-20-E1 |   | С |
|----------------|-------------------|---|---|
|                |                   | • |   |

Prepared for: Gentex Corporation

#### APPENDIX A: SAMPLE CALCULATION

## Field Strength Calculation

The field strength is calculated by adding the Antenna Factor, Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF - (-CF + AG) + AV$$

Where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB $\mu$ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB $\mu$ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \, dB\mu V/m$ 

The 48.1 dB $\mu$ V/m value can be mathematically converted to its corresponding level in  $\mu$ V/m.

Level in  $\mu V/m = Common Antilogarithm [(48.1 dB<math>\mu V/m)/20] = 254.1 \mu V/m$ 

AV is calculated by taking the 20\*log(Ton/100) where Ton is the maximum transmission time in any 100ms window.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 27 of 31



R20220506-20-E1 Report Number: Rev C

Prepared for: **Gentex Corporation** 

#### **EIRP Calculations**

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)] $^2$  / 30 Power (watts) =  $10^{Power} (dBm)/101/1000$ Voltage  $(dB\mu V) = Power (dBm) + 107 (for 50\Omega measurement systems)$ Field Strength  $(V/m) = 10^{field Strength} (dB\mu V/m) / 20] / 10^6$ Gain = 1 (numeric gain for isotropic radiator) Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$ 10log(10^9) is the conversion from micro to milli

Page 28 of 31



| Report Number: | R20220506-20-E1    | Rev | С |
|----------------|--------------------|-----|---|
| Prepared for:  | Gentex Corporation |     |   |

## APPENDIX B - MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

| Test                        | Frequency Range | Uncertainty Value (dB) |
|-----------------------------|-----------------|------------------------|
| Radiated Emissions, 3m      | 30MHz - 1GHz    | ±4.31                  |
| Radiated Emissions, 3m      | 1GHz - 18GHz    | ±5.08                  |
| Emissions limits, conducted | 30MHz – 18GHz   | ±3.03                  |

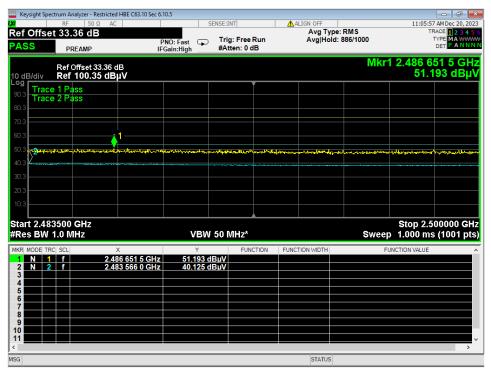
Expanded uncertainty values are calculated to a confidence level of 95%.

Page 29 of 31



Report Number: R202

R20220506-20-E1


Rev

С

Prepared for:

**Gentex Corporation** 

#### APPENDIX C - GRAPHS AND TABLES



HBE Restricted, Wifi B 1MB

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 30 of 31



 Report Number:
 R20220506-20-E1
 Rev
 C

 Prepared for:
 Gentex Corporation

## REPORT END

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 31 of 31