

Specific Absorption Rate (SAR) Test Report

for

Tellus Technology. on the

CDPD Modem for PDA Model: WipClip-V131C(W)

Test Report: 20515211 Date of Report: June 7, 2001

Job #: J20051521 Date of Test: May 25 to June 2, 2001

Total No of Pages Contained in this Report: 56 + Data Sheets

Tested by:

Reviewed by:

NVLAP Laboratory Code 200201-0 Accredited for testing to FCC Parts 15

Suresh Kondapalli

David Chernomordik, Ph.D., EMC Site Manager

herwomorder butta chomomoran, This, Elvi

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek Testing Services, NA Inc. This report must not be used to claim product endorsement by NVLAP, NIST nor any other agency of the U.S. Government.

Date of Test: May 25 to June 2, 2001

Table of Contents

1.0	JOB	DESCRIPTION	
	1.1	Client Information	
	1.2	Equipment under test (EUT)	2
	1.3	Test plan reference.	3
	1.4	System test configuration	
		1.4.1 System block diagram & Support equipment	3
		1.4.2 Test Position	4
		1.4.3 Test Condition	<i>.</i>
	1.5	Modifications required for compliance	<i>.</i>
	1.6	Additions, deviations and exclusions from standards	<i>6</i>
2.0	SAR	EVALUATION	
	2.1	SAR Limits	
	2.2	Configuration Photographs	8
	2.3	System Verification	21
	2.4	Evaluation Procedures	21
	2.5	Test Results	22
3.0	TES	T EQUIPMENT	25
	3.1	Equipment List	
	3.2	Muscle Tissue Simulating Liquid	
	3.3	E-Field Probe Calibration	26
	3.4	Measurement Uncertainty	27
	3.5	Measurement Tractability	27
4.0	WAI	RNING LABEL INFORMATION - USA	28
5.0	REF	ERENCES	29
6.0	DOC	CUMENT HISTORY	30
APPI	ENDIX	A - SAR Evaluation Data	31
A PPI	YION	R - F-Field Probe Calibration Data	45

Date of Test: May 25 to June 2, 2001

1.0 JOB DESCRIPTION

1.1 Client Information

The WipClip-V131Chas been tested at the request of

Company: Tellus Technology

6140 Stevenson Blvd. Fremont, CA 94538

USA

Name of contact: Mr. Ray Baker

Telephone: (510) 498-8500 X150 **Fax** ((510) 580-1600

1.2 Equipment under test (EUT)

Product Descriptions:

Equipment	CDPD Modem for PDA			
Trade Name	Tellus Technology	P/N.	WIPClipV131C	
FCC ID	NZ6V8131C	S/N No.	Not Labeled	
Category	Portable,	RF Exposure	Uncontrolled Environment	
	Handheld			
Frequency Band	824 -849 MHz	System	CDPD Modem	

EUT Antenna Description					
Type Dipole Configuration 360° Rotation					
Dimensions	30mm (L)	Gain	0 dBi		
Location	On top-right side				

Use of Product: The Tellus WIPClipTM CDPD SpringboardTM module is a CDPD (Cellular Digital Packet Data) wireless data modem designed for HandspringTM VisorTM PDA (Personal Digital Assistant). The WIPClip easily snaps into the Springboard expansion slot with a 64-pin connector.

Manufacturer: SAME as above.

Production is planned: [X] Yes, [] No

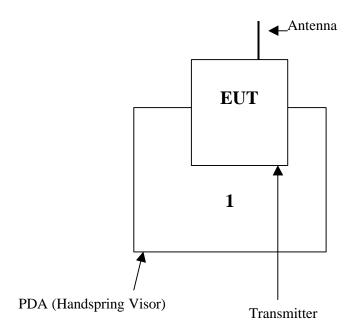
EUT receive date: May 24, 2001

EUT received condition: Good working condition prototype

Test start date: May 25

Test end date: June 2, 2001

Date of Test: May 25 to June 2, 2001


1.3 Test plan reference

FCC rule part 2.1093, FCC Docket 96-326 & Supplement C to OET Bulletin 65

1.4 System test configuration

1.4.1 System block diagram & Support equipment

Support Equipment						
Item #	Item #EquipmentModel No.Serial No.					
1	Handspring PDA	Visor	N/A			

S:	Shielded	U:	Unshielded	m:	meters

Date of Test: May 25 to June 2, 2001

1.4.2 Test Position

Configuration A

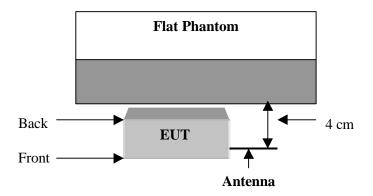


Figure 1: EUT Back Side towards phantom, Antenna in the straight position at 4 cm distance to phantom

Configuration A-1

Same as Configuration A but body of PDA is 4 cm distance to phantom instead of antenna

Configuration B

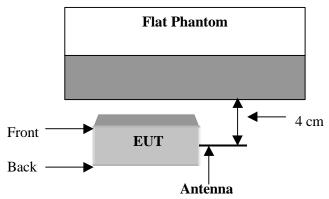


Figure 2: EUT Front Side (Face) towards phantom, Antenna in the straight position at 4 cm distance to phantom

Date of Test: May 25 to June 2, 2001

Configuration C

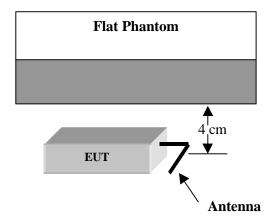


Figure 3: EUT Front Side (Face) towards phantom, Antenna in the right angle position at 4 cm distance to phantom

Configuration D

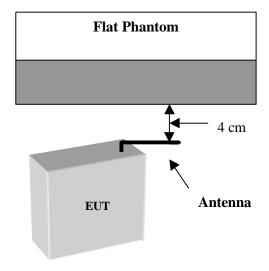


Figure 4: EUT Vertical (Top) towards phantom, Antenna in the right angle position at 4 cm distance to phantom

Date of Test: May 25 to June 2, 2001

1.4.3 Test Condition

During tests the worst case data (max RF coupling) was determined with following conditions:

EUT Antenna	Fixed length	Orientation	Configuration A
Usage	Handheld Device Operates with a PDA	Distance between antenna axis at the joint and the liquid surface:	4mm
Simulating human Body/hand	Yes	EUT Battery	Unit powered from External Power supply.
Power output 26.0 dBm (ERP), 28dBm		(EIRP)	

See report section 1.4.2 for the configuration details of the EUT Position

The spatial peak SAR values were accessed for lowest, middle and highest operating channels, defined by the manufacturer.

Radiated power measurements were performed by the customer.

1.5 Modifications required for compliance

File: 20515211

Intertek Testing Services implemented no modifications.

1.6 Additions, deviations and exclusions from standards

No additions, deviations or exclusions have been made from standard.

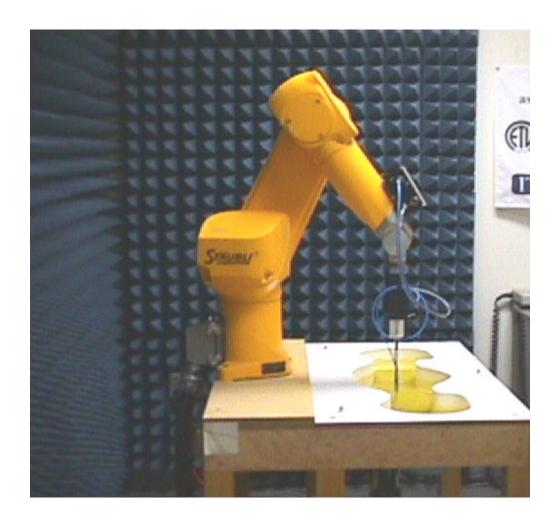
Date of Test: May 25 to June 2, 2001

2.0 SAR EVALUATION

2.1 SAR Limits

File: 20515211

The following FCC limits for SAR apply to devices operate in General Population/Uncontrolled Exposure environment:


EXPOSURE	SAR
(General Population/Uncontrolled Exposure environment)	(W/kg)
Average over the whole body	0.08
Spatial Peak (1g)	1.60
Spatial Peak for hands, wrists, feet and ankles (10g)	4.00

Date of Test: May 25 to June 2, 2001

2.2 Configuration Photographs

File: 20515211

SAR Measurement Test Setup

Date of Test: May 25 to June 2, 2001

2.2 Configuration Photographs (Continued)

SAR Measurement Test Setup

Date of Test: May 25 to June 2, 2001

2.2 Configuration Photographs (Continued)

SAR measurement Test Setup

Date of Test: May 25 to June 2, 2001

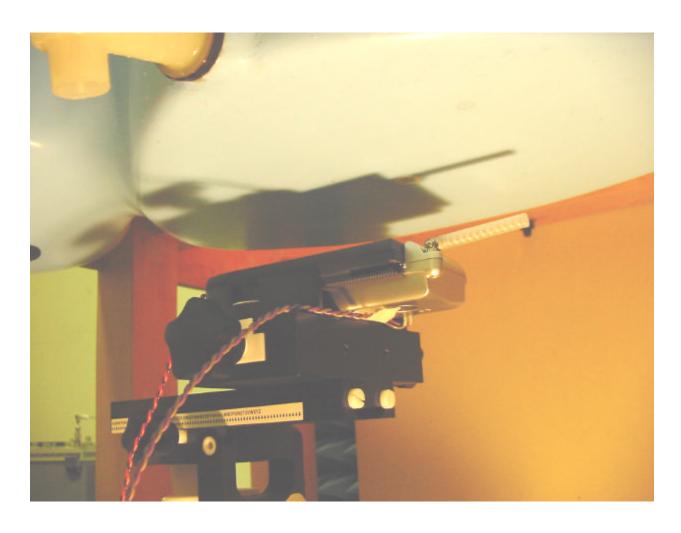
2.2 Configuration Photographs (Continued)

SAR measurement Test Setup

Date of Test: May 25 to June 2, 2001

2.2 Configuration Photographs (Continued)

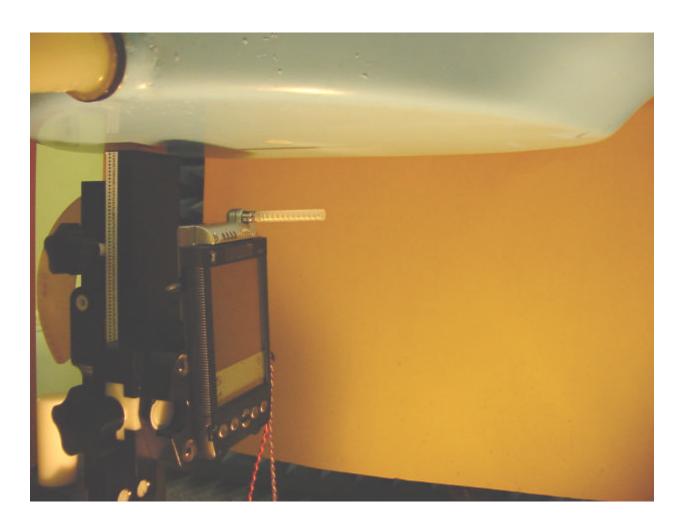
SAR measurement Test Setup



Date of Test: May 25 to June 2, 2001

2.2 Configuration Photographs (Continued)

SAR measurement Test Setup



Date of Test: May 25 to June 2, 2001

2.2 Configuration Photographs (Continued)

SAR measurement Test Setup

Date of Test: May 25 to June 2, 2001

2.2 Configuration Photographs (Continued)

SAR measurement Test Setup

Date of Test: May 25 to June 2, 2001

2.2 Configuration Photographs (Continued)

SAR measurement Test Setup

Date of Test: May 25 to June 2, 2001

2.2 Configuration Photographs (Continued)

SAR measurement Test Setup

Date of Test: May 25 to June 2, 2001

2.2 Configuration Photographs (Continued)

EUT Photo

Date of Test: May 25 to June 2, 2001

2.2 Configuration Photographs (Continued)


EUT Photo

Date of Test: May 25 to June 2, 2001

2.2 Configuration Photographs (Continued)

EUT Photo

Date of Test: May 25 to June 2, 2001

2.3 System Verification

Prior to the assessment, the system was verified to the $\pm 5\%$ of the specifications by using the system validation kit. The validation was performed at 1800 MHz.

Validation kit	Targeted SAR _{1g} (mW/g)	Measured SAR _{1g} (mW/g)
D900V2, S/N #: 0013	4.03	3.93

2.4 Evaluation Procedures

File: 20515211

The SAR evaluation was performed with the following procedures:

- a. SAR was measured at a fixed location above the reference point and used as a reference value for the assessing the power drop.
- b. The SAR distribution at the exposed side of the flat Phantom was measured at a distance of 30 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 20 mm x 20 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- c. Around this point, a volume of 32 mm x 32 mm x 34 mm was assessed by measuring 5 x 5 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure:
 - i) The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measurement point is 1.6 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in Z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - ii) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum, the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3-D spline interpolation algorithm. The 3-D spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y and z directions). The volume was integrated with the trapezoidal algorithm. 1000 points (10 x 10 x 10) were interpolated to calculate the average.
 - iii) All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- d. Re-measurements of the SAR value at the same location as in step a. above. If the value changed by more than 5 %, the evaluation was repeated.

1365 Adams Court, Menlo Park, CA 94025

Tellus Technology., Model No: WipClip-V131C

odel No: WipClip-V131C Date of Test: May 25 to June 2, 2001

2.5 Test Results

File: 20515211

The results on the following page(s) were obtained when the device was tested in the condition described in this report. Detail measurement data and plots, which reveal information about the location of the maximum SAR with respect to the device, are reported in Appendix A.

Date of Test: May 25 to June 2, 2001

Measurement Results

Trade Name:	Tellus Technology	Model No.:	WipClip-V131C
Serial No.:	Not Labeled	Test Engineer:	Suresh Kondapalli

TEST CONDITIONS							
Ambient Temperature	23 °C	Relative Humidity	52 %				
Test Signal Source	Test Mode	Signal Modulation	CDPD all 1's data				
Radiated Power (ERP) Before SAR Test	26.0 dBm	Radiated Power (ERP) After SAR Test	26.0dBm				
Test Duration	23 Min.	Number of Battery Change	1				

EUT Position: Configuration A								
Channel	Operating	Crest Factor	Measured SAR _{1g}	Limit	Plot			
MHz	Operating Mode		(mW/g)	SAR	Number			
				(W/kg)				
824	CDPD	1	0.302	1.6	1			
836	CDPD	1	0.183	1.6	2			
849	CDPD	1	0.175	1.6	3			

See report section 1.4.2 for the configuration details of the EUT Position

	EUT Position: Configuration B								
Channel	Operating Mode	Crest Factor	Measured SAR _{1g}	Limit	Plot				
MHz	Mode		(mW/g)	SAR	Number				
				(W/kg)					
824	CDPD	1	0.163	1.6	4				
849	CDPD	1	0.0699	1.6	5				
849	CDPD	1	0.0847	1.6	6				

See report section 1.4.2 for the configuration details of the EUT Position

Date of Test: May 25 to June 2, 2001

Tellus Technology., Model No: WipClip-V131C

EUT Position: Configuration C						
Channel	Operating	Crest Factor	Measured SAR _{1g}	Limit	Plot	
MHz	Mode		(mW/g)	SAR	Number	
				(W/kg)		
824	CDPD	1	0.172	1.6	7	
849	CDPD	1	0.167	1.6	8	
849	CDPD	1	0.0936	1.6	9	

See report section 1.4.2 for the configuration details of the EUT Position

EUT Position: Configuration D						
Channel	Operating					
MHz	Mode		(mW/g)	SAR	Number	
				(W/kg)		
829	CDPD	1	0.110	1.6	10	
836	CDPD	1	0.127	1.6	11	
849	CDPD	1	0.0779	1.6	12	
824	CDPD	1	0.0893	1.6	13	
836	CDPD	1	0.101	1.6	14	
849	CDPD	1	0.0667	1.6	15	

See report section 1.4.2 for the configuration details of the EUT Position

EUT Position: Configuration A-1					
Channel MHz	Operating Mode	Crest Factor	Measured SAR _{1g} (mW/g)	Limit SAR (W/kg)	Plot Number
824	CDPD	1	0.283	1.6	16

See report section 1.4.2 for the configuration details of the EUT Position

a) Worst case data were reported Note:

File: 20515211

b) Uncertainty of the system is not included

Date of Test: May 25 to June 2, 2001

3.0 TEST EQUIPMENT

3.1 Equipment List

File: 20515211

The Specific Absorption Rate (SAR) tests were performed with the SPEAG model DASY 3 automated near-field scanning system, which is package, optimized for dosimetric evaluation of mobile radios [3].

The following major equipment/components were used for the SAR evaluations:

	SAR Measurement System		
EQUIPMENT	SPECIFICATIONS	S/N #	CAL. DATE
Robot	Stäubi RX60L	597412-01	N/A
	Repeatability: ± 0.025mm Accuracy: 0.806x10 ⁻³ degree Number of Axes: 6		
E-Field Probe	ET3DV5	1333	04/18/01
	Frequency Range: 10 MHz to 6 GHz Linearity: ± 0.2 dB Directivity: ± 0.1 dB in brain tissue		
Data Acquisition	DAE3	317	N/A
	Measurement Range: 1μV to >200mV Input offset Voltage: < 1μV (with auto zero) Input Resistance: 200 M		
Phantom	Generic Twin V3.0	N/A	N/A
	Type: Generic Twin, Homogenous Shell Material: Fiberglass Thickness: 2 ± 0.1 mm Capacity: 20 liter Ear spacer: 4 mm (between EUT ear piece ar	nd tissue simulati	ng liquid)
Simulated Tissue	Mixture	N/A	5/22/01
	Please see section 6.2 for details		
Power Meter	HP 435A w/ 8481H sensor	3607U00673	08/01/00
	Frequency Range: 100kHz to 18 GHz Power Range: 300µW to 3W		

Date of Test: May 25 to June 2, 2001

3.2 Muscle Tissue Simulating Liquid

Ingredient	Frequency (824-849 MHz)		
Water	54.05%		
Sugar	45.05%		
Salt	0.1%		
Bactericide	0.8 %		

The dielectric parameters were verified prior to assessment using the HP 85070A dielectric probe kit and the HP 8753C network Analyzer. The dielectric parameters were:

Frequency (MHz)	* r	*(mho/m)	**(kg/m ³⁾
835	51.1 ± 5%	0.88 ± 10%	1000

^{*} Worst case uncertainty of the HP 85070A dielectric probe kit

File: 20515211

3.3 E-Field Probe Calibration

The manufacturer in the TEM cells ifi 110 calibrated probes. To ensure consistency, a strict protocol was followed. The conversion factor (ConF) between this calibration and the measurement in the tissue simulation solution was performed by comparison with temperature measurement and computer simulations. Probe calibration factors are included in Appendix C.

^{**} Worst case assumption

Date of Test: May 25 to June 2, 2001

3.4 Measurement Uncertainty

The uncertainty budget has been determined for the DASY3 measurement system according to the NIS81 [5] and the NIST 1297 [6] documents and is given in the following table. The extended uncertainty (K=2) was assessed to be 23.5 %

UNCERTAINTY BUDGET						
Uncertainty Description	Error	Distrib.	Weight	Std.Dev.		
Probe Uncertainty						
Axial isotropy	±0.2 dB	U-shape	0.5	±2.4 %		
Spherical isotropy	±0.4 dB	U-shape	0.5	±4.8 %		
Isotropy from gradient	±0.5 dB	U-shape	0			
Spatial resolution	±0.5 %	Normal	1	±0.5 %		
Linearity error	±0.2 dB	Rectang.	1	±2.7 %		
Calibration error	±3.3 %	Normal	1	±3.3 %		
SAR Evaluation Uncertaint	y					
Data acquisition error	±1 %	Rectang.	1	±0.6 %		
ELF and RF disturbances	±0.25 %	Normal	1	±0.25 %		
Conductivity assessment	±10 %	Rectang.	1	±5.8 %		
Spatial Peak SAR Evaluation	Spatial Peak SAR Evaluation Uncertainty					
Extrapol boundary effect	±3 %	Normal	1	±3 %		
Probe positioning error	±0.1 mm	Normal	1	±1 %		
Integrat. and cube orient	±3 %	Normal	1	±3 %		
Cube shape inaccuracies	±2 %	Rectang.	1	±1.2 %		
Device positioning	±6 %	Normal	1	±6 %		
Combined Uncertainties						
	±11.7 %					

3.5 Measurement Tractability

File: 20515211

All measurements described in this report are traceable to National Institute of Standards and Technology (NIST) standards or appropriate national standards.

1365 Adams Court, Menlo Park, CA 94025

Tellus Technology., Model No: WipClip-V131C

Date of Test: May 25 to June 2, 2001

4.0 WARNING LABEL INFORMATION - USA

See attached page.

Date of Test: May 25 to June 2, 2001

Tellus Technology., Model No: WipClip-V131C

5.0 REFERENCES

- [1] ANSI, ANSI/IEEE C95.1-1991: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 GHz, The Institute of electrical and Electronics Engineers, Inc., New York, NY 10017, 1992
- [2] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C. 20554, 1997
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, "Automated E-field scanning system for dosimetric assessments", *IEEE Transaction on Microwave Theory and Techniques*, vol. 44, pp. 105-113, Jan. 1996.
- [4] Niels Kuster, Ralph Kastle, and Thomas Schmid, "Dosimetic evaluation of mobile communications equipment with know precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp.645-652, May 1997.
- [5] NIS81, NAMAS, "The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddinton, Middlesex, England, 1994.
- [6] Barry N. Tayor and Chris E. Kuyatt, "Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994.