

FCC CFR47 PART 22 (PUBLIC MOBILE SERVICES) CERTIFICATION TEST REPORT

FOR

WIRELESS IP (CDPD) MODEM FOR OEMs

MODEL: TPRM 130C

FCC ID: NZ6T8130C

REPORT NUMBER: 99U0284

ISSUE DATE: JUNE 08, 1999

Prepared for

TELLUS TECHNOLOGY 40990 ENCYCLOPEDIA CIRCLE FREMONT, CA 94538-2470

Prepared by

COMPLIANCE ENGINEERING SERVICES, INC.

d.b.a

COMPLIANCE CERTIFICATION SERVICES 1366 BORDEAUX DRIVE

SUNNYVALE, CA 94089, USA

TEL: (408) 752-8166 FAX: (408) 752-8168

TABLE OF CONTENTS

1.	VERIFICATION OF COMPLIANCE	2
2.	PRODUCT DESCRIPTION	3
3.	TEST FACILITY	3
4.	ACCREDITATION AND LISTING	
5.	MEASUREMENT INSTRUMENTATION	3
6.	MEASURING INSTRUMENT CALIBRATION	4
7.	UNITS OF MEASUREMENT	4
8.	CLASSIFICATION OF DIGITAL DEVICE	5
9.	RADIATED EMISSION LIMITS	5
10.	RADIATED EMISSION TEST PROCEDURE	5
11.	AMBIENT CONDITIONS	
12.	TEST EQUIPMENT LIST	6
	SUPPORT EQUIPMENT	
14.	EUT SETUP PHOTOS	7
15.	TEST RESULT SUMMARY	
16.	EXTERNAL I/O CABLE CONSTRUCTION DESCRIPTION	43

ATTACHMENT

- 1. EUT PHOTOGRAPHS
- 2. RF TRANSCEIVER DESCRIPTION
- 3. RF MICRO DEVICES(RF2402) AND TQS(TQ9142B)
- 4. SCHEMATICS
- 5.. BLOCK DIAGRAM
- 6. USERS MANUAL
- 7.. WIRELESS P.O.S. ANTENNA SPECIFICATION

EXHIBITS

- 1. FCC 731 FORM
- 2. AUTHORIZATION LETTER
- 3. PROPOSED FCC ID LABEL FORMAT

1. VERIFICATION OF COMPLIANCE

COMPANY NAME: TELLUS TECHNOLOGY, INC.

40990 ENCYCLOPEDIA CIRCLE FREMONT, CA 94538-2470

CONTACT PERSON: MIHN DAO / SR. RF ENGINEER

TELEPHONE NO: 510-498-8500 EXT. 140

MODEL NO/NAME: TPRM 130C

SERIAL NO: N/A

DATE TESTED: May 21, 1999

TYPE OF EQUIPMENT:	Wireless IP (CDPD) Modem For OEMs		
MEASUREMENT DISTANCE:	3 METER		
TECHNICAL LIMIT:	FCC 22.359, 22.917		
FCC RULES:	PART 15, PART 22		
EQUIPMENT AUTHORIZATION PROCEDURE	CERTIFICATION		
MODIFICATIONS MADE ON EUT	YES (X)NO		

The above equipment was tested by Compliance Consulting Services for compliance with the requirements set forth in the FCC CFR 47, PART 15 AND 22. The results of testing in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved By

MIKE KUO / VICE PRESIDENT

Bril- 62/12

COMPLIANCE CERTIFICATION SERVICES

2. PRODUCT DESCRIPTION

The transmitter for the TPRM 130C is a single conversion design employing direct IQ modulation. A phase locked loop controlled oscillator operating at a fixed frequency of 90MHz is mixed with the signal from the main synthesizer to provide the output carrier frequency. High-side injection is used for this frequency conversion process. A high selectivity SAW filter selects the desired mixing product.

The carrier is modulated with I and Q signals from the baseband ASIC. The modulated signal passes through a driver amplifier, and another SAW filter, and then is boosted to a nominal level of +30dBm by the power amplifier. The signal from the power amplifier is routed through a frequency diplexer and out to the antenna.

Data from the modem is transmitted in bursts. Each transmit burst includes a ramp-up and ramp-down sequence to limit the frequency bandwidth occupied. The transmit power-level that the modem uses for each burst is calculated based on a parameter broadcast by the CDPD base station and the actual RSSI reading at the modem. The TPRM 130C conforms to power class 3 devices, so it transmits at nominal power levels from -22dBW to -2dBW

TEST FACILITY 3.

The open area test sites and conducted measurement facilities used to collect the radiated and conducted data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

4. ACCREDITATION AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code:200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT(1300F2))

5. MEASUREMENT INSTRUMENTATION

Radiated emissions were measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, ridged waveguide, liner horn. EMI receivers were used for line conducted readings, spectrum analyzers with preselectors and quasi-peak detectors were used to perform radiated measurements. Receiving equipment (i.e., receiver, analyzer, quasi-peak adapter, pre-selector) and LISNs conform to CISPR specification for "Radio Interference Measuring Apparatus and Measurement

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

6. MEASURING INSTRUMENT CALIBRATION

The measuring equipment which was utilized in performing the tests documented herein has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment which is traceable to recognized national standards.

7. UNITS OF MEASUREMENT

Measurements of radiated interference are reported in terms of dB(uV/m) at a specified distance. The indicated readings on the spectrum analyzer were converted to dB(uV/m) by use of appropriate conversion factors. Measurements of conducted interference are reported in terms of dB(uV).

The field strength is calculated by adding the Antenna Factor and Cable Factors, then by subtracting the Amplifier Gain from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

Assume a receiver reading of 52.5 dBuV is obtained. The Antenna Factor of 7.4dB/m and a Cable Factor of 1.1dB is added. The Amplifier Gain of 29 dB is subtracted, giving a field strength of 32 dBuV/m. The 32 dBuV/m value was mathematically converted to its corresponding level in uV/m.

$$FS = 52.5 + 7.4 + 1.1 - 29 = 32 \text{ dBuV/m}$$

Level in uV/m = Common Antilogarithm [(32 dBuV/m)/20] = 39.8 uV/m

8. CLASSIFICATION OF DIGITAL DEVICE

Class A includes digital devices that are marketed for use in commercial, industrial or business environments, excluding devices which are marketed for use by the general public or are intended to be used in the home.

Class B includes digital devices that are marketed for use in residential environments, notwithstanding use in commercial, business and industrial environments.

Note: The responsible party may also qualify a device intended to be marketed in a commercial, business or industrial environment as Class B device, and in fact is encouraged to do so provided the device complies with the technical specifications for a Class B digital device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B digital device, regardless of its intended use.

9. RADIATED EMISSION LIMITS

FCC PART 15 CLASS A

MEASURING DISTANCE OF 10 METER					
FREQUENCY RANGE	FIELD STRENGTH	FIELD STRENGTH			
(MHz)	(Microvolts/m)	(dBuV/m)			
30-88	90	39.1			
88-216	150	43.5			
216-960	210	46.4			
Above 960	300	49.5			

FCC PART 15 CLASS B

MEASURING DISTANCE OF 3 METER						
FREQUENCY RANGE (MHz)	FIELD STRENGTH (Microvolts/m)	FIELD STRENGTH (dBuV/m)				
30-88	100	40				
88-216	150	43.5				
216-960	200	46				
Above 960	500	54				

10. RADIATED EMISSION TEST PROCEDURE

The EUT and all other support equipment are placed on a wooden table 80 cm above the ground screen. Antenna to EUT distance is 3 meters . During the test, the table is rotated 360 degrees to maximize emissions and the antenna is positioned from 1 to 4 meters above the ground screen to further maximize emissions. The antenna is polarized in both vertical and horizontal positions.

EUT test configuration is according to Section 8 of ANSI C63.4/1992.

Monitor the frequency range of interest at a fixed antenna height and EUT azimuth. Frequency span should be small enough to easily differentiate between broadcast stations and intermittent ambients. Rotate EUT 360 degrees to maximize emissions received from EUT. If emission increases by more than 1 dB, or if another emission appears that is greater by 1 dB, return to azimuth where maximum occurred and perform additional cable manipulation to further maximize received emission.

Move antenna up and down to further maximize suspected highest amplitude signal. If emission increased by 1 dB or more, or if another emission appears that is greater by 1dB or more, return to antenna height where maximum signal was observed and manipulate cables to produce highest emissions, noting frequency and amplitude.

11. AMBIENT CONDITIONS

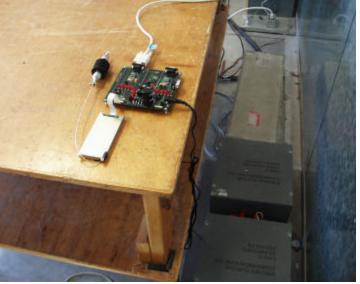
The ambient conditions at the time of final tests were as follows:

	Radiated Emission	Conducted Emission
Temperature	18 ° C	19 ° C
Humidity	60%	62%

12. TEST EQUIPMENT LIST

Equipment	Manufacturer	Model No.	Serial No.	Site	Cal Date	Due Date
Spectrum Analyzer	H.P.	8593EM	3710A00205	A	05/28/99	05/27/00
Antenna	EMCO	3146	NSN=X100	A/F	08/15/99	08/14/00
Antenna	ARA	DRG-118/A	104	A/F	01/23/99	01/22/00
Pre-Amp	H.P.(P2)	8447D	2944A06265	A/F	09/04/98	09/03/99
Pre-Amp	H.P.	8449B	3008A00369	A/F	04/05/99	04/04/00
Antenna	Emco	3110	8908-1079	A/F	03/15/99	03/14/00


13. SUPPORT EQUIPMENT


Device Type	Manufacturer	Model Number	Serial No.	FCC ID / DoC
PC	Toshiba	PA1240U VCD	978273928-3	DOC
Transceiver	Tellus	130C	N/A	N/A

14. **EUT SETUP PHOTOS**

TEST RESULT SUMMARY **15.**

FCC Part 15 Final Radiated Emission Test							
OATS No:A Data Report No.			Date		Tested 1	By:	
F/3 r	meter	990	521F1	5/21/9	99	PETE KREBILL	
		Six Hi	ghest Radiated	Emission Rea	adings		
Frequency	Range Inve	stigated		3	80 MHz TO	9000 MHz	
	Meter		Corrected			Reading	
Freq	Reading	C.F.	Reading	Limits	Margin	Type	Polar
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(P/Q/A)	(H/V)
356.40	44.20	-8.75	35.45	46.00	-10.55	P	Н
240.60	53.40	-14.51	38.89	46.00	-7.11	Q	Н
280.60	50.00	-11.51	38.49	46.00	-7.51	P	Н
315.00	52.30	-9.62	42.68	46.00	-3.32	Q	Н
356.40	46.20	-9.9	36.30	46.00	-9.70	P	V
314.90	53.80	-9.8	44.00	46.00	-2.00	Q	V

C.F.(Correction Factor)=Antenna Factor+Cable Loss-Amplifier Gain

Corrected Reading = Metering Reading + C.F. Margin=Corrected Reading - Limits

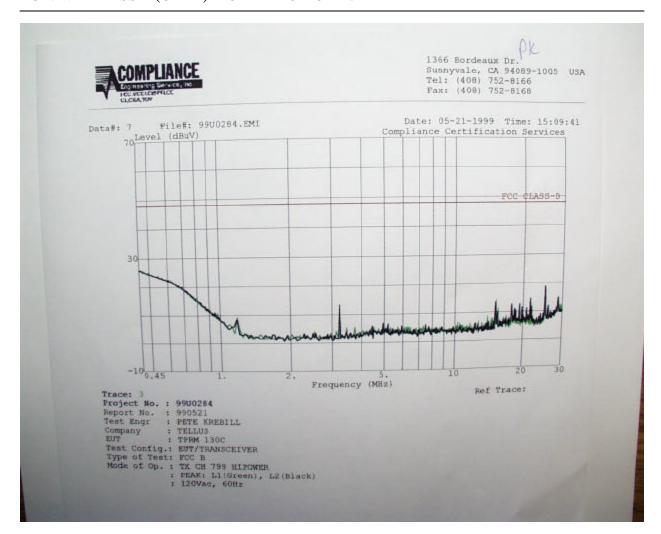
P=Peak Reading H=Horizontal Polarization/Antenna Q=Quasi-peak V=Vertical Polarization/Antenna

A=Average Reading Comments:N/A

```
Project No. : 99U0284
        Compliance Engineering Services Inc.
                                                           Report No. : 990521F1
                                                                  Date : 05/21/1999
                                                                  Time : 14:08
              >> 3 M RADIATED EMISSION DATA <<
                                                           Test Engr : PETE K
         Company : TELLUS
Equipment Under Test : TPRM 130C
            Test Configuration : EUT/TRANSCEIVER
                  Type of Test : FCC CLASS B
             Mode of Operation : RX
                  PreAmp Ant Cable dBuV/m Limit Margin Pol Hgt(m) Az
            dBuV
   Freq.
 Biconical 8909-1079 ; Pre-pamp = 8447D-P2 2944A07781:
                                    2.08 29.86 43.50 -13.64 H
2.61 26.59 43.50 -16.91 V
2.08 31.04 43.50 -12.46 V
   90.00 49.60 -31.10 9.28
144.00 42.40 -30.97 12.55
                                                                                1.0
                                                                                      180
                                                                                1.0
                                                                                      180
  144.00
                                                                                      180
                                                                                1.0
                                              31.04 43.50
                                                                -12.46
          51.50 -31.10 8.56 2.08
   90.00
 LP NSN=X100 ; Pre-pamp = 8447D-P2 2944A07781: 356.40 44.20 -30.32 17.34 4.22 35.45
                                                                                      180
                                                                        H
                                                                               2.0
                                                               -10.55
                                              35.45 46.00
                                                                                      180
                                                                                2.0
                                              30.96 46.00
                                                                -15.04
            38.80 -30.49 18.13
                                       4.53
   400.89
                                                                -7.11
                                                                                2.0
                                                                                      180
QP:240.60 53.40 -30.37 12.40 3.46 280.60 50.00 -30.18 14.95 3.72 QP:315.00 52.30 -30.15 16.59 3.94
                                              38.89 46.00
38.49 46.00
                                                                          H
                                                                                      180
                                                                               2.0
                                                                -7.51
                                                                          H
                                                                                      180
                                                                 -3.32
                                                                          H
                                                                                1.5
                                             42.68 46.00
                                                                        H
                                                                               1.5
                                                                                      180
                                                                -12.68
                                       4.25
                                                       46.00
   360.00
            42.00 -30.33 17.41
                                               33.32
                                                                                      180
                                               36.30 46.00
                                                                 -9.70
   356.40
            46.20 -30.32 16.19
                                       4.22
                                                                                      180
                                                                               1.0
            40.60 -30.49 15.99
38.80 -30.71 17.02
                                              30.62 46.00
29.93 46.00
                                                                -15.38
   400.80
                                       4.52
                                                                                      180
                                                                               1.0
                                                                -16.08
    450.00
                                       4.81
                                                                               1.0
                                                                                     180
 QP:314.90
                                              44.00 46.00
                                                                -2.00
            53.80
                    -30.15 16.40
                                       3.94
   Total # of data 13
   V. £2.2
```

Final Conducted Emission Test

Conducte	ed	Plot No.		Date		Tested By:	
Room	Room 99U0284		0284	5/21/99		PETE KREBILL	
		Six l	Highest Conduc	cted Emission	Readings		
Frequency	Range Inve	stigated			150 kHz T	O 30 MHz	
	Meter		Corrected			Reading	
Freq	Reading	C.F.	Reading	Limits	Margin	Type	Line
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(P/Q/A)	(L1/L2)
0.450	25.83	0	25.83	48	-22.17	P	1
0.506	24.29	0	24.29	48	-23.71	P	1
0.560	23.02	0	23.02	48	-24.98	P	1
0.450	25.71	0	25.71	48	-22.29	P	2
0.506	24.35	0	24.35	48	-23.65	P	2
0.539	23.48	0	23.48	48	-24.52	P	2


C.F.(Correction Factor)=Insertion Loss + Cable Loss

Corrected Reading = Metering Reading + C.F.

Margin=Corrected Reading - Limits

P=Peak Reading L1=Hot Q=Quasi-peak L2=Neutral

A=Average Reading

FCC Rule 2.983

2.983 (a) Name of Applicant: TELLUS TECHNOLOGY

40990 ENCYCLOPEDIA CIRCLE FREMONT, CA 94538-2470

2.983 (b) Equipment Identification: NZ6T8130C

2.983 (c) Planned for quantity production.

2.983 (d) Technical description:

- (1) GMSK 30KHz B/W using direct IQ modulation scheme
- (2) TX Band: 824-849MHz RX Band: 869-894MHz
- (3) Power controlled through software

Level 0-2: 28+2/-4dBm Level 3: 24+2/-4dBm Level 4: 20+2/-4dBm Level 5: 16+2/-4dBm Level 6: 12+2/-4dBm Level 7: 8+2/-4dBm

- (4) 1Watt (30dBm)
- (5) The power amplifier is dual supply voltage and high efficiency is selected for this design. It is three stages MESFET operates from 3V to 5V. The negative voltage generator is external and concerted positive supply to negative and feed into PA Vgate terminals. The power control for the transmitter is from the baseband and with other control line to toggle the PA on/off. The maximum output power is +31.1dBm.
- (6) see RF Transceiver description(attachment 2) pgs. 5-8
- (7) see attachment 4 (Schematic Diagram and Block Diagram)
- (8) see attachment 6 (User manual)
- (9) The transmitter adjustment is a two-step process. The first step is to adjust the TCXO reference frequency (using a mechanical tuning screw) for the dual phase-locked loop. This sets the output frequency of the transmit signal, since it determines both the 90MHz offset frequency and the main synthesizer signal frequency. The second step is to adjust the IQ output spectrum for carrier and sideband suppression, by alternately adjusting two tuning resistors in the IQ modulator circuitry. This ensures that the output will meet the adjacent channel emission requirements.

(10) see RF Transceiver description(attachment 2) pg. 7-8

(11) **Limitation of Spurious Radiation**

The TPRM 130C contains two SAW filters in the transmit chain to suppress unwanted mixing products and harmonics before reaching the antenna. Also, the transmit arm of the diplexer has a band stop characteristic with rejection in the cellular mobile receive band.

The CDPD system employs Gaussian-filtered Minimum Shift Keying (GMSK) modulation with BT=0.5. The pre-modulation Gaussian low pass filter results in increased spectral efficiency. A ramp-up and ramp-down are performed at the beginning and end of each transmit burst to limit the emission spectrum spill over into adjacent channels.

Limitation of Modulation

The TPRM 130C uses IQ modulation in the transmitter which results in high modulation accuracy. I and Q signals from the baseband are combined with the carrier frequency in a quadrature modulator circuit to create the transmit signal. With this implementation, no frequency related adjustment of the modulator is required.

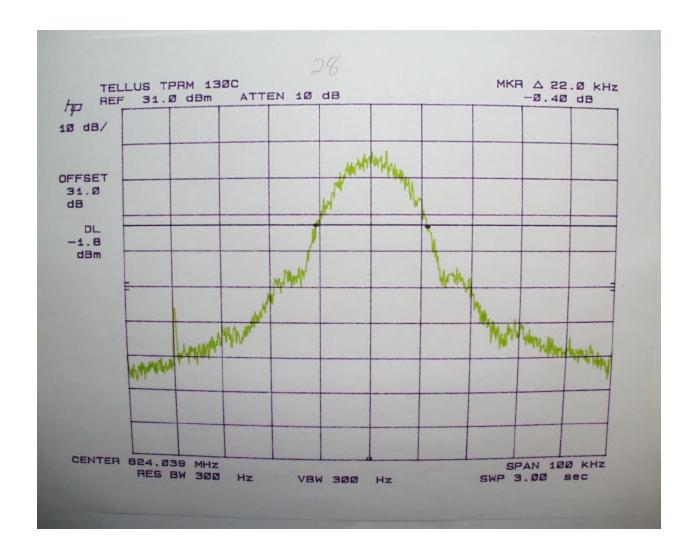
Limitation of Transmit Power

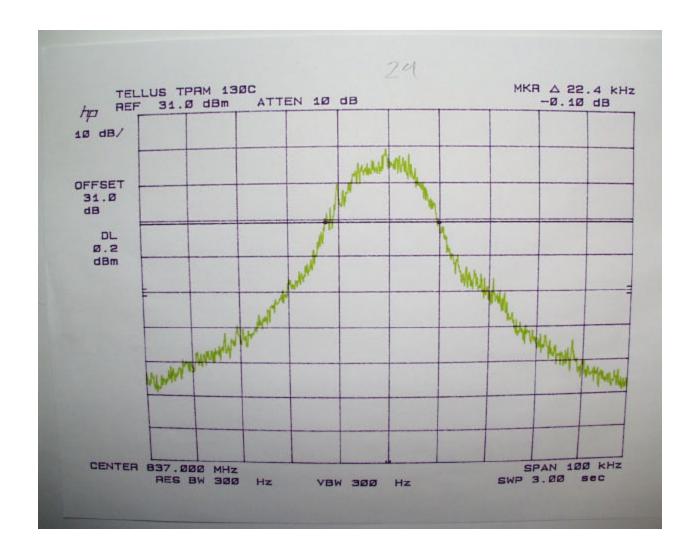
The power amplifier in the TPRM 130C is a three stage GaAsFET amplifier operating with a drain voltage of 4.8V for stages 1 and 3. Power control for the transmitter is accomplished by varying the stage 2 drain voltage. The gate bias circuit for the power amplifier regulates the gate voltages for each stage to set the operating point consistently from unit to unit. The maximum output power of the amplifier is less than +32dBm over temperature at 4.8V. This, along with the minimum diplexer insertion loss, ensures that the maximum specified transmitter power of 1W will not be exceeded.

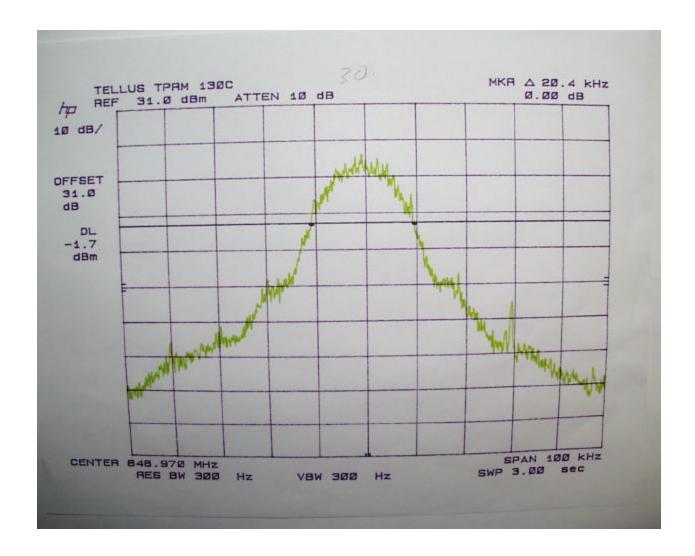
(12) see RF Micro Devices(attachment 3)

FCC PART 2 .985 through 2.997 TEST REQUIREMENT:

SECTION 2.985 RF POWER OUTPUT

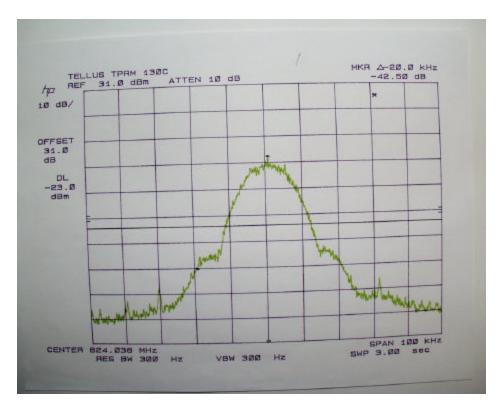

MEASURED RF POWER OUTPUT
0.529 WATTS

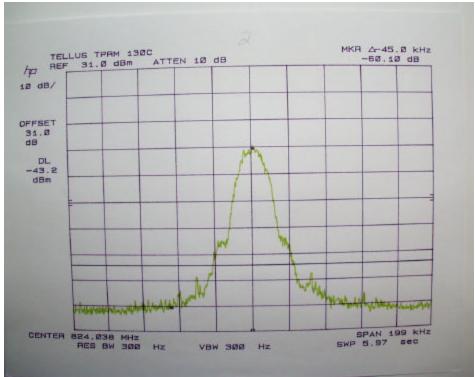

SECTION 2.987 MODULATION CHARACTERISTICS

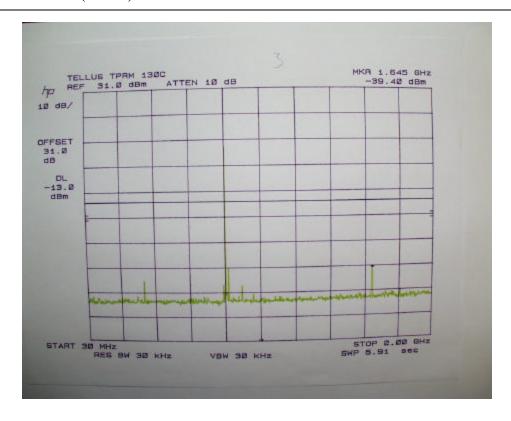

GMSK See attachment 3 (RF Micro Device)

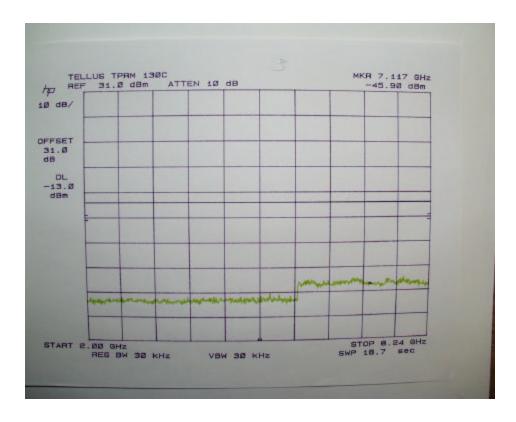
SECTION 2.989 OCCUPIED BANDWIDTH

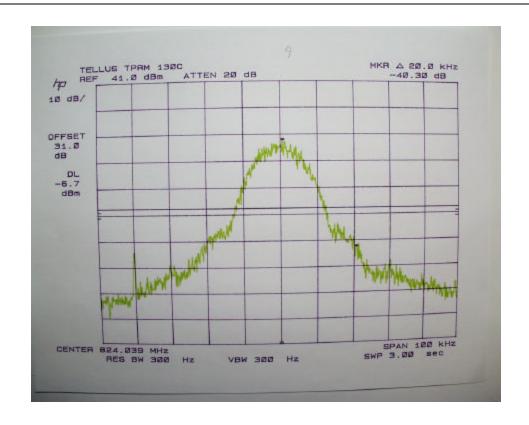
CHANNEL/	PLOT #
FREQUENCY	
991/824.039MHz	28
400/837MHz	29
799/848.97MHz	30

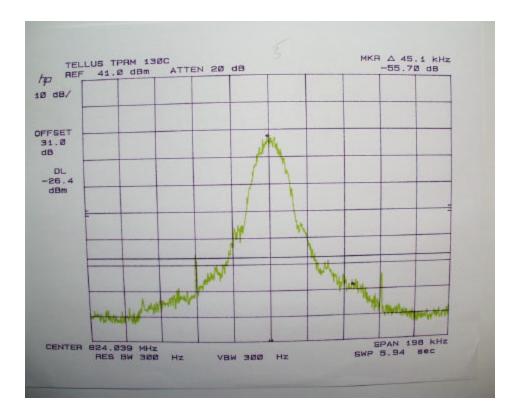


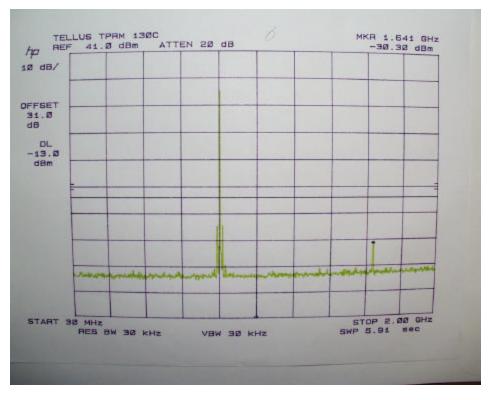

SECTION 2.991 SPURIOUS EMISSION AT ANTENNA TERMINALS

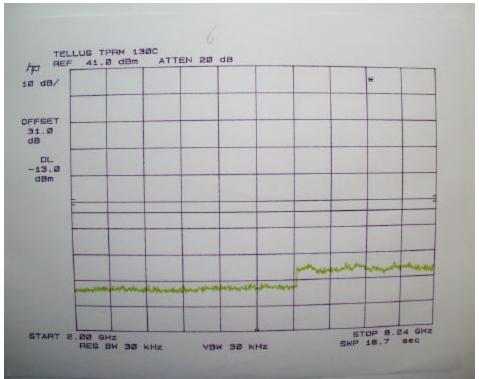

Out of band emission plots are from 30MHz to 8940MHz with 30k RES B/W as specified in 22.917(f). In band emission plots show compliance with 22.917(d)(1) & (2). 1^{ST} in band plot shows emission removed 20KHz with limit of 26dBc, with 300Hz RES B/W as specified in 22.917(h). 2^{ND} in band plot shows emissions removed 45KHz with limit of 45dBc, with 300Hz RES B/W as specified in 22.917(h). Mobile emissions in base band plots show compliance with FCC 22.917(f).

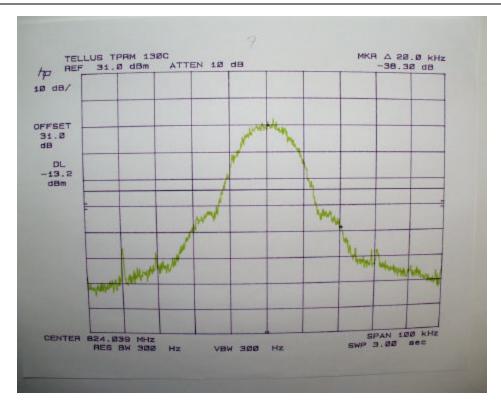

CHANNEL/POWER	PLOT DESCRIPTION	PLOT#
LEVEL		
991/LEVEL7	1 ST IN BAND	1
991/LEVEL 7	2 ND IN BAND	2
991/LEVEL 7	OUT OF BAND	3,3
991/LEVEL0-2	1 ST IN BAND	4
991/LEVEL 0-2	2 ND IN BAND	5
991/LEVEL 0-2	OUT OF BAND	6,6
991/LEVEL 4	1 ST IN BAND	7
991/LEVEL 4	2 ND IN BAND	8
400/LEVEL 4	OUT OF BAND	9,9
400/LEVEL7	1 ST IN BAND	10
400/LEVEL 7	2 ND IN BAND	11
400/LEVEL 7	OUT OF BAND	12,12
400/LEVEL 0-2	1 ST IN BAND	13
400/LEVEL 0-2	2 ND IN BAND	14
400/LEVEL 0-2	OUT OF BAND	15,15
400/LEVEL 4	1 ST IN BAND	16
400/LEVEL 4	2 ND IN BAND	17
400/LEVEL 4	OUT OF BAND	18,18
799/LEVEL 7	1 ST IN BAND	19

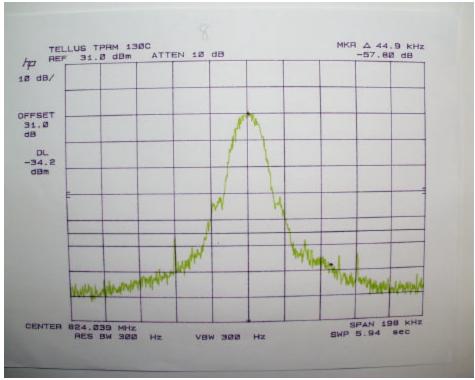

799/LEVEL 7	2 ND IN BAND	20
799/LEVEL 7	OUT OF BAND	21,21
799/LEVEL 0-2	1 ST IN BAND	22
799/LEVEL 0-2	2 ND IN BAND	23
799/LEVEL 0-2	OUT OF BAND	24,24
799/LEVEL 4	1 ST IN BAND	25
799/LEVEL 4	2 ND IN BAND	26
799/LEVEL 4	OUT OF BAND	27,27
799/LEVEL 0-2	MOBILE IN BASE BAND	31

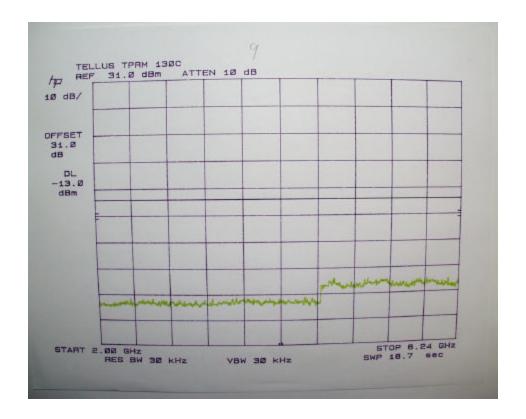


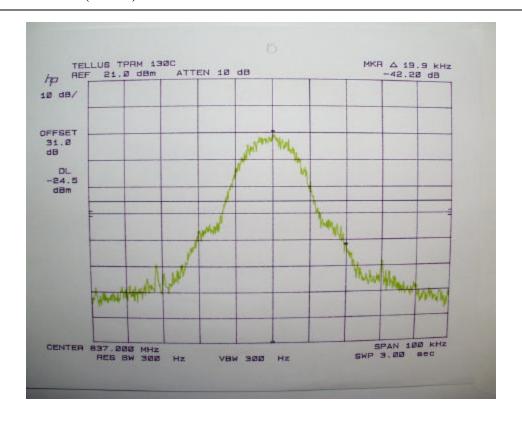


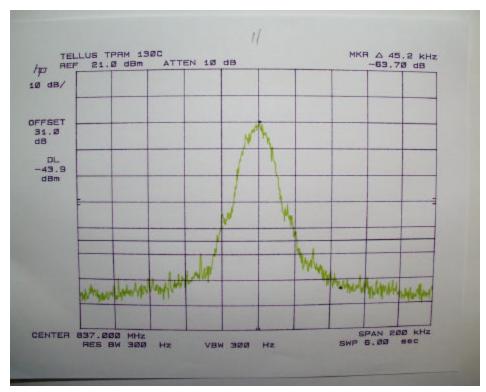


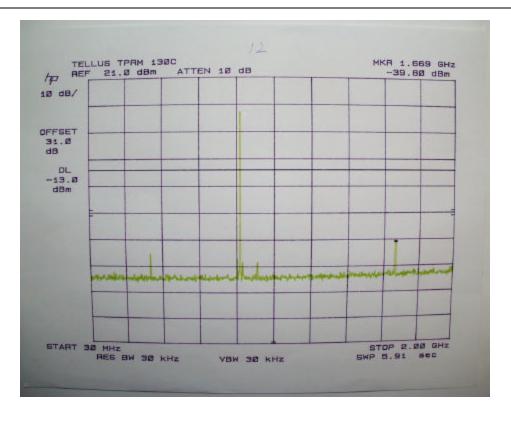


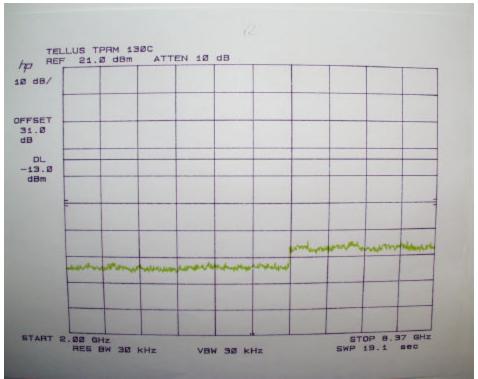


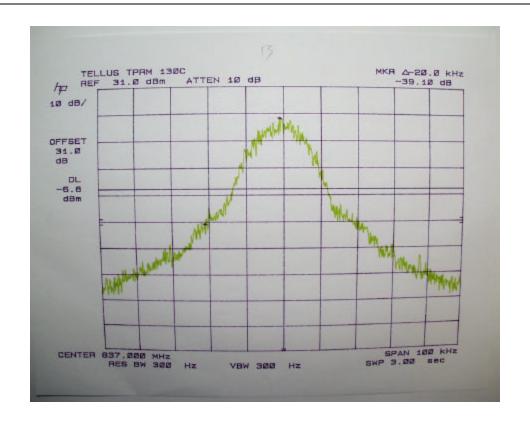


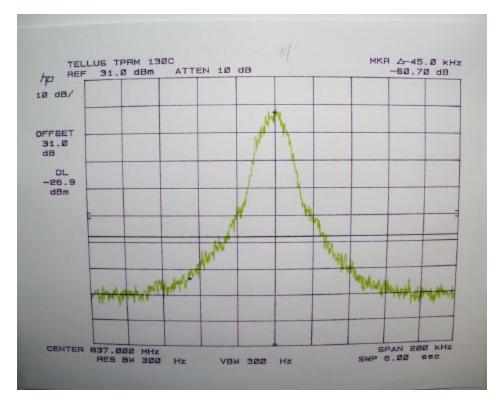


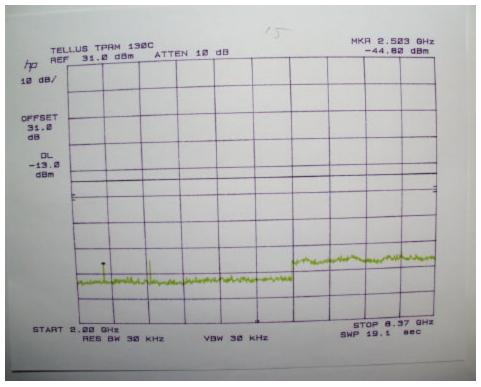


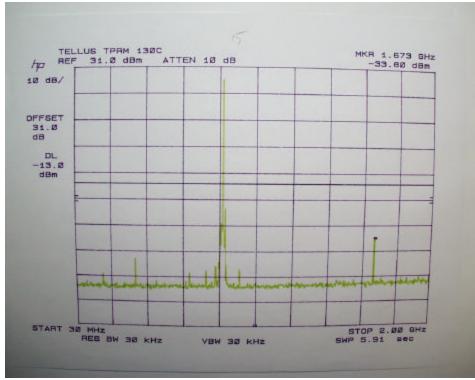


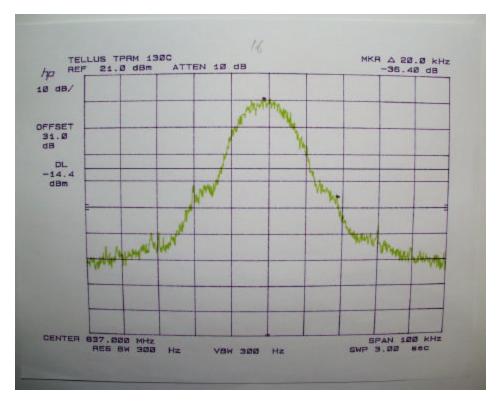




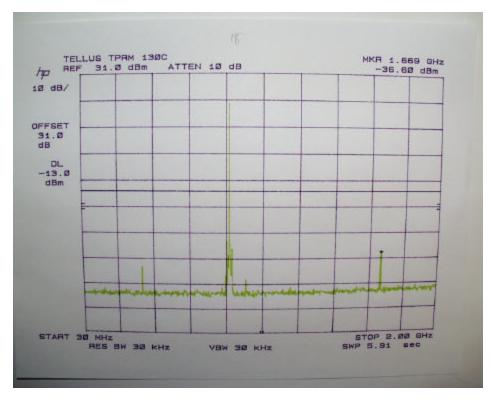


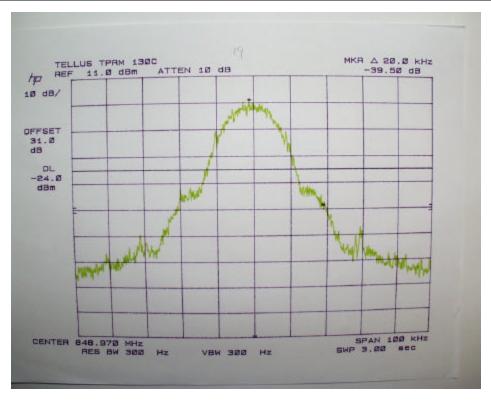


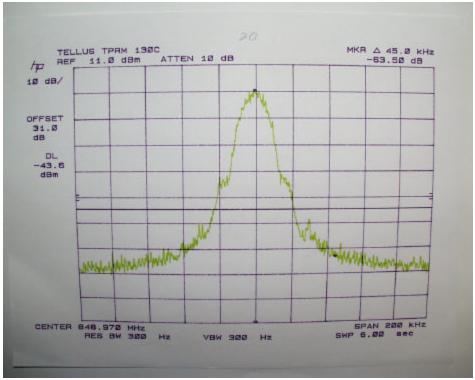


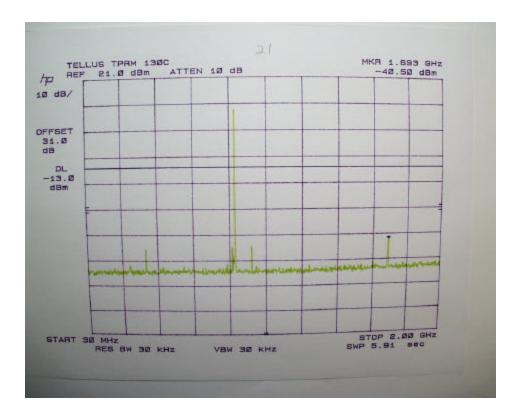


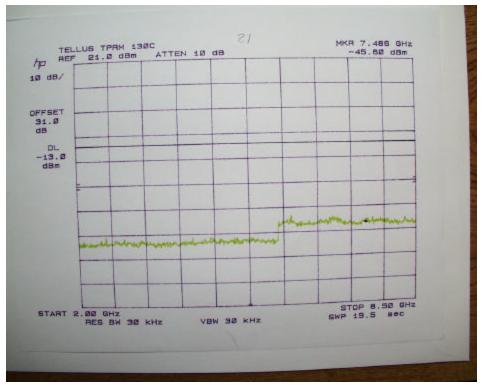


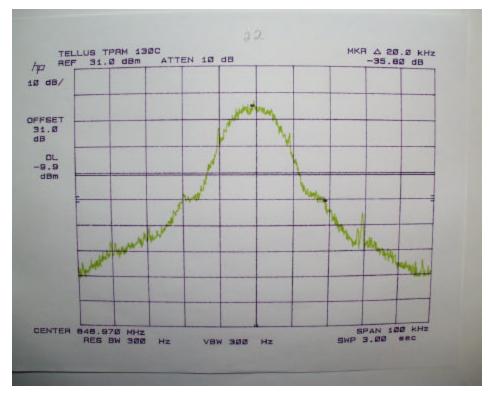


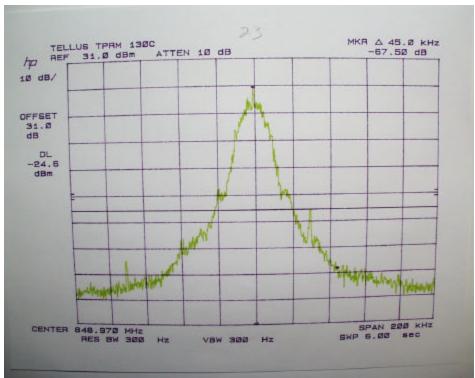


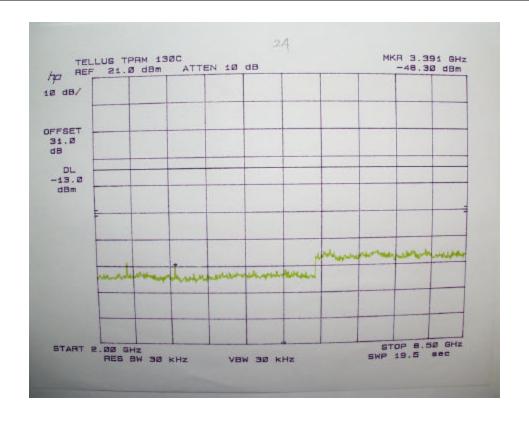


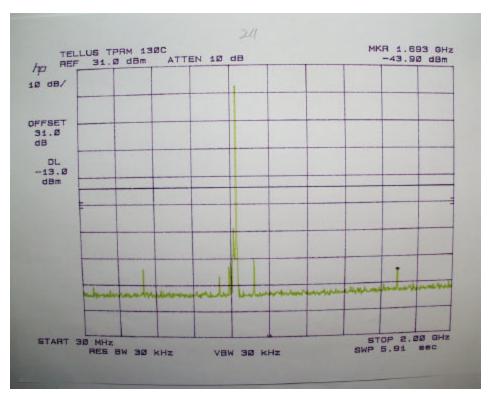


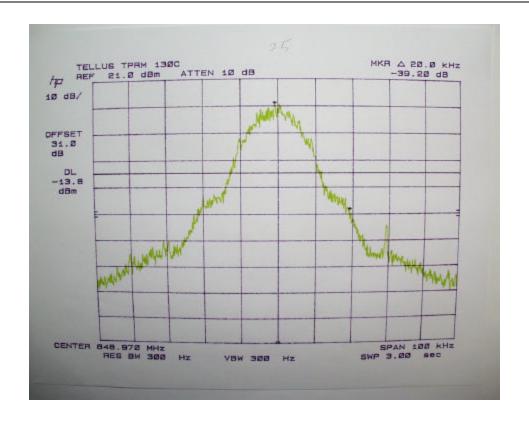


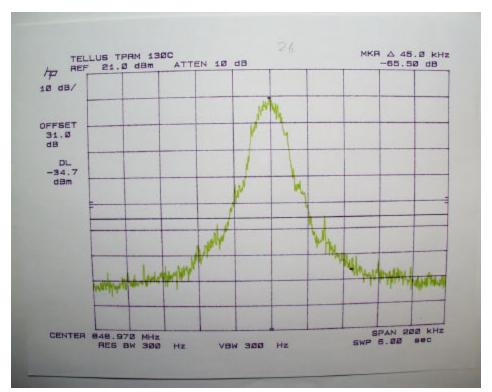


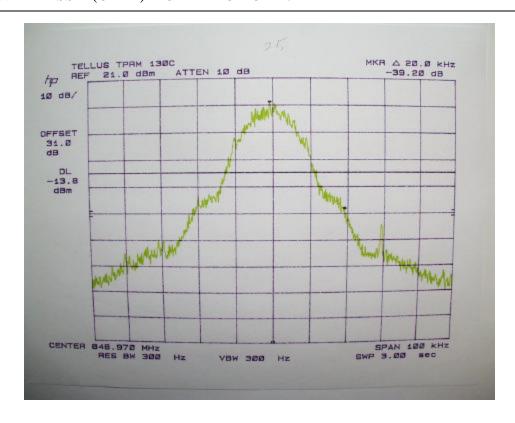


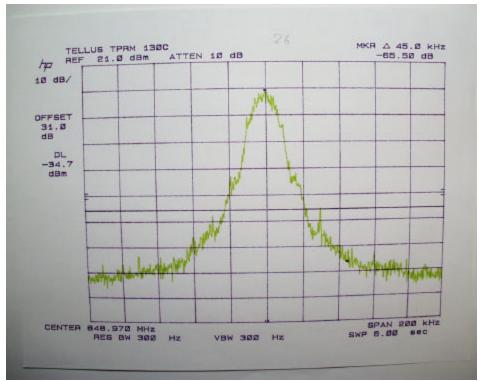


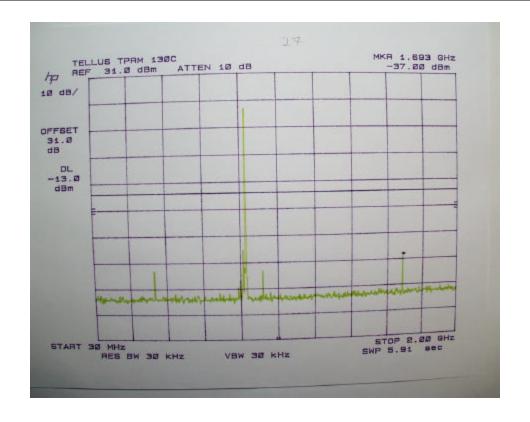


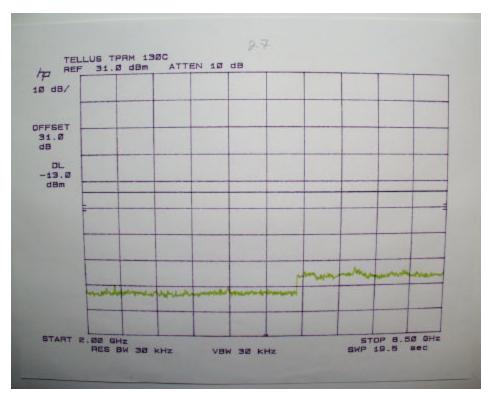


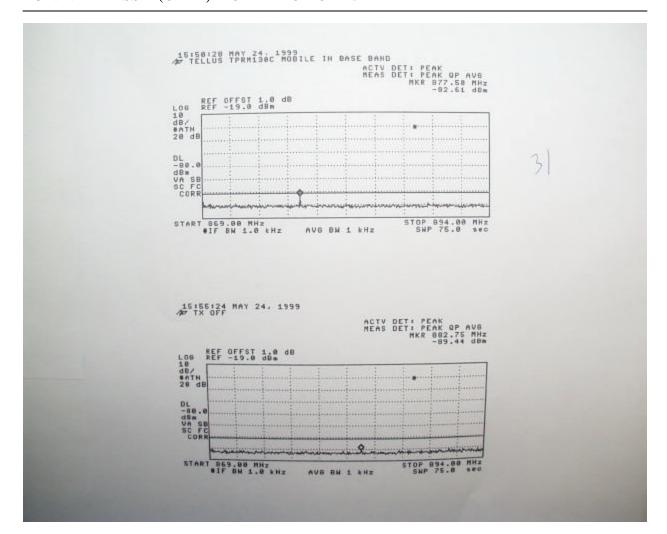












SECTION 2.993 FIELD STRENGTH OF SPURIOUS RADIATION

Technical Limits applied :Section, 22.917 emission masks

See attached chart

5/21/99

PETE KREBILL

TELLUS TPRM 130C

ALL READINGS ARE PEAK

F(MHz)	Level (dBuV)	AF (dB)	CL (dB)	AMP (dB)	FILTER (dB)	DIST (dB)	Total (dBuV/m)	Limit (dBuV/m)	Margin (dB)
Vertical	(abav)	(ab)	(42)	(ab)	(GD)	(GD)	(aba viiii)	(aba v/iii)	(ab)
1697.94	56	25.2	2.34	-35.5	10	-10.5	47.54	82	-34.46
2546.91	47.9	29.2	2.79	-35.5	1	-10.5	34.89	82	-47.11
3395.88	48.5	32.8	4.1	-35.5	1	-10.5	40.4	82	-41.6
4244.87	46.1	32.3	5	-35.5	1	-10.5	38.4	82	-43.6
5093.84	42.9	34.3	5.4	-35.5	1	-10.5	37.6	82	-44.4
5942.79	35.8	35.2	5.7	-35.5	1	-10.5	31.7	82	-50.3
6791.76	33	36	6	-35.5	1	-10.5	30	82	-52
7640.73	43.6	36.9	6.4	-35.5	1	-10.5	41.9	82	-40.1
8489.7	44.6	37.5	6.7	-35.5	1	-10.5	43.8	82	-38.2
Horizontal									
1697.94	45.2	25.2	2.34	-35.5	10	-10.5	36.74	82	-45.26
2546.91	43.4	29.2	2.79	-35.5	1	-10.5	30.39	82	-51.61
3395.88	46.5	32.8	4.1	-35.5	1	-10.5	38.4	82	-43.6
4244.87	44.2	32.3	5	-35.5	1	-10.5	36.5	82	-45.5
5093.84	36.2	34.3	5.4	-35.5	1	-10.5	30.9	82	-51.1
5942.79	37.3	35.2	5.7	-35.5	1	-10.5	33.2	82	-48.8
6791.76	32.6	36	6	-35.5	1	-10.5	29.6	82	-52.4
7640.73	37	36.9	6.4	-35.5	1	-10.5	35.3	82	-46.7
8489.7	40.1	37.5	6.7	-35.5	1	-10.5	39.3	82	-42.7

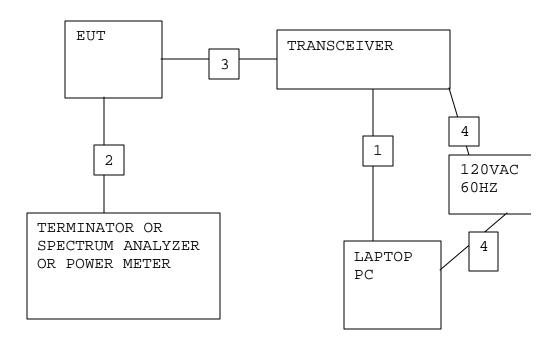
AF= ANTENNA FACTOR CL=CABLE LOSS AMP= AMPLIFIER GAIN FILTER=HP FILTER INSERTION LOSS
DIST=DISTANCE CORRECTION TO 3 METERS

RES & VIDEO B/W=1MHZ

SECTION 2.995 FREQUENCY STABILITY

Tx Output (MHz)	ppm	limit (Hz)				
848.97405	2.5	2122.435				
Frequency (MHz)	<u>Temp</u>	Delta(MHz)	Frequency (MHz)	Percent	Voltage	Delta (Hz)
848.974685	-30	0.000635	848.974063	85	4.25	0.000013
848.973635	-20	-0.000415	848.973685	115	5.75	-0.000365
848.973685	-10	-0.000365				
848.973685	0	-0.000365				
848.973775	10	-0.000275				
848.97405	20	0.000000				
848.974063	30	0.000013				
848.973838	40	-0.000212				
848.9733	50	-0.000750				
848.972613	60	-0.001437				
						1
						-
						<u> </u>

16. EXTERNAL I/O CABLE CONSTRUCTION DESCRIPTION


CABLE NO: 1			
I/O Port: SERIAL	Number of I/O ports of this type:1		
Number of Conductors:9	Connector Type:DB9		
Capture Type: SCREW-IN	Type of Cable used:UN-SHIELDED		
Cable Connector Type: PLASTIC	Cable Length: 2M		
Bundled During Tests: NO	Data Traffic Generated: YES		
Remark: N/A			

CABLE NO: 2			
I/O Port: RF	Number of I/O ports of this type:1		
Number of Conductors:2	Connector Type:SMA		
Capture Type: SCREW-IN	Type of Cable used: SHIELDED		
Cable Connector Type: METAL	Cable Length: 0.25M		
Bundled During Tests: NO	Data Traffic Generated: YES		
Remark: N/A			

CABLE NO: 3			
I/O Port: DATA	Number of I/O ports of this type:1		
Number of Conductors: 16	Connector Type: 16 PIN RIBBON		
Capture Type: SNAP-IN	Type of Cable used: UNSHIELDED		
Cable Connector Type: MOLDED	Cable Length: 0.25M		
Bundled During Tests: NO	Data Traffic Generated: YES		
Remark: N/A			

CABLE NO: 4				
I/O Port: DC POWER	Number of I/O ports of this type:1			
Number of Conductors: 2	Connector Type: DC			
Capture Type: SNAP IN	Type of Cable used: UNSHIELDED			
Cable Connector Type: MOLDING	Cable Length:2M			
Bundled During Tests: NO	Data Traffic Generated: NO			
Remark: N/A				

SETUP BLOCK DIAGRAM

