

Report No. : FR950335AR

FCC Test Report

FCC ID	: NYOSYECNWPC1904
Equipment	: Wireless Charging System
Brand Name	: SEOYON ELECTRONICS CO., LTD.
Model Name	: SYECNWPC1904
Applicant/ Manufacturer	: SEOYON ELECTRONICS Co.,Ltd 100, Saneop-ro 156beon-gil, Gwonseon-gu, Suwon-si, Gyeonggi-do, South Korea
Standard	: 47 CFR FCC Part 15.225

The product was received on May 06, 2019, and testing was started from May 17, 2019 and completed on May 18, 2019. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of United States government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Allen Lin

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

HISTO	ISTORY OF THIS TEST REPORT				
SUMN	IARY OF TEST RESULT	4			
1	GENERAL DESCRIPTION	5			
1.1	Information	5			
1.2	Testing Applied Standards	7			
1.3	Testing Location Information	7			
1.4	Measurement Uncertainty	7			
2	TEST CONFIGURATION OF EUT	8			
2.1	Test Condition	8			
2.2	The Worst Case Modulation Configuration	8			
2.3	Test Channel Frequencies Configuration	8			
2.4	The Worst Case Measurement Configuration	9			
2.5	Support Equipment	10			
2.6	Test Setup Diagram	11			
3	TRANSMITTER TEST RESULT	12			
3.1	AC Power-line Conducted Emissions	12			
3.2	Emission Bandwidth	16			
3.3	Field Strength of Fundamental Emissions and Spectrum Mask	18			
3.4	Transmitter Radiated Unwanted Emissions	20			
3.5	Frequency Stability				
4	TEST EQUIPMENT AND CALIBRATION DATA	34			

Appendix A. Test Photos

Photographs of EUT V01

History of this test report

Report No.	Version	Description	Issued Date
FR950335AR	01	Initial issue of report	May 29, 2019

Report Clause	Ref. Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	FCC 15.203
3.1	15.207	AC Power-line Conducted Emissions	PASS	FCC 15.207
3.2	15.215(c)	Emission Bandwidth	PASS	Fall in band F _L ≥ 13.553 MHz F _H ≤ 13.567 MHz
3.3	15.225(a)~(d)	Field Strength of Fundamental Emissions and Spectrum Mask	PASS	124 dBuV/m at 3m
3.4	15.225(d)	Transmitter Radiated Unwanted Emissions	PASS	FCC 15.209
3.5	15.225(e)	Frequency Stability	PASS	± 0.01% (100ppm)

Summary of Test Result

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and explanations:

Transmit by EUT itself

Reviewed by: Sam Tsai

Report Producer: Jenny Yang

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information								
Frequency Range	Modulation Mode	Ch. Frequency (MHz)	Channel Number	Field Strength (dBuV/m)				
13.553 – 13.567 MHz	ISO 14443-3A (ASK) ISO 14443-3B (ASK) ISO 18092 (ASK)	13.56	1	57.58				
Note 1: Field strength pe	Note 1: Field strength performed peak level at 2m							

Note 1: Field strength performed peak level at 3m.

1.1.2 Antenna Information

	Antenna Category					
	Equipment placed on the market without antennas					
\square	Integral antenna (antenna permanently attached)					
	Temporary RF connector provided					
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.					
	External antenna (dedicated antennas)					

Antenna General Information				
No. Ant. Cat. Ant. Type				
1	Integral	Loop		

1.1.3 EUT Information

	Operational Condition				
EUT	EUT Power Type From DC Power supply				
	Type of EUT				
\square	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

	Duty Cycle Operation Restriction					
The	transmitter is used for	The t	ransmitter is operated			
\boxtimes	Inductive applications	\boxtimes	Automatically triggered			
	Duty cycle fixed mode	\square	Duty cycle random mode			
\boxtimes	Duty cycle mode - NFC-A (ISO 14443-3A)					
Dec	Declare transmitter duty cycle / 1 hour = 100%					
\boxtimes	Duty cycle mode - NFC-B (ISO 14443-3B)					
Dec	Declare transmitter duty cycle / 1 hour = 100%					
\boxtimes	Duty cycle mode - NFC-F (ISO 18092)					
Dec	Declare transmitter duty cycle / 1 hour = 100%					
Duty cycle mode - NFC-V (ISO 15693)						
Dec	Declare transmitter duty cycle / 1 hour = 100%					

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- KDB 174176 D01 v01r01

1.3 Testing Location Information

Testing Location						
\boxtimes	HWA YA	ADD	:	√o. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)		
		TEL	:	386-3-327-3456 FAX : 886-3-327-0973		
Test site Designation No. TW1190 with FCC.						

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
AC Conduction	CO01-HY	Lego	23.1~24.2°C / 53.5~57.1%	18/May/2019
RF Conducted	TH01-HY	Andy	23.1~24.8°C / 60.9~62.1%	17/May/2019
Radiated Emission	03CH03-HY	Patrick	23.2~24.1°C / 51.1~53.8%	17/May/2019

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.54 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	1.6 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	4.3 dB	Confidence levels of 95%
Conducted Emission	1.3 dB	Confidence levels of 95%
Temperature	0.7 °C	Confidence levels of 95%
Humidity	4 %	Confidence levels of 95%

2 Test Configuration of EUT

2.1 Test Condition

Condition Item	Abbreviation/Remark	Remark
Frequency Stability	Tnom	20°C
-	Tmin	-30°C
-	Tmax	75°C
-	Vnom	12V
-	Vmin	10.8V
-	Vmax	13.2V

2.2 The Worst Case Modulation Configuration

Modulation Used for	Conformance Testing
Modulation Mode	Field Strength (dBuV/m at 3 m)
NFC	57.58

2.3 Test Channel Frequencies Configuration

Modulation Mode	Test Channel Frequencies (MHz)
NFC	13.56

2.4 The Worst Case Measurement Configuration

Th	e Worst Case Mode for Following Conformance Tests
Tests Item	AC power-line conducted emissions
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 12V
Operating Mode	☐ 1. DC power supply

Th	e Worst Case Mode for Following Conformance Tests
Tests Item	Emission Bandwidth, Frequency Stability
Test Condition	Conducted measurement

Th	e Worst Case Mode for Following Conformance Tests
Tests Item	Field Strength of Fundamental Emissions Spectrum Mask, Transmitter Radiated Unwanted Emissions
Test Condition	Radiated measurement
	☑ 1. NFC-A (ISO 14443-3A)
Pretest Mode	2. NFC-B (ISO 14443-3B)
	⊠ 3. NFC-F (ISO 18092)
Operating Mode	☑ 1. DC power supply
	Z Plane
Orthogonal Planes of EUT	
Worst Planes of EUT	V

2.5 Support Equipment

	Supp	oort Equipment - AC Conduction	
No.	Equipment	Brand Name	Model Name
1	DC power supply	GW	GPS-3030DD

	Supp	oort Equipment - RF Conducted	
No.	Equipment	Brand Name	Model Name
1	DC Power Supply	GW	GPS-3030DD

	Si	upport Equipment - Radiated	
No.	Equipment	Brand Name	Model Name
1	DC power supply	GW	GPS-3030DD

2.6 Test Setup Diagram

- : 11 of 34 : May 29, 2019
- : 01

3 **Transmitter Test Result**

AC Power-line Conducted Emissions 3.1

3.1.1 AC Power-line Conducted Emissions Limit

AC P	ower-line Conducted Emissions I	Limit
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarith	im of the frequency.	

Note 1: Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

Test Procedures 3.1.3

	Test Method
\boxtimes	Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.
\boxtimes	If AC conducted emissions fall in operating band, then following below test method confirm final result.
	 Accept measurements done with a suitable dummy load replacing the antenna under the following conditions: (1) Perform the AC line conducted tests with the antenna connected to determine compliance with FCC 15.207 limits outside the transmitter's fundamental emission band; (2) Retest with a dummy load to determine compliance with FCC 15.207 limits within the transmitter's fundamental emission band.
	 For a device with a permanent antenna operating at or below 30 MHz, accept measurements done with a suitable dummy load, in lieu of the permanent antenna under the following conditions: (1) Perform the AC line conducted tests with the permanent antenna to determine compliance with the FCC 15.207 limits outside the transmitter's fundamental emission band; (2) Retest with a dummy load in lieu of the permanent antenna to determine compliance with the FCC 15.207 limits within the transmitter's fundamental emission band;

3.1.4 Test Setup

_							_		-					
erati	ng Mode		1				Po	wer P	hase			Neutral		
eratin	ng Funct	ion	DC	power	r suppl	у								
														18/05/2019
100														
100-														Lim.PK
90-														РК 🖊
80 -														Lim.AV 🗸
70-														AV Z
60-														
									J					
50-]					
40-														
30-A 20-	the defension of the second	nderen der verligten	Harvelakeppaper	whitedawa	-	an a	h the all descentions of	na kata	uninghangun P	nan	vurny liner	many the "High has	yerely goods	
30-1 20- 10- 0- 150k	Huddletternesserverse	outern/tertyllynu	Harrodalasapaparil	Worled Van Mart		unandersyddiaderhanwi	h thuilean teamy	andraddynad	en merdennen	10M	the track the	evening the Manhan	30M	
30-1 20- 10- 0-1 150k	Eren	patero (****uli)//s	Have Alson put	W/Mally-Map	1 M Eartor	Condition	Comment	чирициче Ваш	HISN	10M	Manay Maren	weiseth th ^{an} thekin	30M	
30- 20- 10- 150k	Freq	Level	Limit	Margin	1M Factor	Condition	Comment	Raw	LISN	10M	AT	evening the state of the state	30M	
30-4 20- 10- 0- 150k Type	Freq (Hz)	Level (dBuV)	Limit (dBuV)	Margin (dB)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Condition	Comment	Raw (dBuV)	LISN (dB)	10M	AT (dB) 9.86	nuenselik anderen	30M	
30-1 20- 10- 0- 150k Type QP	Freq (Hz) 167.071k	Level (dBuV) 20.91	Limit (dBuV) 55.10	Margin (dB) -37.90	1M Factor (dB) 19.52 19.52	Condition Neutral	Comment	Raw (dBuV) 1.39 -2.32	LISN (dB) 9.65	CL (dB) 0.01	AT (dB) 9.86 9.86		30M	
30 - 1 20 - 10 - 0 - 1 150k Type QP AV OP	Freq (Hz) 167.071k 1.28M	Level (dBuV) 20.91 17.20	Limit (dBuV) 65.10 55.00	Margin (dB) -44.19 -37.90 -42.53	1M Factor (dB) 19.52 19.52 19.52	Condition Condition Neutral Neutral	Comment	Raw (dBuV) 1.39 -2.32 -6.05	LISN (dB) 9.65 9.64	CL (dB) 0.01 0.02	AT (dB) 9.86 9.86 9.86		30M	
30-4 20- 10- 0-, 150k Type QP AV QP AV	Freq (Hz) 167.071k 1.28M	Level (dBuV) 20.91 17.20 13.47 12.63	Limit (dBuV) 65.10 55.00 46.00	Margin (dB) -44.19 -37.90 -42.53 -33.37	1M Factor (dB) 19.52 19.52 19.52 19.52	Condition Condition Neutral Neutral Neutral	Comment	Raw (dBuV) 1.39 -2.32 -6.05 -6.89	LISN (dB) 9.65 9.64 9.64	CL (dB) 0.01 0.02 0.02	AT (dB) 9.86 9.86 9.86 9.86		30M	
30 - A 20 - 10 - 0 - , 150k Type AV QP AV QP AV QP	Freq (Hz) 167.071k 1.28M 5.598M	Level (dBuV) 20.91 17.20 13.47 15.06	Limit (dBuV) 65.10 55.10 56.00 46.00 60.00	Margin (dB) -44.19 -37.90 -42.53 -33.37 -44.94	Factor (dB) 19.52 19.52 19.52 19.52 19.52 19.52 19.52	Condition Condition Neutral Neutral Neutral Neutral Neutral	Comment	Raw (dBuV) 1.39 -2.32 -6.05 -6.89 -4.57	LISN (dB) 9.65 9.64 9.68	CL (dB) 0.01 0.02 0.02 0.06	AT (dB) 9.86 9.86 9.86 9.86 9.86		30M	
30- 20- 10- 0-, 150k QP AV QP AV QP AV QP AV	Freq (Hz) 167.071k 1.28M 1.28M 5.998M 5.998M	Level (dBuV) 20.91 17.20 13.47 15.06 14.46	Limit (dBuV) 65.10 55.10 56.00 46.00 60.00 50.00	Margin (dB) -44.19 -37.90 -42.53 -33.37 -44.94 -35.54	Factor (dB) 19.52 19.52 19.52 19.52 19.63 19.63	Condition Condition Neutral Neutral Neutral Neutral Neutral Neutral	Comment	Raw (dBuV) 1.39 -2.32 -6.05 -6.89 -4.57 -5.17	LISN (dB) 9.65 9.64 9.68 9.68	10M	AT (dB) 9.86 9.86 9.86 9.86 9.86 9.89 9.89		30M	
30- 20- 10- 0-, 150k QP AV QP AV QP AV QP AV QP	Freq (Hz) 167.071k 1.28M 1.28M 5.998M 5.998M 10.406M	Level (dBuV) 20.91 17.20 13.47 12.63 15.06 14.46 15.21	Limit (dBuV) 65.10 55.00 46.00 60.00 50.00	Margin (dB) -44.19 -37.90 -42.53 -33.37 -44.94 -35.54 -44.79	Factor (dB) 19.52 19.52 19.52 19.52 19.63 19.63 19.63	Condition Condition Neutral Neutral Neutral Neutral Neutral Neutral Neutral	Comment	Raw (dBuV) 1.39 -2.32 -6.05 -6.89 -4.57 -5.17 -4.47	LISN (dB) 9.65 9.64 9.68 9.68 9.71	10M	AT (dB) 9.86 9.86 9.86 9.86 9.86 9.89 9.89 9.89		30M	
30- 20- 10- 0-, 150k QP AV QP AV QP AV QP AV QP AV	Freq (Hz) 167.071k 1.28M 1.28M 5.998M 10.406M 10.406M	Level (dBuV) 20.91 17.20 13.47 12.63 15.06 14.46 15.21 14.53	Limit (dBuV) 65.10 55.10 56.00 46.00 60.00 50.00 50.00	Margin (dB) -44.19 -37.90 -42.53 -33.37 -44.94 -35.54 -44.79 -35.47	Factor (dB) 19.52 19.52 19.52 19.63 19.63 19.63 19.68	Condition Condition Neutral	Comment	Raw (dBuV) 1.39 -2.32 -6.05 -6.89 -4.57 -5.17 -4.47 -5.15	LISN (dB) 9.65 9.64 9.68 9.71 9.71	10M	AT (dB) 9.86 9.86 9.86 9.88 9.89 9.89 9.89 9.89		30M	
30 - 20 - 10 - 0 - 150k Type QP AV QP AV QP AV QP AV QP AV QP	Freq (Hz) 167.071k 1.28M 1.28M 5.998M 5.998M 5.998M 10.406M 10.406M 13.543M	Level (dBuV) 20.91 17.20 13.47 12.63 15.06 14.46 15.25 14.53 25.32	Limit (dBuV) 65.10 55.10 55.00 46.00 60.00 50.00 50.00 60.00	Margin (dB) -44.19 -37.90 -42.53 -33.37 -44.94 -35.54 -44.79 -35.54 -34.68	Factor (dB) 19.52 19.52 19.52 19.63 19.63 19.63 19.68 19.73	Condition Condition Neutral	Comment - - - - - - - - - - - - - -	Raw (dBuV) 1.39 -2.32 -6.05 -6.89 -4.57 -5.17 -4.47 -5.15 5.59	LISN (dB) 9.65 9.64 9.68 9.71 9.71	10M	AT (dB) 9.86 9.86 9.86 9.89 9.89 9.89 9.90 9.90 9.90		30M	
30- 20- 10- 0- 150k QP AV QP AV QP AV QP AV QP AV QP AV QP AV	Freq (Hz) 167.071k 167.071k 1.28M 1.28M 5.998M 5.998M 10.406M 10.406M 13.543M 13.543M	Level (dBuV) 20.91 17.20 13.47 12.63 15.06 14.46 15.21 14.53 25.32 25.32	Limit (dBuV) 65.10 55.10 55.00 46.00 60.00 50.00 60.00 50.00 60.00 50.00	Margin (dB) -44.19 -37.90 -42.53 -33.37 -44.94 -35.54 -44.79 -35.54 -34.68 -33.08	Factor (dB) 19.52 19.52 19.52 19.63 19.68 19.68 19.73	Condition Condition Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral	Comment - - - - - - - - - - - - - - - - - - -	Raw (dBuV) 1.39 -2.32 -6.05 -6.89 -4.57 -5.17 -4.47 -5.15 5.59 -2.81	LISN (dB) 9.65 9.65 9.64 9.68 9.68 9.71 9.71 9.71	10M	AT (dB) 9.86 9.86 9.89 9.89 9.89 9.90 9.90 9.90 9.93		30M	
30- 20- 10- 0- 150k QP AV QP AV QP AV QP AV QP AV QP AV QP AV QP AV QP	Freq (Hz) 167.071k 167.071k 1.28M 5.998M 5.998M 10.406M 10.406M 10.406M 13.543M 13.543M 13.543M	Level (dBuV) 20.91 17.20 13.47 12.63 15.06 14.46 15.21 14.53 25.32 16.92 25.10	Limit (dBuV) 65.10 55.10 55.00 46.00 60.00 50.00 60.00 50.00 60.00 50.00	Margin (dB) -44.19 -37.90 -42.53 -33.37 -44.94 -35.54 -44.79 -35.54 -33.08 -33.08 -33.90	Factor (dB) 19.52 19.52 19.52 19.63 19.68 19.73 19.73 19.77	Condition Condition Condition Neutral	Comment	Raw (dBuV) 1.39 -2.32 -6.05 -6.89 -6.89 -6.89 -6.89 -5.17 -4.47 -5.15 5.59 -2.81 5.33	LISN (dB) 9.65 9.64 9.68 9.68 9.71 9.71 9.71 9.71 9.71	10M	AT (dB) 9.86 9.86 9.86 9.86 9.89 9.89 9.89 9.90 9.90 9.90 9.90 9.93 9.93 9.95		30M	

3.1.5 Test Result of AC Power-line Conducted Emissions

TEL : 886-3-327-3456
FAX : 886-3-327-0973
Report Template No.: HE1-C6 Ver2.3
FCC ID: NYOSYECNWPC1904

18/05/2019 Lim.PK /// PK /// Lim.AV /// AV ///
18/05/2019 Lim.PK /// PK /// Lim.AV /// AV ///
18/05/2019
Lim.PK V PK V Lim.AV V AV V
PK V Lim.AV V
PK V Lim.AV V AV V
AV
AV 🔨

3.2 Emission Bandwidth

3.2.1 Emission Bandwidth Limit

20dB Bandwidth Limit

☑ Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (13.553 – 13.567 MHz).

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

 Test Method

 Image: Second state in the image of the equipment is the equipment in the measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Occupied Channel Bandwidth Result											
Modulation Mode	Modulation Frequency Mode (MHz)		99% Bandwidth (kHz)	F _L at 20dB BW (MHz)	F _H at 20dB BW (MHz)						
NFC	13.56	2.46000	2.09841	13.55980	13.56226						
Lii	Limit N/A			13.553	13.567						
Result			Complied								

3.3 Field Strength of Fundamental Emissions and Spectrum Mask

3.3.1 Field Strength of Fundamental Emissions and Spectrum Mask Limit

Field Strength of Fundamental Emissions For FCC											
Emissions	Emissions (uV/m)@30m		(dBuV/m)@10m	(dBuV/m)@3m	(dBuV/m)@1m						
fundamental	15848	84.0	103.1	124.0	143.1						
Quasi peak measurement of the fundamental.											

	Spectrum Mask For FCC												
Freq. of Emission (MHz)	(uV/m)@30m	(dBuV/m)@30m	(dBuV/m)@10m	(dBuV/m)@3m	(dBuV/m)@1m								
1.705~13.110	30	29.5	48.6	69.5	88.6								
13.110~13.410	106	40.5	59.6	80.5	99.6								
13.410~13.553	334	50.5	69.6	90.5	109.6								
13.553~13.567	15848	84.0	103.1	124.0	143.1								
13.567~13.710	334	50.5	69.6	90.5	109.6								
13.710~14.010	106	40.5	59.6	80.5	99.6								
14.010~30.000	30	29.5	48.6	69.5	88.6								

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

	Test Method								
\bowtie	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz and test distance is 3m.								
	At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be following below methods.								
	The results shall be extrapolated to the specified distance by making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor.								
	The results shall be by using the square of an inverse linear distance extrapolation factor (40 dB/decade).								
\boxtimes	For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.								

3.3.4 **Test Setup**

Test Result of Field Strength of Fundamental Emissions and Spectrum Mask 3.3.5

Field Strength of Fundamental Emissions Result											
Modulation Mode	Frequency (MHz)	Fundamental (dBuV/m)@3m	Polarization	Margin (dB)	Limit (dBuV/m)@3m						
NFC	13.56	61.38	н	52.42	124.00						
Res	sult		Com	plied							
Note 1: Measurement worst emissions of receive antenna polarization: H(Horizontal).											

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Report Template No.: HE1-C6 Ver2.3 FCC ID: NYOSYECNWPC1904

Report Version

- : May 29, 2019
- : 01

3.4 Transmitter Radiated Unwanted Emissions

3.4.1 Transmitter Radiated Unwanted Emissions Limit

Transmitter Radiated Unwanted Emissions Limit											
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)								
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300								
0.490~1.705	24000/F(kHz)	33.8 - 23	30								
1.705~30.0	30	29	30								
30~88	100	40	3								
88~216	150	43.5	3								
216~960	200	46	3								
Above 960	500	54	3								
			6 1 1 1 1								

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

	Test Method
\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1 GHz and test distance is 3m.
\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz and test distance is 3m.
\boxtimes	At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be following below methods.
	The results shall be extrapolated to the specified distance by making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor.
	The results shall be by using the square of an inverse linear distance extrapolation factor (40 dB/decade).
\boxtimes	For radiated measurement. Loop antenna was rotated about the horizontal and vertical axis and the equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted field strength level.
\boxtimes	The any unwanted emissions level shall not exceed the fundamental emission level.
\boxtimes	All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

3.4.4 Test Setup

Magnetic field tests shall be performed in the frequency range of 9 kHz to 30 MHz using a calibrated loop antenna. The center of the loop shall be 1 m above the ground.

3.4.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

Summary

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)	(°)	(m)	
13.553-13.567MHz	-	-	-	-	-	-	-	-	-	-	-
NFC	Pass	PK	2.06M	56.63	69.50	-12.87	20.54	3	360	1.00	-

Result

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)	(°)	(m)	
NFC	-	-	-	-	-	-	-	-	-	-	-
13.56MHz_Mode 1	Pass	PK	13.562M	61.38	124.00	-62.62	22.87	3	360	1.00	-
13.56MHz_Mode 1	Pass	PK	30.15k	56.96	126.97	-70.01	20.39	3	0	1.00	-
13.56MHz_Mode 1	Pass	PK	83.73k	48.21	123.11	-74.90	19.52	3	0	1.00	-
13.56MHz_Mode 1	Pass	PK	98.958k	45.43	122.01	-76.58	19.21	3	0	1.00	-
13.56MHz_Mode 1	Pass	PK	388.8k	53.41	101.10	-47.69	20.71	3	360	1.00	-
13.56MHz_Mode 1	Pass	PK	2.06M	56.63	69.50	-12.87	20.54	3	360	1.00	-
13.56MHz_Mode 1	Pass	PK	27.134M	40.06	69.50	-29.44	24.06	3	360	1.00	-

: May 29, 2019

: 26 of 34 : May 29, 2019

: 01

3.4.6 Transmitter Radiated Unwanted Emissions (Above 30MHz)

Summary

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)	(°)	(m)	
13.553-13.567MHz	-	-	-	-	-	-	-	-	-	-	-
NFC	Pass	QP	542.16M	42.97	46.00	-3.03	-1.30	3	23	1.00	-

Result

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)	(°)	(m)	
NFC	-	-	-	-	-	-	-	-	-	-	-
13.56MHz_Mode 1	Pass	PK	35.82M	35.33	40.00	-4.67	-7.68	3	0	1.00	-
13.56MHz_Mode 1	Pass	PK	515M	42.60	46.00	-3.40	-2.36	3	0	1.00	-
13.56MHz_Mode 1	Pass	PK	650.8M	40.59	46.00	-5.41	-0.33	3	0	1.00	-
13.56MHz_Mode 1	Pass	QP	542.16M	42.97	46.00	-3.03	-1.30	3	23	1.00	-
13.56MHz_Mode 1	Pass	QP	569.32M	42.81	46.00	-3.19	-1.15	3	143	1.12	-
13.56MHz_Mode 1	Pass	QP	582.9M	41.96	46.00	-4.04	-1.38	3	89	1.02	-
13.56MHz_Mode 1	Pass	PK	37.76M	33.16	40.00	-6.84	-8.64	3	360	1.00	-
13.56MHz_Mode 1	Pass	PK	379.2M	33.35	46.00	-12.65	-4.45	3	360	1.00	-
13.56MHz_Mode 1	Pass	PK	515M	42.51	46.00	-3.49	-2.36	3	360	1.00	-
13.56MHz_Mode 1	Pass	PK	542.16M	42.95	46.00	-3.05	-1.30	3	360	1.00	-
13.56MHz_Mode 1	Pass	PK	569.32M	41.72	46.00	-4.28	-1.15	3	360	1.00	-
13.56MHz_Mode 1	Pass	PK	677.96M	38.52	46.00	-7.48	-0.27	3	360	1.00	-

: May 29, 2019

: May 29, 2019

3.5 Frequency Stability

3.5.1 Frequency Stability Limit

Frequency Stability Limit

 \boxtimes Carrier frequency stability shall be maintained to ±0.01% (±100 ppm).

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

	Test Method
\square	Refer as ANSI C63.10, clause 6.8 for frequency stability tests
	Frequency stability with respect to ambient temperature
	Frequency stability when varying supply voltage
	For conducted measurement.
	For radiated measurement. The equipment to be measured and the test antenna shall be oriented to obtain the maximum emitted power level.

3.5.4 Test Setup

ciolo i localitor i loquolloy olubility	3.5.5	Test Result of	Frequency	Stability
---	-------	----------------	-----------	-----------

Frequency Stability Result											
Condition	Ch. Freq.	. Frequency Stability (ppm)									
	(MHz)	Г	Test Frequency (MHz) Fre					equency Stability (ppm)			
		0 min	2 min	5 min	10 min	0 min	2 min	5 min	10 min		
$T_{20^{\circ}C}Vmax$	13.56	13.56065	13.56066	13.56066	13.56066	48.23	48.38	48.67	48.89		
$T_{20^\circ C}$ Vmin	13.56	13.56064	13.56064	13.56065	13.56065	46.83	47.20	47.86	47.79		
T75 _℃ Vnom	13.56	13.56058	13.56060	13.56058	13.56065	42.85	44.54	42.77	48.01		
$T6_{0^{\circ}C}Vnom$	13.56	13.56062	13.56065	13.56065	13.56065	45.87	48.23	48.01	48.23		
$T_{50^{\circ}C}Vnom$	13.56	13.56061	13.56057	13.56065	13.56058	44.62	41.81	48.01	42.77		
$T_{40^{\circ}C}Vnom$	13.56	13.56062	13.56058	13.56065	13.56065	45.87	43.07	48.23	47.94		
T _{30°C} Vnom	13.56	13.56062	13.56060	13.56065	13.56065	45.87	44.54	48.23	48.23		
$T_{20^{\circ}C}Vnom$	13.56	13.56058	13.56058	13.56058	13.56065	42.85	42.85	42.85	48.23		
$T_{10^{\circ}C}$ Vnom	13.56	13.55985	13.55986	13.55987	13.55989	-11.06	-10.32	-9.59	-8.11		
$T_{0^{\circ}C}Vnom$	13.56	13.55980	13.55981	13.55975	13.55977	-14.75	-14.01	-18.44	-16.96		
T _{-10°C} Vnom	13.56	13.55972	13.55975	13.55980	13.55979	-20.65	-18.44	-14.75	-15.49		
T _{-20°C} Vnom	13.56	13.55960	13.55967	13.55968	13.55973	-29.50	-24.34	-23.60	-19.91		
T _{-30°C} Vnom	13.56	13.55962	13.55970	13.55973	13.55979	-28.02	-22.12	-19.91	-15.49		
Limit (ppm) - 100											
Res	Result Complied										
Note 1: Measure at 85 % [Vmin] and 115 % [Vmax] of the nominal voltage [Vnom]. The nominal voltage refer test report clause 2.1 for EUT operational condition. Note 2: Measure maximum deviation frequency at operating frequency at startup and two, five, and ten min.											

4 Test Equipment and Calibration Data

Instrument for AC Conduction

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date
EMC Receiver	R&S	ESR3	102052	9kHz ~ 3.6GHz	09/Apr/2019	08/Apr/2020
LISN	R&S	ENV 216	101274	9kHz ~ 30MHz	12/Jun/2018	11/Jun/2019
RF Cable-CON	MTJ	RG142	CB001-CO	9kHz ~ 30MHz	17/Sep/2018	16/Sep/2019
AC POWER	APC	AFC-11003G	F308010045	47Hz~63Hz 5~300V	NCR	NCR
Impuls Begrenzer Pulse Limiter	SCHWARZBECK	VTSD 9561F	9495	9kHz ~ 30MHz	11/Oct/2018	10/Oct/2019

Instrument for Conducted Test

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date
Spectrum Analyzer	R&S	FSV 40	101013	9kHz~40GHz	13/Mar/2019	12/Mar/2020
Loop Antenna	TESEQ	HLA 6120	31244	9kHz ~ 30MHz	15/Mar/2019	14/Mar/2020

Instrument for Radiated Test

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30MHz ~ 1GHz 3m	19/Oct/2018	18/Oct/2019
Amplifier	Agilent	8447D	2944A11149	100kHz ~ 1.3GHz	27Jul/2018	02/Jul/2019
Signal Analyzer	R&S	FSV40	101500	10Hz ~ 40GHz	18/Jul/2018	17/Jul/2019
RF Cable-R03m	Jye Bao	RG142	CB017	9kHz ~ 1GHz	18/Jan/2019	17/Jan/2020
Bilog Antenna & 5dB Attenuator	SCHAFFNER / MTJ	CBL 6112B / MTJ6102-05	2723 / 2	30MHz ~ 1GHz	08/Sep/2018	07/Sep/2019
EMI Test Receiver	R&S	ESR	102052	9kHz ~ 3.6GHz	09/Apr/2019	08/Apr/2020
Loop Antenna	TESEQ	HLA 6120	31244	9k-30MHz	15/Mar/2019	14/Mar/2020