

RF Test Report:

Altiostar Deneb AWS-3 LTE iRRH

FCC ID: NXP-4451E400-3

SC_TR_261_B

Prepared for: Altiostar Inc. 100 Ames Pond Drive Tewksbury MA 01876 USA

> Sulis Consultants Limited Mead House, Longwater Road, Eversley, Hampshire, RG27 0NW, UK Registered in England & Wales, number 05466247 <u>http://www.sulisconsultants.com</u>

Contents

1	Revisi	on History	. 4
2	Purpo	se	. 4
3	Refere	ence Documents	. 4
4	Test I	nformation	. 5
4	.1	Client	. 5
4	.2	Test personnel	. 5
4	.3	Test sample	. 5
5	Produ	ct Description	. 6
6	Test C	Configuration	. 7
6	.1	Test sample and Operating mode	. 7
6	.2	Support equipment	. 7
6	.3	Equipment set-up	. 8
7	Summ	nary of Tests performed	. 9
8	Trans	mit Power	10
8	.1	Requirement and test method	10
8	.2	Test results – single channel	11
8	.3	Test results – dual channel	15
9	Spect	ral Power Density	17
9	.1	Requirement and test method	17
9	.2	Test results	17
10	Occup	vied Bandwidth	21
1	0.1	Requirement and test method	21
1	0.2	Test results: Occupied Bandwidth	21
11	Condu	ucted Spurious Emissions inc. Band Edge	25
1	1.1	Requirement and test method	25
1	1.2	Bandedge Results – single channel	25
1	1.3	Band edge Results – dual channel	30
1	1.4	Conducted Spurious Emissions Results – single channel	31
1	1.5	Conducted Spurious Emissions Results – dual channel	35
12	Radia	ted Spurious Emissions	36
1	2.1	Requirement and test method	36
1	2.2	Results	36
13	Test e	equipment	39

Tables

Table 1: Equipment under test	7
Table 2: Support Equipment	7
Table 3: Summary of tests performed	9
Table 4: Transmit power – single channel	11
Table 5: Peak to Average ratio	11
Table 6: Transmit power – dual channel	15
Table 7: Transmit power spectral density	17
Table 8: Occupied Bandwidth test results	21
Table 9: Band edge emissions	25
Table 10: Band edge emissions – dual channel	
Table 11: CSE results except band edge	31
Table 12: CSE results except band edge	35
Table 13: Test Equipment	

Figures

Figure 1: Configuration for test	8
Figure 2: PAR plots	12
Figure 3: Transmit Power plots for single channel	15
Figure 4: Transmit Power plots for dual channel	16
Figure 5: Transmit Power Spectral Density plots	20
Figure 6: Occupied Bandwidth plots	24
Figure 7: Band-edge emissions for 5 MHz channels	26
Figure 8: Band-edge emissions for 10 MHz channels	27
Figure 9: Band-edge emissions for 15 MHz channels	
Figure 10: Band-edge emissions for 20 MHz channels	29
Figure 11: Band-edge emissions for 2x 5 MHz channels	
Figure 12: Conducted Spurious Emissions plots – single channel	34
Figure 13: Conducted Spurious Emissions plots – dual channel	35
Figure 14: RSE pre-scans, 20 MHz channel	
Figure 15: RSE pre-scans, 2x 5MHz channels	

1 Revision History

Revision	Originator	Date	Comment
А	C Blackham	19 June 2017	1 st release
В	C Blackham	27 June 2017	Minor clarifications added

2 Purpose

This document details the radio testing performed on the Altiostar DENEB AWS-3 LTE iRRH (intelligent Remote Radio Head), model number iRM4451E400-3, designed to transmit in the 2110-2180 MHz band, to demonstrate compliance with FCC requirements

3 Reference Documents

[Ref 1]	47CFR2	Title 47 Code of Federal Regulations Part 2: frequency allocations and radio treaty matters; general rules and regulations
[Ref 2]	47 CRF27	Title 47 Code of Federal Regulations Part 27: Miscellaneous Communications Services
[Ref 3]	TIA-603-D	Land Mobile FM or PM – Communications Equipment – Measurement and Performance Standards
[Ref 4]	KDB 662911 D01 v02r01	Federal Communications Commission Office of Engineering and Technology Laboratory Division; Emissions Testing of Transmitters with Multiple Outputs in the Same Band (e.g., MIMO, Smart Antenna, etc)
[Ref 5]	KDB971168 DO1 v02r02	Federal Communications Commission Office of Engineering and Technology Laboratory Division; Measurement guidance for certification of licensed digital transmitters.
[Ref 7]	KDB 442401	Radiated emission measurements for licensed radio service equipment
[Ref 7]	ТІА-603-Е	Land Mobile FM or PM – Communications Equipment – Measurement and Performance Standards

4 Test Information

4.1 Client

Altiostar Inc. 100 Ames Pond Drive Tewksbury MA 01876 USA

4.2 Test personnel

Antenna port tests

Testing was performed by Charlie Blackham of Sulis Consultants Ltd at Altiostar UK offices and at Hursley EMC between 14^{th} and 16^{th} June 2017.

Radiated Spurious Emissions (section 12)

Testing was performed by Richard Pennell of Hursley EMC services Ltd, at their FCC Registered test facility, UK designation number UK0006 on 15th June 2017 under job 17R0312.

4.3 Test sample

The results herein only refer to sample detailed in section 6

5 Product Description

See Operational Description for more detail

Transmit power was set to maximum rated value of 44.7 dBm per port.

Channels for measurement were selected from the following channels within the band of operation:

Single	Carrier	test	frequen	cies:
--------	---------	------	---------	-------

Bandwidth (MHz)	Bottom channel (MHz)	Middle channel (MHz)	Top channel (MHz)
5	2112.5	2145.0	2177.5
10	2115.0	2145.0	2175.0
15	2117.5	2145.0	2172.5
20	2120.0	2145.0	2170.0

Dual carrier test frequencies

Bandwidth (MHz)	Middle channel (MHz)
5+5	2112.5 + 2177.5

The test waveform has a 100% duty cycle so no gating or allowance for duty cycle is required when taking measurements

6 Test Configuration

6.1 Test sample and Operating mode

The equipment under test (EUT) was:

Manufacturer	Name	Product Code	Model Number	Serial Number
Altiostar	Deneb AWS-3	340-00-0081	iRM4451E400-3	TEW07170003

Table 1: Equipment under test

6.2 Support equipment

The support equipment was:

Description	Manufacturer	Name	Serial Number
Laptop	HP	250	Dvt-mobile altiostar
DC PSU	Agilent	N5767A	AN00152

 Table 2: Support Equipment

6.3 Equipment set-up

Equipment was configured as per figure 1:

- The iRM4451E400-3 was configured used a web browser application that allowed the unit to be placed into a test mode and the required frequency, bandwidth and power to be set
- The insertion loss of the Attenuator and Co-ax cable were before testing and their combined path-loss was programmed into the analyser before testing.

Figure 1: Configuration for test

Test	47 CFR Part	Limit	Result	Section
Transmit Power	27.50(d)(2) / 2.1046	1640 W EIRP	Pass	8
Spectral Power Density	27.50(d)(2) / 2.1046	1640 W EIRP/MHz	Pass	9
Occupied Bandwidth	2.1049	None	Pass	10
Conducted Spurious Emissions and Band Edge	27.53(h) / 2.1051	-13 dBm	Pass	11
Radiated Spurious Emissions	27.53(h) / 2.1053	-13 dBm	Pass	12
Frequency Stability	27.54 / 2.10	None	See report S	C_TR_260

7 Summary of Tests performed

Table 3: Summary of tests performed

Testing was performed using QPSK, 16 QAM (lowest supported QAM rate) and 256 QAM (highest supported QAM rate). Additional TX power and PSD testing of 64QAM showed that this mode was not a worst case so other QAM modes were used for band-edge and spurious emissions tests.

8 Transmit Power

8.1 Requirement and test method

The device is designed to be installed without Geographic limits.

27.50 Power limits and duty cycle.

(d) (2) The power of each fixed or base station transmitting in the 1995-2000 MHz, the 2110-2155 MHz 2155-2180 MHz band, or 2180-2200 MHz band and situated in any geographic location other than that described in paragraph (d)(1) of this section is limited to:

(i) An equivalent isotropically radiated power (EIRP) of 1640 watts when transmitting with an emission bandwidth of 1 MHz or less;

(ii) An EIRP of 1640 watts/MHz when transmitting with an emission bandwidth greater than 1 MHz.

(d)(5) Equipment employed must be authorized in accordance with the provisions of §24.51. Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (d)(6) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

(d)(6) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

Measurement made using KDB971168 DO1, section 5.2

Pre-testing had showed that all ports delivered the same transmit power.

The total power was summed in accordance with KDB662911D01 and the result compared against the limit. Specifically, the power was measured at Antenna port 1 and then 10log4 dB, or 6 dB, was added to show total power from all four ports.

8.2 Test results – single channel

Pre-testing had shown that highest power was on middle channel, so all measurements were made whilst transmitting at 2145.0 MHz.

Additional information relating to two channel operation is detailed in the Operational Description.

Channel Bandwidth	Modulation	TX power (dBm)	Summed TX power (dBm)	TX power (W)	Limit ¹ (W)	Result
	QPSK	44.48	50.48	111.7	None	Pass
	16 QAM	44.91	50.91	123.3	None	Pass
	64 QAM	44.53	50.53	113.0	None	Pass
	256 QAM	44.73	50.73	118.3	None	Pass
	QPSK	44.51	50.51	112.5	None	Pass
10 MHz	16 QAM	44.70	50.70	117.5	None	Pass
	256 QAM	44.47	50.47	111.4	None	Pass
	QPSK	44.69	50.69	117.2	None	Pass
15 MHz	16 QAM	44.70	50.70	117.5	None	Pass
	256 QAM	44.71	50.71	117.8	None	Pass
	QPSK	44.68	50.68	116.9	None	Pass
20 MHz	16 QAM	44.76	50.76	119.1	None	Pass
	256 QAM	44.72	50.72	118.0	None	Pass

Table 4: Transmit power – single channel

Peak to average ratio is dependent on modulation type and not on channel bandwidth, so results are presented for a single channel bandwidth only.

Modulation	Peak to Average ratio	Limit (dB)	Result
QPSK	8.02	13.0	Pass
QAM	8.06	13.0	Pass

Table 5: Peak to Average ratio

¹ Note: there is no "limit" applied during equipment authorisation as it is applied by the FCC at time of licensing.

Figure 2: PAR plots

Keysight Spectrum Analyzer - Channel Power					Keysight Spectr	um Analyzer - Channel Power				
	SENSE:EXT	ALIGN PAR	RTIAL .	11:41:17 PM Jun 14, 2017 Padio Std: None		RF 50 Ω AC		SENSE:EXT A	ALIGN PARTIAL	12:01:31 AM Jun 15, 2017 Padio Std: None
Center Freq 2.145000000 GHz	Trig: I	Free Run Av	g Hold:>10/10	Ruado Sta. Hone	Center Fre	q 2.145000000 GH.	<u> </u>	Trig: Free Run	Avg Hold:>10/10	radio ota. None
	#IFGain:Low #Atter	n: 20 dB Ex	t Gain: -41.90 dB	Radio Device: BTS			#FGain:Low	#Atten: 20 dB	Ext Gain: -41.90 dB	Radio Device: BTS
10 dB/div Ref 50.00 dBm					10 dB/div	Ref 50.00 dBm				
40.0					40.0					
30.0					30.0					
20.0	Anna Maria				20.0					
10.0					10.0					
0.00					0.00					
					0.00					
-100					-10.0					
20.0			-		-20.0					
-30.0					-30.0					
-40.0					-40.0					
Center 2.145 GHz				Span 40 MHz	Center 2.14	15 GHz				Span 40 MHz
Res BW 390 kHz	3	VBW 4 MHz		#Sweep 75.09 ms	Res BW 39	0 kHz		VBW 4 MHz		#Sweep 75.09 ms
			Concession of the						na po - frechter - patro	
Channel Power	Pov	ver Spectral De	ensity		Channe	el Power		Power Spect	ral Density	
44.70 dBm		00 0E JD						20.20	dDay ut	
44.76 dBm / 201	MHZ	-28.25 aB	m /Hz		44	1.72 aBm / 20	MHZ	-28.29	abm /Hz	
MSG		5	TATUS		MSG JRecalle	d State Register 7			STATUS	
20 1	MU- Cha	nnol 14				201		hannal	256 04	1
ZU 1	טווב כוומ								2 11 1 I I I I I I I I I I I I I I I I I	

Figure 3: Transmit Power plots for single channel

8.3 Test results – dual channel

Dual channel power measurements were made with QPSK and highest QAM modulation.

Channel Bandwidth	Modulation	TX power Ch1 (dBm)	TX power Ch2 (dBm)	Channel TX power (dBm)	Summed TX power (W)	Limit² (W)	Result
2x 5 MHz	QPSK	41.19	41.81	44.52	113.3	None	Pass
	256 QAM	41.39	41.71	44.56	114.4	None	Pass

Table 6: Transmit power – dual channel

The "Channel TX power" is the total of the two channels being transmitted from a single port. The dBm values are converted to watts before being summed

² Note: there is no "limit" applied during equipment authorisation as it is applied by the FCC at time of licensing.

Figure 4: Transmit Power plots for dual channel

9 Spectral Power Density

9.1 Requirement and test method

As per section 8.1

Measured using 1 MHz RBW and peak search

9.2 Test results

The table below shows values obtained in plots below in figure 4.

Channel Bandwidth	Modulation	TX power density (dBm/ MHz)	Summed TX power density (dBm/MHZ)	TX power density (W/MHz)	Limit (W/M Hz)	Result
	QPSK	38.14	44.14	25.9	None	Pass
F	16 QAM	38.55	44.55	28.5	None	Pass
5	64 QAM	38.19	44.19	26.2		
	256 QAM	37.93	43.93	24.7	None	Pass
	QPSK	34.89	40.89	12.3	None	Pass
10	16 QAM	35.93	41.93	15.6	None	Pass
	256 QAM	35.93	41.93	15.6	None	Pass
	QPSK	33.25	39.25	8.4	None	Pass
15	16 QAM	34.56	40.56	11.4	None	Pass
	256 QAM	33.79	39.79	9.5	None	Pass
	QPSK	32.30	38.30	6.8	None	Pass
20	16 QAM	32.90	38.90	7.8	None	Pass
	256 QAM	32.44	38.44	7.0	None	Pass

Table 7: Transmit power spectral density

Results are presented only for single channel operation. For dual channel operation, the transmit power is lower and so the power spectral density will be lower.e

Keysight Spectrum Analyzer - Swept SA			🖉 🔜 🧱 Keysight Spectrum Analyzer - Swep	e SA	
Marker 1 2.139075000000 GHz PNO: IFGai	Fast Trig: Free Run #Atten: 20 dB	PARTIAL 11:42:10 PMJ Avg Type: RMS TRACE Avg[Hold:>100/100 TYPE Ext Gain: -41.90 dB DET	m 14, 2017 02 8F 50 Ω 2 3 4 5 Marker 1 2.14417500 A MARKER 1 2.14417500	AC SENSE:EXT 00000 GHz PNO: Fast IFGain:Low #Atten: 20 dB	ALIGN PARTIAL 12:02:17 AN Jan 15, 20 Avg Type: RMS TRACE AvgHold:>100/100 Type Ext Gain: 41.90 dB
10 dB/div Ref 50.00 dBm		Mkr1 2.139 07 32.89	5 GHz 9 dBm 10 dB/div Ref 50.00 dl	Bm	Mkr1 2.144 175 GH 32.444 dB
40.0			40.0		
30.0			30.0		
10.0			10.0		
0.00			0.00		
-10.0			-10.0		
-20.0			-200		\
-30.0			-30.0		
-40.0			-40,0		
Center 2.14500 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz*	Span 25. Sweep 1.000 ms (1	00 MHz Center 2.14500 GHz 001 pts) #Res BW 1.0 MHz	#VBW 3.0 MHz*	Span 25.00 M Sweep 1.000 ms (1001 pt
MSG		STATUS	MSG		STATUS
20 MF	Iz Channel, I	l6 QAM		20 MHz Channe	l, 256 QAM

Figure 5: Transmit Power Spectral Density plots

10 Occupied Bandwidth

10.1 Requirement and test method

The Occupied Bandwidth is defined in 2.1049 as:

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission

The occupied bandwidth was measured using the inbuilt function on the Signal Analyser set to measure the 99% emission bandwidth. Measurement was made using peak detector.

There is no pass/fail criterion so measurement results are reported without reference to a limit for measurements on antenna port 1.

The table below shows worst case results for plots in figure 6.

10.2 Test results: Occupied Bandwidth

Channel Bandwidth	Modulation	99% Occupied Bandwidth (MHz)	Limit (MHz)	Result
	QPSK	4.499	5.0	Pass
F	16 QAM	4.491	5.0	Pass
5	64 QAM	4.520	5.0	
	256 QAM	4.507	5.0	Pass
	QPSK	8.993	10.0	Pass
10	16 QAM	8.995	10.0	Pass
	256 QAM	8.985	10.0	Pass
	QPSK	13.447	15.0	Pass
15	16 QAM	13.443	15.0	Pass
	256 QAM	13.500	15.0	Pass
	QPSK	17.914	20.0	Pass
20	16 QAM	17.951	20.0	Pass
	256 QAM	17.927	20.0	Pass

The table below shows results for plots below in figure 5.

Table 8: Occupied Bandwidth test results

Note: the PXA Signal analyser presents results for both "Occupied Bandwidth", which is the 99% measurement, and "-X dB Bandwidth", which is the -26 dB bandwidth as X is set to 26.

Keysight Spectrum Analyzer - Occupied BW	👝 👘 🔜 🔤 Keysight Spectr	rum Analyzer - Occupied BW			(c) (d) (K)
RF 50 Ω AC SENSE:EXT A ALIGN PARTIAL	11:41:40 PM Jun 14, 2017	RF 50 Ω AC	SENSE:EXT ALIGN	PARTIAL	12:01:57 AM Jun 15, 2017
Center Freq 2.145000000 GHz	Radio Std: None Center Fre	q 2.145000000 GHz	Trig: Free Run	AvalHold:>10/10	o Std: None
#IFGain:Low #Atten: 20 dB Ext Gain: -41.90 dB	Radio Device: BTS	#FGain:Low	#Atten: 20 dB	Ext Gain: -41.90 dB Radio	Device: BTS
in million Def CC 00 dDes		Def CC AD dDay			
10 dB/div Ref 55.00 dBm		Ref 55.00 dBm	1 1		
45.0	45.0				
man man man man and an mark mark mark mark mark mark mark mark	35.0		- Auron -	monterior	
				N	
	2.0				
15.0	15.0	1			
5.00	5.00				
5.00	-5.00				
15.0	15.0	mundered			
Mag Manual Parts	and the state of t				
35.0	-35.0				
Center 2 145 CHz	Spap 30 MHz	45 GHz			Spap 30 MHz
Res BW 270 kHz VBW 2.7 MHz	Sweep 1 ms Res BW 27	70 kHz	VBW 2.7 MHz		Sweep 1 ms
Occupied Bandwidth Total Power 55.1 dBm	Occupi	ed Bandwidth	Total Power	54.2 dBm	
17 051 MU-		17 027 MH-			
17.551 MHZ		17.927 WINZ			
Transmit Freg Error -9.471 kHz % of OBW Power 99.00 %	Transmi	it Freg Error 15.546 kHz	% of OBW Power	99.00 %	
x dB Bandwidth 19.13 MHz x dB -26.00 dB	x dB Ba	ndwidth 19.24 MHz	x dB	-26.00 dB	
Becalled State Decision 4	uro i Deselle	ed State Depieter 4		CTATUR .	
SIAIUS	Mog VRecalle	eu orare negister «		STATUS	
20 MHz Channel, 16 OAM		20 MHz C	Channel, 2	56 OAM	

Figure 6: Occupied Bandwidth plots

11 Conducted Spurious Emissions inc. Band Edge

11.1 Requirement and test method

27.53(h) AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

(3) *Measurement procedure*. (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power

The licensed band of operation was considered to be a single 5MHz channel for 5MHz operation, a single 10MHz channel for 10MHz operation, etc.

Band edge emissions were performed on bottom and top channels using RBW \geq 1% EBW and Adjacent Channel Power Function for emissions 1-3 MHz from bandedge.

Emissions were measured using RMS detector and trace averaging.

CSE scans were performed on middle channel and -19dBm limit line was placed on the graph. Determination of total spurious emission was done by adding 10 log (4), or 6.0 dB to the emission level measured on port Ant1 and this was compares with limit of -13dBm as per KDB 662911 section 3(a)(iii).

11.2 Bandedge Results – single channel

The table below lists the worst case values for plots shown below in figures 6 - 9.

Channel Bandwidth	Modulation	Band-edge (dBm)	Summed Band-edge (dBm)	Limit (dBm)	Result
	QPSK	-19.54	-13.54	-13.0	Pass
5	16 QAM	-19.93	-13.93	-13.0	Pass
	256 QAM	-19.43	-13.43	-13.0	Pass
	QPSK	-21.65	-15.65	-13.0	Pass
10	16 QAM	-21.47	-15.47	-13.0	Pass
	256 QAM	-20.91	-14.91	-13.0	Pass
	QPSK	-22.81	-16.81	-13.0	Pass
15	16 QAM	-23.88	-17.88	-13.0	Pass
	256 QAM	-22.22	-16.22	-13.0	Pass
	QPSK	-24.49	-18.49	-13.0	Pass
20	16 QAM	-24.63	-18.63	-13.0	Pass
	256 QAM	-24.65	-18.65	-13.0	Pass

Table 9: Band e	edge emissions
-----------------	----------------

Figure 7: Band-edge emissions for 5 MHz channels

Figure 8: Band-edge emissions for 10 MHz channels

Figure 9: Band-edge emissions for 15 MHz channels

Figure 10: Band-edge emissions for 20 MHz channels

11.3 Band edge Results – dual channel

The table below lists the values for the worst case modes of QPSK and 256QAM values for plots shown below in figures 6 - 9.

Channel Bandwidth	Modulation	Band-edge (dBm)	Summed Band-edge (dBm)	Limit (dBm)	Result
5	QPSK	-19.49	-13.49	-13.0	Pass
	256 QAM	-20.68	-14.68	-13.0	Pass

05:21:34 PM Jun Radio Std: None 05:22:14 PM Jun 16 Radio Std: None RBW 51 kHz RBW 51 kHz 102 Ref 50.00 d Ref 40.00 Span 5 Mi eep 100 n Span 5 M eep 100 r nter 2.182 GH es BW 51 kHz er 2.109 GH: BW 51 kHz #VBW 1 MH #VBW 1 MHz #9 2x 5 MHz Channel, QPSK, Low 2x 5 MHz Channel, QPSK, high 06:09:16 PM Jun 16, 2 Radio Std: None 06:08:5 Radio Std-RBW 51 k W 51 kk 2.1100 2.1800 Ref 40.00 dE Ref 50.00 de Span 5 Mi veep 100 n Span 5 MH #Sweep 100 m 2.109 GH r 2.182 GH 3W 51 kH #VBW 1 MH #VBW 1 M 2x 5 MHz Channel, 256 QAM, low 2x 5 MHz Channel, 256 QAM, high

Table 10: Band edge emissions – dual channel

Figure 11: Band-edge emissions for 2x 5 MHz channels

11.4 Conducted Spurious Emissions Results – single channel

Conducted Spurious emissions were investigated from 10 MHz to 22 GHz at frequencies \geq 3 MHz from the band edge.

The plots below show:

- CSE results for all modes 10 MHz to 3600 MHz:.
- CSE results for worst case modes 3600 MHz to 22000 MHz:

The worst case results are shown in table 11 and accompanying plots below.

Channel Bandwidth	Worst case emission	Summed TX power (dBm)	Limit (dBm)	Result
5	-25.755	-19.755	-13.0	Pass
10	-24.817	-18.817	-13.0	Pass
15	-25.522	-19.522	-13.0	Pass
20	-25.182	-19.182	-13.0	Pass

Table 11: CSE results except band edge

Figure 12: Conducted Spurious Emissions plots – single channel

11.5 Conducted Spurious Emissions Results – dual channel

Conducted Spurious emissions were investigated from 10 MHz to 22 GHz at frequencies \geq 3 MHz from the band edge.

The plots below show:

- CSE results for all modes 10 MHz to 3600 MHz:.
- CSE results for worst case modes 3600 MHz to 22000 MHz:

The worst case results are shown in table 11 and accompanying plots below.

Channel Bandwidth	Worst case emission	Summed TX power (dBm)	Limit (dBm)	Result
5	-20.896	-14.896	-13.0	Pass

 Table 12: CSE results except band edge

Figure 13: Conducted Spurious Emissions plots – dual channel

12 Radiated Spurious Emissions

12.1 Requirement and test method

27.53(h) AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

Attenuation of 43+10log(P) dBm equates to an absolute limit of -13dBm.

All measurements below 18 GHz were performed at 3m distance

Emissions above 18 GHz were measured at 1m.

Pre-scan measurements were performed with a spectrum analyser, using a peak detector with 100 kHz RBW for frequencies below 1 GHz and 1 MHz for frequencies above 1 GHz.

The cabinet radiation was performed while antenna ports were terminated with 50Ω load.

Initial pre-scan measurements were performed with limit determined by

E = EIRP - 20log D + 104.8

Where pre-scans showed emissions within 20dB of the limit, final measurement was made using substitution method.

12.2 Results

Initial pre-scans were performed using peak detector.

Testing was done in two modes:

- 20 MHz channel at 256 QAM
- 2x 5 MHz channels at 256 QAM

No emissions were found within 20dB of the limit.

Pre-scan plots are shown below for information.

Figure 14: RSE pre-scans, 20 MHz channel

Figure 15: RSE pre-scans, 2x 5MHz channels

13 Test equipment

Description	Manufacturer	Name	Serial Number	Calibration certificate
Testing at Altiostar				
PXA Signal Analyser	Agilent	N9020A	MY56062015	Keysight Due 19 July 2018
PXA Signal Analyser	Agilent	N9030A	MY54170228	Keysight 1-8859667059-1 Due 28 May 2018
Network Analyser	HP	8719D	US38110410	Electroservices T385943C
Attenuator	Fairview Microwave	SA3N1007-40	150914048	Calibrated before test using Network Analyser
RF cable	Times	SLU18-SMNM-	06788-004	
	Microwave	01.5m (Qty 2)	06788-010	
Testing at Hursley				
Spectrum analyser	HP	8593EM	3726U00203	11/10/2017 ³
7GHz Receiver	Rohde & Schwarz	ESCI7	1166595007	20/06/2017 ³
Antenna	Schwarzbeck	VULB9162	129	07/04/2019 ³
6dB attenuator for #762	Schwarzbeck	DGA 9552N	0	07/04/2019 ³
Pre-amplifier	HP	8447D	1937A02341	14/09/2017 ³
Pre-amplifier	HP	8449B	3008A01077	13/07/2017 ³
1-10GHz Horn	Schwarzbeck	BBHA 9120 571	571	24/02/2019 ³
Horn antenna (2-18GHz)	Q-par Angus	WBH218HN	5367	22/06/2019 ³
18 to 40 GHz Horn	Q-par Angus	WBH18-40k	10300	23/01/2019 ³
Test receiver	Rohde & Schwarz	ESIB	100192	27/10/2017 ³

Table 13: Test Equipment

³ Calibration due date. Calibration records are maintained under Hursley's UKAS accreditation no.1871