FCC TEST DATA

4.0 Temperature VS Frequency Stability Tests

This test was performed to generate the data to demonstrate the frequency stability of the digital frequency input to the Klystron over the range of -40 to +50 degrees Celsius.

It is noted at this time that the frequency generation circuits are locked to a highly stable 10MHz crystal oscillator, feeding a phase locked loop employed in triple up conversion process. For this test, the Frequency generation circuitry (Digital STALO) and the 10MHz source were placed in an environmental test chamber and subjected to the following conditions.

- Step 1: The equipment was placed in the environmental chamber and thermocouples were installed on the base plate of the Digital Stalo. The signal and power lines were fed through an access hole in the test unit.
- Step 2: The environmental chamber was set for -40C and the control circuits were energized.
- Step 3: The equipment was "cold soaked" until the base plate temperature of the Digital Stalo was stabilized at -40C. This took approximately 22 minutes.
- Step 4: The Units Under Test (UUT) were energized via the signal and power lines.
- Step 5: The following measurements of frequency were taken each minute starting from zero (the time the chamber reached testing temperature and stabilized) and the process was repeated from Step 3 downward with the temperature increased 10 degrees and stabilized IAW the base plate sensor. Calibrated test equipment was used to take these measurements.

DIGITAL STALO FREQUENCY VS TEMPERATURE STABILITY TESTS			
Time Minutes	Temperature	Frequency in MHz	
0	-40	5610.060	
1	-40	5610.070	
2	-40	5610.060	
3	-40	5610.060	
4	-40	5610.070	
5	-40	5610.060	
0	-30	5610.060	
1	-30	5610.060	
2	-30	5610.070	
3	-30	5610.060	
4	-30	5610.070	
0	-20	5610.070	
DIGITAL STALO FREQUENCY VS TEMPERATURE STABILITY TESTS			
Time Minutes	Temperature	Frequency in MHz	
1	-20	5610.060	
2	-20	5610.070	
3	-20	5610.070	
4	-20	5610.070	
5	-20	5610.070	
6	-20	5610.070	
0	-10	5610.060	
1	-10	5610.060	

2	-10	5610.080	
3	-10	5610.070	
4	-10	5610.070	
0	0	5610.080	
1	0	5610.070	
2	0	5610.070	
3	0	5610.070	
4	0	5610.070	
0	10	5610.070	
1	10	5610.070	
2	10	5610.080	
3	10	5610.070	
4	10	5610.070	
5	10	5610.070	
0	20	5610.070	
1	20	5610.060	
2	20	5610.070	
3	20	5610.080	
4	20	5610.080	
5	20	5610.070	
0	30	5610.070	
1	30	5610.060	
2	30	5610.070	
3	30	5610.060	
4	30	5610.070	
1	40	5610.070	
2	40	5610.060	
3	40	5610.060	
4	40	5610.070	
1	50	5610.070	
2	50	5610.060	
3	50	5610.060	
DIGITAL STALO FREQUENCY VS TEMPERATURE STABILITY TESTS			
Time Minutes	Time Hours	Time Hours	
4	50	5610.060	

Fig. 4

The "Frequency Stability vs. Temperature Test" was run at the operating frequency for this particular KHDD-1000C transmitter operation. The frequency remained stable over the complete temperature range.

5.0 Transmitter Stability with Line Voltage Fluctuations

The transmitter Line Voltage Fluctuation test was not performed due to the installed Uninterruptable Power Supply and Voltage Regulator installed with the transmitter. This UPS/VR is designed to regulate the voltage to within +-5 volts of the transmitter operating voltage. If the system drifts out of tolerance due to a failure of UPS components or increasing / decreasing line voltage, the UPS power output will shut off, effectively removing power from the KHDD-1000C transmitter.

Fig. 5

6.0 Spectrum Analysis

The following tests were performed to record the signature of the transmitted spectrum of the KHDD-1000C radar system. The plots of the spectrum analyzer are shown on the following pages and sequentially numbered in the bottom left hand corner of each plot. The plots and results of the measurements are listed as follows:

KHDD-1000C EMISSION MEASUREMENTS			
Plot Number	Test	Comments	
1	Emitted Spectrum, Narrow	.8µs Pulse, Spectrum width 4.52MHz,	
	Pulse (.8us) 5610MHz	Side lobes -14.95dB and -13.68dB	
2	Emitted Spectrum, Narrow	.8µs pulse, Spectrum width 23.57MHz,	
	Pulse (.8us) 5610MHz <u>NOTE</u>	25MHz span	
	used for Maximum Spectrum		
	<u>Occupancy</u>		
3	Emitted Spectrum, Wide Pulse	4.5µs pulse, Spectrum width 720kHz,	
	(4.5us) <i>,</i> 5610MHz	Side lobes -12.30dB and -15.00dB	
4	Emitted Spectrum, Wide Pulse	4.5µs pulse, spectrum width 4.71MHz,	
	(4.5us), 5610MHz	Side lobes, -39.54dB and -37.18dB	
5	Emitted Spectrum, Wide Pulse	4.5µs pulse, Emission bandwidth at -	
	(4.5us) <i>,</i> 5610MHz	50dB = 3.64MHz	
6	Emitted Spectrum, Wide Pulse	4.5µs pulse, Emission bandwidth at -	
	(4.5us) <i>,</i> 5610MHz	61dB = 17.67MHz	
7	Emitted Spectrum, Narrow	Non Linear Frequency Modulation	
	Pulse (.8us), 5610MHz	chirped at 1.25MHz, 1MHz span	
8	Emitted Spectrum, Narrow	Non Linear Frequency Modulation	
	Pulse (.8us), 5610MHz	chirped at 1.25MHz, 5MHz span	
9	Emitted Spectrum, Narrow	Non Linear Frequency Modulation	
	Pulse (.8us), 5610MHz	chirped at 1.25MHz, 10MHz span	
10	Spurious Emissions Test	Plot 20MHz to 5GHz, -76.14dBm	
11	Spurious Emissions Test	Plot 5GHz to 10GHz, -72dBm	
12	Spurious Emissions Test	Plot 10GHz to 15Ghz, -41dBm	
13	Spurious Emissions Test	Plot 15GHz to 20Ghz, -57.63dBm	
14	Spurious Emissions Test	Plot 20GHz to 25GHz, -66.65dBm	
15	Spurious Emissions Test	Plot 25Ghz to 30Ghz, -68.29dBm	
16	Spurious Emissions Test	Plot 500kHz to 20MHz, -68.47dBm	
17	RF Leakage, 1m from chassis	Reference Plot of 2.5Ghz to 5Ghz, TX	
	using double ridge horn,	OFF	
	Reference plot, Transmitter		
	Radiation OFF		
18	RF Leakage, 1m from chassis	Plot 0Hz to 5GHz, -57.38dBm signal	
	using double ridge horn,		
	Transmitter Radiation ON		
19	RF Leakage, 1m from chassis	Plot 5GHz to 10Ghz, -36.53dBm signal	
	using double ridge horn,		
	Transmitter Radiation ON		
20	RF Leakage, 1m from chassis	Plot 10Ghz to 15Ghz, -63.71dBm signal	
	using double ridge horn,		
	Transmitter Radiation ON		

21	RF Leakage, 1m from chassis	Plot 15Ghz to 20GHz, -64.73dBm signal	
	using double ridge horn,		
	Transmitter Radiation ON		
22	Detected RF Pulse	4.5µs Detected RF Pulse, 80.5dBm	
		attenuation with NO RF PULSE	
		SHAPING	
23	Detected RF Pulse	4.5µs Detected RF Pulse, 80.5dBm	
		attenuation with RF Pulse Shaping	
24	Detected RF Pulse	.8µs Detected RF Pulse, 80.5dBm	
		attenuation with NO RF Pulse Shaping	
25	Detected RF Pulse	.8µs Detected RF Pulse, 80.5dBm	
		attenuation with RF Pulse Shaping	
26	Detected RF Pulse	1.6µs Detected RF Pulse, 80.5dBm	
		attenuation with NO RF Pulse Shaping	
27	Detected RF Pulse	1.6µs Detected RF Pulse, 80.5dBm	
		attenuation with RF Pulse Shaping	
28	RF Peak Power Measurement	4.5us RF Pulse with NO RF Pulse	
		Shaping	
29	RF Peak Power Measurement	4.5µsRF Pulse with RF Pulse Shaping	
30	RF Peak Power Measurement	.8µs RF Pulse with NO RF Pulse Shaping	
31	RF Peak Power Measurement	.8µs RF Pulse with RF Pulse Shaping	
32	RF Peak Power Measurement	1.6µs RF Pulse with NO RF Pulse	
		Shaping	
33	RF Peak Power Measurement	1.6µs RF Pulse with RF Pulse Shaping	
34	Antenna Pattern Final Test	Table containing side lobe information	
	Data	for multiple frequencies	
35	Antenna Pattern (Horizontal)	5400MHz	
36	Antenna Pattern (Horizontal)	5550MHz	
37	Antenna Pattern (Horizontal)	5700MHz	
38	Antenna Pattern (Vertical)	5400MHz	
39	Antenna Pattern (Vertical)	5550MHz	
40	Antenna Pattern (Vertical)	5700MHz	

Fig. 6

Date: 14.APR.2008 19:59:22

Date: 14.APR.2008 20:01:39

Date: 14.APR.2008 20:04:12

Date: 14.APR.2008 20:05:35

Date: 14.APR.2008 20:12:45

Date: 14.APR.2008 20:13:45

Date: 9.MAY.2008 00:25:26

#7: Non Linear Frequency Modulation chirped at 1.25MHz, 1MHz span

Date: 9.MAY.2008 00:25:53

#8: Non Linear Frequency Modulation chirped at 1.25MHz, 5MHz span

Date: 9.MAY.2008 00:26:23

#9: Non Linear Frequency Modulation chirped at 1.25MHz, 10MHz span


```
Date: 14.APR.2008 20:15:28
```

#10: Plot 20MHz to 5GHz, -76.14dBm

Date: 14.APR.2008 20:15:53

Date: 14.APR.2008 20:16:37

Date: 14.APR.2008 20:17:39

Date: 14.APR.2008 20:18:15

Date: 14.APR.2008 20:18:48

Date: 14.APR.2008 20:21:01

#16: Plot 500kHz to 20MHz, -68.47dBm

Date: 8.APR.2008 23:19:23

Date: 8.APR.2008 23:19:01

Date: 8.APR.2008 23:20:19

Date: 8.APR.2008 23:21:20

Plot #20: Plot 10Ghz to 15Ghz, -63.71dBm signal

Date: 8.APR.2008 23:22:43

Plot #21: Plot 15Ghz to 20GHz, -64.73dBm signal

Plot #22: 4.5µs Detected RF Pulse, 80.5dBm attenuation with NO RF PULSE SHAPING

Plot #23: 4.5µs Detected RF Pulse, 80.5dBm attenuation with RF Pulse Shaping

Plot #24: .8µs Detected RF Pulse, 80.5dBm attenuation with NO RF Pulse Shaping

Plot #25: .8µs Detected RF Pulse, 80.5dBm attenuation with RF Pulse Shaping

Plot #26: 1.6µs Detected RF Pulse, 80.5dBm attenuation with NO RF Pulse Shaping

Plot #27: 1.6µs Detected RF Pulse, 80.5dBm attenuation with RF Pulse Shaping

LCL		Sys/Inputs
A	20.000dBm	Remote Interface
	-18.000dBm	Tables
A1 Peak	90.72dBm	Save/ Recall
A1 Peak	1.18 _{MW}	Error List

Plot #28: 4.5us RF Pulse with **NO** RF Pulse Shaping

nt	E4416A	EPM-P Series Power Me	eter
	LCL		Sys/Inputs
	A	20.000dBm	Remote Interface
		-18.000dBm	Tables >
	A1 Peak	90.64dBm	Save/ Recall
	A1 Peak	1.15 _{MW}	Error List
F			

Plot #29: 4.5µsRF Pulse with RF Pulse Shaping

nt	E4416A	EPM-P Series Power Meter	
	LCL A	20.000dBm	Sys/inputs Remote Interface Tables
	A1 Peak A1 Peak	-18.000dBm 90.92dBm 1.23мw	Save/ Recall Error List

Plot #30: .8µs RF Pulse with $\it NO$ RF Pulse Shaping

Plot #31: .8µs RF Pulse with RF Pulse Shaping

nt	E4416A	EPM-P Series Power Me	oter
	LCL A	20.000dBm	Sys/Inputs Remote Interface
		-18.000dBm	Tables
	A1 Peak	90.88dBm	Save/ Recall
	A1 Peak	1.23 _{MW}	List

Plot #32: 1.6µs RF Pulse with **NO** RF Pulse Shaping

#33: 1.6 μs RF Pulse with RF Pulse Shaping