

PCTEST Engineering Laboratory, Inc.

6660-B Dobbin Road • Columbia, MD 21045 • U.S.A.

TEL (410) 290-6652 • FAX (410) 290-6654

http://www.pctestlab.com

CERTIFICATE OF COMPLIANCE FCC Parts 24/22 Certification

PANASONIC
Matsushita Mobile Communications
Development Corporation of U.S.A.
1225 Northbrook Parkway, Suite 2-400

Suwanee, GA 30024

FCC ID

Attn: Pieter C. Seidel, Sr. System Test Engineer

NWJ10A007A

APPLICANT PANASONIC

Classification: Licensed Portable Transmitter Held to Ear (PCE)

FCC Rule Part(s): §24(E), §22(H), §2

EUT Type: Tri-Mode Dual-Band Phone (AMPS/TDMA)

Trade Name/Model: PANASONIC EB-TX320

Tx Frequency Range: 824.04 – 848.97 MHz (AMPS) / 824.04 – 848.97 MHz (TDMA)

1850.01 - 1909.99 MHz (PCS TDMA)

Rx Frequency Range: 869.04 – 893.97 MHz (AMPS) / 869.64 – 893.97 MHz (TDMA)

1930.05 - 1989.95 MHz (PCS TDMA)

Max. RF Output Power: 0.272W ERP AMPS (24.348dBm) / 0.743W ERP TDMA (28.712dBm)

0.666W EIRP PCS TDMA (28.225dBm)

Max. SAR Measurement: 1.460mW/g AMPS Head SAR; 0.437 mW/g AMPS Body SAR

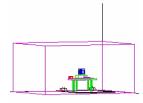
1.480mW/g Cell. TDMA Head SAR; 0.426mW/g Cell. TDMA Body SAR 1.500mW/g PCS TDMA Head SAR; 0.835mW/g PCS TDMA Body SAR

Dates of Tests: May 09-11, 2001

Test Report S/N: 24/22.210507276.NWJ

Test Site: PCTEST Lab, Columbia MD

Emission Designator(s): 40K0F8W, 40K0F1D, 30K0DXW


This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. (See Test Report)


I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Randy Ortanez President & Chief Engineer LAB CODE 100431-0

MEASUREMENT REPORT

Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

General Information

Applicant Name: PANASONIC

Matsushita Mobile Communications
Development Corporation of U.S.A.

Address: 1225 Northbrook Parkway, Suite 2-400

Suwanee, GA 30024

Attention: Pieter C. Seidel, Sr. System Test Engineer

FCC ID: NWJ10A007A

Quantity: Quantity production is planned
 Emission Designator: 30K0DXW, 40K0F8W, 40K0F1D

• Tx Freq. Range: 824.04 – 848.97 MHz (AMPS) / 824.04 – 848.97 MHz (TDMA)

1850.01 –1909.99 MHz (PCS TDMA)

• Rx Freq. Range: 869.04 – 893.97 MHz (AMPS) / 869.64 – 893.97 MHz (TDMA)

1930.05 - 1989.95 MHz (PCS TDMA)

• Max. RF Power Rating: 0.272W ERP AMPS (24.348dBm) / 0.743W ERP TDMA (28.712dBm)

0.666W EIRP PCS TDMA (28.225dBm)

• FCC Classification(s): Licensed Portable Tx Held to Ear (PCE)

Equipment (EUT) Type:
 Tri-Mode Dual-Band Analog/TDMA Phone

• Frequency Tolerance: ± 0.00025% (2.5 ppm)

• FCC Rule Part(s): § 24(E), §22(H), §2

Dates of Tests: May 09-11, 2001

Place of Tests:
 PCTEST Lab, Columbia, MD U.S.A.

Test Report S/N: 24/22.210507276.NWJ

INTRODUCTION

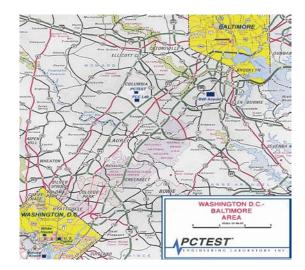


Figure 1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area.

These measurement tests were conducted at *PCTEST Engineering Laboratory, Inc.* facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on October 19, 1992.

Measurement Procedure

The radiated and spurious measurements are made outdoors at the 3-meter test site range (see Figure2). The equipment under test is placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotations are adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole is substituted in place of the EUT. This dipole antenna is driven by a signal generator and the level of the signal generator is adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHZ, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

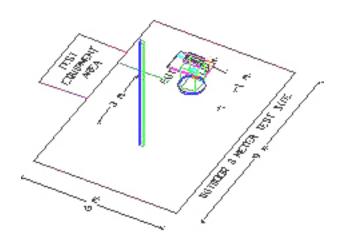


Figure 2. 3-meter Outdoor Test Site

Test Data

Effective Radiated Power Output

A. POWER: Low (Analog Mode)

Freq.Tuned	LEVEL	POL	ERP	ERP
(M Hz)	(dBm)	(H /V)	(W)	(dBm)
824.04	-34.500	V	0.00477	6.77
836.49	-34.467	V	0.00498	6.96
848.97	-34.770	V	0.00481	6.81

A. POWER: High (Analog Mode)

Freq. Tuned (M H z)	LEVEL	POL (H/V)	ERP	ERP	BATTERY
824.04	-17.382	V	0.24498	23.891	Standard
836.49	-17.081	V	0.27214	24.348	Standard
848.97	-17.507	V	0.25573	24.078	Standard

NOTES:

ERP Measurements by Substitution Method:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This ERP level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

Test Data

Effective Radiated Power Output

A. POWER: High (TDMA Mode)

Freq.Tuned	LEVEL	POL	ERP	ERP	BATTERY
(M Hz)	(dBm)	(H /V)	(W)	(dBm)	
824.04	-12.995	V	0.67271	28.278	Standard
835.49	-12.704	V	0.74343	28.712	Standard
848.97	-13.093	V	0.70663	28.492	Standard

NOTES:

ERP Measurements by Substitution Method:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This ERP level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

Test Data

Equivalent Isotropic Radiated Power (E.I.R.P.)

Radiated measurements at 3 meters

Supply Voltage: 4.2 VDC

M odulation: PCS TDM A

FREQ.	LEVEL (dBm)	POL (H/V)	Azim uth (o angle)	EIRP (dBm)	EIRP (W)	Battery
1850.10	-18.856	Н	65.0	28.225	0.666	Standard
1880.00	-19.112	Н	65.0	28.139	0.652	Standard
1909.56	-19.353	Н	65.0	28.068	0.641	Standard

NOTES:

ERP Measurements by Substitution Method:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This ERP level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

Test Data

Radiated Measurements

Field Strength of SPURIOUS Radiation (TDMA)

OPERATING FREQUENCY: 824.04 MHz

CHANNEL: 991 (Low)

MEASURED OUTPUT POWER: 28.712 dBm = 0.743 W

MODULATION SIGNAL: TDM A (Internal)

DISTANCE: 3 m eters

LIM II: 43 + 10 log₁₀ (W) = 41.71 dd

FREQ.	LEVEL	AFCL	POL	F/S	ERP	(In)
(M Hz)	(dBm)	(dB)	(H /V)	(_µ V/m)	(dBm)	(dBc)
1648.08	-84.51	34.5	V	707.1	-40.39	69.1
2472.12	-96.57	38.8	V	289.4	-48.15	76.9
3296.16	-100.23	42.5	V	290.7	-48.11	76.8
4120.20	-105.71	46.1	V	234.2	-49.99	78.7
4944.24	< -130					

NOTES:

- 1. The bandwidth is set per §22.917 (RBW = 1MHz, VBW = 1MHz).
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20dB below the limit.
- 4. < -130dBm is below the floor of the spectrum analyzer.
- The EUT is manipulated through 3 orthogonal axis and the worst-case are reported.
- 6. The EUT is placed 3m. away from the receiving antenna and the ERP is calculated using the formula:

ERP (dBm) = $10 \text{ Log}_{10} (((r(mV/m)/1 \times 10^6)^2 / 49.2/1 \times 10^{-3}))$ ERP (dBm) = $10 \text{ Log}_{10} [(3 \times FS/1 \times 10^6)^2 / (49.2) \times 1000]$

Dates of Tests: May 09, 2001

Test Data

Radiated Measurements

Field Strength of SPURIOUS Radiation (TDMA)

OPERATING FREQUENCY: 836.49 MHz

CHANNEL: 383 (Middle)

MEASURED OUTPUT POWER: 28.712 dBm = 0.745 W

MODULATION SIGNAL: TDMA (Internal)

DISTANCE: 3 meters

LIM II: 43 + 10 log10 (W) = 41.72 dBc

FREQ.	LEVEL	AFCL	POL	F/S	ERP	
(M Hz)	(dBm)	(dB)	(H /V)	(μV/m)	(dBm)	(dBc)
1672.98	-84.22	34.5	V	731.1	-40.10	68.8
2509.47	-95.92	39.0	V	319.2	-47.30	76.0
3345.96	-9 9.75	42.7	V	314.4	-47.43	76.1
4182.45	-103.68	46.2	V	299.2	-47.86	76.6
5018.94	< -130					

NOTES:

- 1. The bandwidth is set per §22.917 (RBW = 1MHz, VBW = 1MHz).
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20dB below the limit.
- 4. < -130dBm is below the floor of the spectrum analyzer.
- 5. The EUT is manipulated through 3 orthogonal axis and the worst-case are reported.
- 6. The EUT is placed 3m. away from the receiving antenna and the ERP is calculated using the formula:

ERP (dBm) = $10 \text{ Log}_{10} (((r(mV/m)/1 \times 10^6)^2 / 49.2/1 \times 10^{-3}))$ ERP (dBm) = $10 \text{ Log}_{10} [(3 \times FS/1 \times 10^6)^2 / (49.2) \times 1000]$

Dates of Tests: May 09, 2001

Test Data

Radiated Measurements

Field Strength of SPURIOUS Radiation (TDMA)

OPERATING FREQUENCY: 848.97 MHz

CHANNEL: 799 (High)

MEASURED OUTPUT POWER: 28.712 dBm = 0.745 W

MODULATION SIGNAL: TDMA (Internal)

DISTANCE: 3 meters

LM II: 43 + 10 log₁₀ (W) = 41.72 dBc

FREQ.	LEVEL	AFCL	POL	F/S	ERP	
(M Hz)	(dBm)	(dB)	(H /V)	(μV/m)	(dBm)	(dBc)
1697.94	-85.99	34.9	V	624.5	-41.47	70.2
2546.91	-96.02	39.2	V	322.8	-47.20	75.9
3395.88	-9 9.90	42.9	V	316.2	-47.38	76.1
4244.85	-105.22	46.3	V	253.5	-49.30	78.0
5093.82	< -130					

NOTES:

- 1. The bandwidth is set per §22.917 (RBW = 1MHz, VBW = 1MHz).
- The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20dB below the limit.
- 4. < -130dBm is below the floor of the spectrum analyzer.
- 5. The EUT is manipulated through 3 orthogonal axis and the worst-case are reported.
- 6. The EUT is placed 3m. away from the receiving antenna and the ERP is calculated using the formula:

ERP (dBm) = $10 \text{ Log}_{10} (((r(mV/m)/1 \times 10^6)^2 / 49.2/1 \times 10^{-3}))$ ERP (dBm) = $10 \text{ Log}_{10} [(3 \times FS/1 \times 10^6)^2 / (49.2) \times 1000]$

Dates of Tests: May 09, 2001

Test Data

Radiated Measurements

Field Strength of SPURIOUS Radiation (AMPS)

OPERATING FREQUENCY: 824.04 MHz

CHANNEL: 991 (Low)

MEASURED OUTPUT POWER: 24.348 dBm = 0.273 W

MODULATION SIGNAL: ST (Signalling Tone)

DISTANCE: 3 meters

LIM IT: 43 + 10 log₁₀ (W) = 37.36 dBc

FREQ.	LEVEL	AFCL	POL	F/S	ERP	
(M H z)	(dBm)	(dB)	(H /V)	(µV/m)	(dBm)	(dBc)
1648.08	-89.43	34.5	V	401.3	-45.31	69.7
2472.12	-99.81	38.8	V	199.3	-51.39	75.7
3296.16	-105.10	42.5	V	166.0	-52.98	77.3
4120.20	-106.94	46.1	V	203.2	-51.22	75.6
4944.24	< -130					

NOTES:

- 1. The bandwidth is set per §22.917 (RBW = 1MHz, VBW = 1MHz).
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20dB below the limit.
- 4. < -130dBm is below the floor of the spectrum analyzer.
- The EUT is manipulated through 3 orthogonal axis and the worst-case are reported.
- The EUT is placed 3m. away from the receiving antenna and the ERP is calculated using the formula:

ERP (dBm) = 10 Log₁₀ (((r(mV/m)/1 x 10^6)² / 49.2/1 x 10^{-3}) ERP (dBm) = 10 Log₁₀ [(3 x FS/1 x 10^6)² / (49.2) x 1000]

Test Data

Radiated Measurements

Field Strength of SPURIOUS Radiation (AMPS)

OPERATING FREQUENCY: 836.49 MHz

CHANNEL: 383 (Middle)

MEASURED OUTPUT POWER: 24.348 dBm = 0.273 W

MODULATION SIGNAL: ST (Signalling Tone)

DISTANCE: 3 meters

LIM II: 43 + 10 log₁₀ (W) = 37.36 dBc

FREQ.	LEVEL	AFCL	POL	F/S	ERP	
(M Hz)	(dBm)	(dB)	(H /V)	(µV/m)	(dBm)	(dBc)
1672.98	-88.23	34.5	V	460.8	-44.11	68.5
2509.47	-99.73	39.0	V	205.8	-51.11	75 . 5
3345.96	-105.84	42.7	V	156.0	-53.52	77.9
4182.45	-107.34	46.2	V	196.3	-51.52	75.9
5018.94	< -130					

NOTES:

- 1. The bandwidth is set per §22.917 (RBW = 1MHz, VBW = 1MHz).
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20dB below the limit.
- 4. < -130dBm is below the floor of the spectrum analyzer.
- 5. The EUT is manipulated through 3 orthogonal axis and the worst-case are reported.
- 6. The EUT is placed 3m. away from the receiving antenna and the ERP is calculated using the formula:

ERP (dBm) = $10 \text{ Log }_{10} (((r(mV/m)/1 \times 10^6)^2 / 49.2/1 \times 10^{-3}))$ ERP (dBm) = $10 \text{ Log }_{10} [(3 \times FS/1 \times 10^6)^2 / (49.2) \times 1000]$

Test Data

Radiated Measurements

Field Strength of SPURIOUS Radiation (AMPS)

OPERATING FREQUENCY: 848.97 MHz

CHANNEL: 799 (High)

MEASURED OUTPUT POWER: 24.348 dBm = 0.273 W

MODULATION SIGNAL: ST (Signalling Tone)

DISTANCE: 3 m eters

LIM II: 43 + 10 log₁₀ (W) = 37.36 dBc

FREQ.	LEVEL (dBm)	AFCL (dB)	POL (H/V)	F/S (μV/m)	ERP (dBm)	(dBc)
1697.94	-89.23	34.9	V	430.0	-44.71	69.1
2546.91	-100.23	39.2	V	198.8	-51.41	75.8
3395.88	-106.04	42.9	V	156.0	-53.52	77.9
4244.85	-108.63	46.1	V	167.3	-52.91	77.3
5093.82	< -130					

NOTES:

- 1. The bandwidth is set per $\S 22.917$ (RBW = 1MHz, VBW = 1MHz).
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20dB below the limit.
- 4. < -130dBm is below the floor of the spectrum analyzer.
- 5. The EUT is manipulated through 3 orthogonal axis and the worst-case are reported.
- 6. The EUT is placed 3m. away from the receiving antenna and the ERP is calculated using the formula:

ERP (dBm) = $10 \text{ Log}_{10} (((r(mV/m)/1 \times 10^6)^2 / 49.2/1 \times 10^{-3}))$ ERP (dBm) = $10 \text{ Log}_{10} [(3 \times FS/1 \times 10^6)^2 / (49.2) \times 1000]$

Dates of Tests: May 09, 2001

Test Data

Radiated Measurements

Field Strength of SPURIOUS Radiation (PCS TDMA)

OPERATING FREQUENCY: 1850.01 MHz

CHANNEL: 0002 (Low)

MEASURED OUTPUT POWER: 28.225 dBm = 0.665 W

MODULATION SIGNAL: TDMA (Internal)

DISTANCE: 3 m eters LM II: $43 + 10 \log_{10} (W) = 41.23$ dBc

FREQ.	LEVEL (dBm)	AFCL (dB)	POL (H/V)	F/S (µV/m)	EIRP (dBm)	(dBc)
3700.02	-9 9.37	44.4	Н	399.5	-43.20	71.4
5550.03	-114.44	49.7	Н	129.7	-52.97	81.2
7400.04	-117.20	53.7	Н	149.6	-51.73	0.08
9250.05	<-130					
11100.06	< -130					

NOTES:

- 1. The bandwidth is set per §24.238 (RBW = 1MHz, VBW = 1MHz).
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20dB below the limit.
- 4. < -130dBm is below the floor of the spectrum analyzer.
- The EUT is manipulated through 3 orthogonal axis and the worst-case are reported.
- 6. The EUT is placed 3m. away from the receiving antenna and the EIRP is calculated using the formula:

EIRP (dBm) = 10 Log 10 (((r(mV/m)/1 x 10^6)² / 30.0/1 x 10^{-3}) EIRP (dBm) = 10 Log 10 [(3 x FS/1 x 10^6)² / (30.0) x 1000]

Test Data

Radiated Measurements

Field Strength of SPURIOUS Radiation (PCS TDMA)

OPERATING FREQUENCY: 1880.00 MHz

CHANNEL: 1000 (Middle)

MEASURED OUTPUT POWER: 28.225 dBm = 0.665 W

MODULATION SIGNAL: TDMA (Internal)

DISTANCE: 3 meters

LIM II: 43 + 10 log₁₀ (W) = 41.23 dB

FREQ.	LEVEL (dBm)	AFCL (dB)	POL (H/V)	F/S (μV/m)	EIRP (dBm)	(dBc)
3760.00	-9 9.00	44.7	Н	431.5	-42.53	70.8
5640.00	-116.29	49.9	Н	107.3	-54.62	82.8
7520.00	-117.15	54.0	Н	155.8	-51.38	79.6
9400.00	<-130					
11280.00	< -130					

NOTES:

- 1. The bandwidth is set per §24.238 (RBW = 1MHz, VBW = 1MHz).
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20dB below the limit.
- 4. < -130dBm is below the floor of the spectrum analyzer.
- 5. The EUT is manipulated through 3 orthogonal axis and the worst-case are reported.
- 6. The EUT is placed 3m. away from the receiving antenna and the EIRP is calculated using the formula:

EIRP (dBm) = 10 Log 10 ((($r(mV/m)/1 \times 10^6)^2 / 30.0/1 \times 10^{-3}$) EIRP (dBm) = 10 Log 10 [(3 x FS/1 x 10⁶)² / (30.0) x 1000]

Dates of Tests: May 09, 2001

Test Data

Radiated Measurements

Field Strength of SPURIOUS Radiation (PCS TDMA)

OPERATING FREQUENCY: 1909.56 MHz

CHANNEL: 1998 (High)

MEASURED OUTPUT POWER: 28.225 dBm = 0.665 W

MODULATION SIGNAL: TDMA (Internal)

DISTANCE: 3 m eters LIM II: $43 + 10 \log_{10} (W) = 41.23$ dBc

FREQ.	LEVEL	AFCL	POL	F/S	EIRP	
(M H z)	(dBm)	(dB)	(H /V)	(µV/m)	(dBm)	(dBc)
3819.12	-100.84	45.0	Н	361.4	-44.07	72.3
5728.68	-117.23	50.1	Н	98.5	-55.36	83.6
7638.24	-119.06	54.2	Н	127.9	-53.09	81.3
9547.80	<-130					
11457.36	< -130					

NOTES:

- 1. The bandwidth is set per §24.238 (RBW = 1MHz, VBW = 1MHz).
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20dB below the limit.
- 4. < -130dBm is below the floor of the spectrum analyzer.
- 5. The EUT is manipulated through 3 orthogonal axis and the worst-case are reported.
- 6. The EUT is placed 3m. away from the receiving antenna and the EIRP is calculated using the formula:

EIRP (dBm) = 10 Log 10 (((r(mV/m)/1 x 10^6)² / 30.0/1 x 10^{-3}) EIRP (dBm) = 10 Log 10 [(3 x FS/1 x 10^6)² / (30.0) x 1000]

TEST EQUIPMENT

Туре	Model	Cal. Due Da	ate S/N	
Microwave Spectrum Analyzer	HP 8566B (100Hz-22GHz)	08/15/01 3638A	08713	
Microwave Spectrum Analyzer	HP 8566B (100Hz-22GHz)	04/17/02	2542A11898	
Spectrum Analyzer/Tracking Gen.	HP 8591A (100Hz-1.8GHz)	08/10/01	<i>3144A02458</i>	
Signal Generator	HP 8640B (500Hz-1GHz)	06/03/01	2232A19558	
Signal Generator*	HP 8640B (500Hz-1GHz)	06/03/01	1851A09816	
Signal Generator*	Rohde & Schwarz (O.1-1000MHz)	09/11/01	894215/012	
Ailtech/Eaton Receiver	NM 37/57A-SL (30-1000MHz)	04/12/02	0792-03271	
Ailtech/Eaton Receiver	NM 37/57A (30-1000MHz)	03/11/02	0805-03334	
Ailtech/Eaton Receiver	NM 17/27A (O.1-32MHz)	09/17/01	0608-03241	
Quasi-Peak Adapter	HP 85650A	08/15/01	2043A00301	
Ailtech/Eaton Adapter	CCA-7 CISPR/ANSI QP Adapter	03/11/02	0194-04082	
Gigatronics Universal Power Meter	8657A		1835256	
Gigatronics Power Sensor	80701A (0.05-18GHz)		1833460	
Signal Generator	HP 8648D (9kHz-4GHz)		3613A00315	
Amplifier Research	5S1G4 (5W, 800MHz-4.2GHz)		22322	
Network Analyzer	HP 8753E (30kHz-3GHz)		JP38020182	
Audio Analyzer	HP 8903B		3011A09025	
Modulation Analyzer	HP 8901A		2432A03467	
Power Meter	HP 437B		3125U24437	
Power Sensor	HP 8482H (30µW-3W)		2237A02084	
Harmonic/Flicker Test System	HP 6841A (IEC 555-2/3)		3531A00115	
Broadband Amplifier (2)	HP 8447D		1145A00470, 1937A03348	
Broadband Amplifier	HP 8447F		2443A03784	
Horn Antenna	EMCO Model 3115 (1-18GHz)	9704-5		
Horn Antenna	EMCO Model 3115 (1-18GHz) 9205-3			
Horn Antenna	EMCO Model 3116 (18-40GHz)	7200 0	9203-2178	
Biconical Antenna (4)	Eaton 94455/Eaton 94455-1/Sing	er 94455-1/Compliano		
Log-Spiral Antenna (3)	Ailtech/Eaton 93490-1	or 7 i roo 1, oorripiiari	0608, 1103, 1104	
Roberts Dipoles	Compliance Design (1 set)		0000, 1100, 1104	
Ailtech Dipoles	DM-105A (1 set)		33448-111	
EMCO LISN (6)	3816/2		1079	
Microwave Preamplifier 40dB Gain	HP 83017A (0.5-26.5GHz)		3123A00181	
Microwave Cables	MicroCoax (1.0-26.5GHz)		3123/100101	
Ailtech/Eaton Receiver	NM37/57A-SL		0792-03271	
Spectrum Analyzer	HP 8594A		3051A00187	
Spectrum Analyzer (2)	HP 8591A		3034A01395, 3108A02053	
Microwave Survey Meter	Holaday Model 1501 (2.450GHz)		80931	
Digital Thermometer	Extech Instruments 421305		426966	
Attenuator	HP 8495A (O-70dB) DC-4GHz		420700	
Attenuator Bi-Directional Coax Coupler	Narda 3020A (50-1000MHz)			
Shielded Screen Room	RF Lindgren Model 26-2/2-0		6710 (PCT270)	
Shielded Semi-Anechoic Chamber	RF LINUGI en IVIOUel 26-2/2-0 Ray Proof Model S81		R2437 (PCT278)	
3		mnoraturo/Uumiditu)	·	
Enviromental Chamber	ASSUCIATEU SYSTEMIS IVIOUEI IU25 (18	mperature/Humuity)	ru1283	

^{*} Calibration traceable to the National Institute of Standards and Technology (NIST).

SAMPLE CALCULATIONS

A. ERP Sample Calculation

Level
$$\mu$$
/Vm @ 3 meters = Log 10⁻¹ (dBm + 107 + AFCL)
20

$$Log 10^{-1} \frac{(-14 + 107 + 31.7)}{20}$$

1717908.4 μ/Vm @ 3 meters

Sample Calculation (relative to a dipole)

ERP (dBm) = $10 \text{ Log}_{10} (((r(\mu V/m)1x10^6)^2/49.2/1x10^{-3}))$

ERP (dBm) = $10 \text{ Log}_{10}(((3(1717908.4)1x10^6)^2/49.2/1x10^{-3}))$

ERP (dBm) = 27.32

B. Emission Designator per §2.201

TDMA Sample

2M + 2DK

TDMA BW = 30.0 kHz

D = AM or Angle-Modulated

X = Other

W = Combination (Audio/Data)

Emission Designator = 30K0 DXW

Test Report S/N: 24/22.210507276.NWJ FCC Parts 22 & 22
Dates of Tests: May 09, 2001 Certification

12.1 CONCLUSION

The data collected shows that the PANASONIC Tri-Mode Analog/PCS (AMPS/TDMA) Phone FCC ID: NWJ10A007A complies with all the requirements of Parts 2, 22, and 24 of the FCC rules.