

# **Electromagnetic Compatibility Test Report**

Tests Performed on a Westell Technologies, Inc.

**Bi-Directional Amplifier, Model PS71090E** 

**Radiometrics Document RP-9209A3** 



| Product [                                                                            | Detail:                 |                   |                      |                    |  |  |  |  |
|--------------------------------------------------------------------------------------|-------------------------|-------------------|----------------------|--------------------|--|--|--|--|
| FCC ID: NVRPS71090E-PS78                                                             |                         |                   |                      |                    |  |  |  |  |
| Equipment type: 788-805, 758-775, 806-817 & 851-862 MHz Public Safety Signal Booster |                         |                   |                      |                    |  |  |  |  |
|                                                                                      |                         |                   |                      |                    |  |  |  |  |
| Test Star                                                                            | idards:                 |                   |                      |                    |  |  |  |  |
| FCC K                                                                                | DB 935210 D05: 2019     |                   |                      |                    |  |  |  |  |
| FCC P                                                                                | art 90.219, and CFR Tit | tle 47: 2020      |                      |                    |  |  |  |  |
|                                                                                      |                         |                   |                      |                    |  |  |  |  |
| Tests Pe                                                                             | rformed For:            |                   | Test Facility:       |                    |  |  |  |  |
| Weste                                                                                | ll Technologies, Inc.   |                   | Radiometrics M       | idwest Corporation |  |  |  |  |
| 750 Cc                                                                               | ommons Dr.              |                   | 12 Devonwood Avenue  |                    |  |  |  |  |
| Aurora                                                                               | , IL 60504              |                   | Romeoville, IL 60446 |                    |  |  |  |  |
|                                                                                      |                         |                   | Phone: (815) 293     | 3-0772             |  |  |  |  |
| Test Date                                                                            | e(s):                   |                   |                      |                    |  |  |  |  |
| Decem                                                                                | ber 19, 2019 thru April | 18, 2020          |                      |                    |  |  |  |  |
| Docum                                                                                | ent RP-9209A3 Revisio   | ons:              |                      |                    |  |  |  |  |
| Rev.                                                                                 | Issue Date              | Affected Sections |                      | Revised By         |  |  |  |  |
| 0                                                                                    | April 21, 2020          |                   |                      |                    |  |  |  |  |
|                                                                                      |                         |                   |                      |                    |  |  |  |  |
|                                                                                      |                         |                   |                      |                    |  |  |  |  |
|                                                                                      |                         |                   |                      |                    |  |  |  |  |

# **Table of Contents**

| 1.0 ADMINISTRATIVE DATA                                            | 3   |
|--------------------------------------------------------------------|-----|
| 2.0 TEST SUMMARY AND RESULTS                                       | 3   |
| 3.0 EQUIPMENT UNDER TEST (EUT) DETAILS                             | 4   |
| 3.1 EUT Description                                                | 4   |
| 4.0 TESTED SYSTEM DETAILS                                          | 4   |
| 4.1 Tested System Configuration                                    | 4   |
| 4.2 EUT Operating Modes                                            | 4   |
| 4.3 Special Accessories                                            | 4   |
| 5.0 TEST SPECIFICATIONS AND RELATED DOCUMENTS                      | 5   |
| 6.0 RADIOMETRICS' TEST FACILITIES                                  | 5   |
| 7.0 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS         | 5   |
| 8.0 CERTIFICATION                                                  | 5   |
| 9.0 TEST EQUIPMENT TABLE                                           | 6   |
| 9.1 Test Software                                                  | 6   |
| 10.0 TEST SECTIONS                                                 | 6   |
| 11.0 AGC THRESHOLD                                                 | 7   |
| 11.1 Applicable Standard                                           | 7   |
| 11.2 Test procedures                                               | 7   |
| 11.2.1 AGC Threshold Test Results                                  | 7   |
| 12.0 OUT OF BAND REJECTION                                         | 8   |
| 12.1 Applicable Standard                                           | 8   |
| 12.2 Test Procedures                                               | 8   |
| 12.3 Passband Bandwidth Test Results                               | 8   |
| 13.0 INPUT VS OUTPUT SIGNAL COMPARISON                             | .10 |
| 13.1 Applicable Standard                                           | .10 |
| 13.2 Test procedures                                               | .11 |
| 13.2.1 Input Vs Output Test Results                                | .11 |
| 13.2.1.1 Occupied Bandwidth Results                                | .13 |
| 13.2.1.2 Emissions Masks per 90.210                                | .27 |
| 14.0 INPUT/OUTPUT POWER AND AMPLIFIER GAIN                         | .40 |
| 14.1 Applicable Standard                                           | .40 |
| 14.2 Test procedures                                               | .40 |
| 14.3 Gain Test Results                                             | .40 |
| 14.4 ERP calculations                                              | .41 |
| 15.0 NOISE FIGURE MEASUREMENTS                                     | .41 |
| 15.1 Applicable Standard                                           | .41 |
| 15.2 Test procedures for section 4.6                               | .42 |
| 15.3 Results for Section 4.6                                       | .42 |
| 16.0 OUT-OF-BAND/OUT-OF-BLOCK EMISSIONS                            | .45 |
| 16.1 Applicable Standard                                           | .45 |
| 16.2 Test procedures for section 4.7.2                             | .45 |
| 16.3 Results for Section 4.7.2                                     | .45 |
| 16.3.1 Combined Output Results; Out-of-band/out-of-block emissions | .47 |
| 17.0 SPURIOUS EMISSIONS CONDUCTED MEASUREMENTS                     | .51 |
| 17.1 Applicable Standard                                           | .51 |
| 17.2 Test procedures for section 4.7.3                             | .52 |
| 17.3 Results for Section 4.7.3.                                    | 52  |
| 17.4 Results for Section 90.543 (e)                                | .57 |
| 18.0 SPURIOUS RADIATED EMISSIONS                                   | 58  |
| 18.1 Applicable Standard                                           | .58 |
| 18.2 Test Procedures                                               | 59  |
| Figure 1. Drawing of Radiated Emissions Setup                      | .60 |

Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E

| 18.2.1 Spurious Radiated Emissions Test Results | 61 |
|-------------------------------------------------|----|
| 18.2.2 Results for Section 90.543 (f)           | 64 |
| 19.0 MEASUREMENT INSTRUMENTATION UNCERTAINTY    | 64 |
| 20.0 REVISION HISTORY                           | 65 |
|                                                 |    |

## **1.0 ADMINISTRATIVE DATA**

| Equipment Under Test:                                                                                                        |                                               |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|--|--|--|
| A Westell Technologies, Inc., Public Safety Signal Booster                                                                   |                                               |  |  |  |  |  |  |  |
| Model: PS71090E; Serial Number: 19RF11060004                                                                                 |                                               |  |  |  |  |  |  |  |
| This will be referred to as the EUT in this Report                                                                           |                                               |  |  |  |  |  |  |  |
| Date EUT Received at Radiometrics:                                                                                           | Test Date(s):                                 |  |  |  |  |  |  |  |
| December 9, 2019                                                                                                             | December 19, 2019 thru April 18, 2020         |  |  |  |  |  |  |  |
| Test Report Written and Approved By:                                                                                         | Radiometrics' Personnel Responsible for Test: |  |  |  |  |  |  |  |
|                                                                                                                              | Joseph Strzelecki                             |  |  |  |  |  |  |  |
| Joseph Strackehi                                                                                                             | Senior EMC Engineer                           |  |  |  |  |  |  |  |
|                                                                                                                              |                                               |  |  |  |  |  |  |  |
|                                                                                                                              | Richard L. Tichgelaar                         |  |  |  |  |  |  |  |
| Date                                                                                                                         | EMC Technician                                |  |  |  |  |  |  |  |
| Joseph Strzelecki                                                                                                            |                                               |  |  |  |  |  |  |  |
| Senior EMC Engineer                                                                                                          | Dave Jarvis                                   |  |  |  |  |  |  |  |
| NARTE EMC-000877-NE                                                                                                          | EMC Technician                                |  |  |  |  |  |  |  |
| Test Witnessed By:                                                                                                           |                                               |  |  |  |  |  |  |  |
| The tests were not witnessed by personnel                                                                                    |                                               |  |  |  |  |  |  |  |
| from Westell Technologies, Incorporated                                                                                      |                                               |  |  |  |  |  |  |  |
| Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation |                                               |  |  |  |  |  |  |  |

## 2.0 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is a Public Safety Signal Booster, Model PS71090E, manufactured by Westell, Inc. The detailed test results are presented in a separate section. The following is a summary of the test results.

| Transmitter Requirements                      |                 |                |             |  |  |  |  |
|-----------------------------------------------|-----------------|----------------|-------------|--|--|--|--|
|                                               |                 | FCC KDB 935210 |             |  |  |  |  |
| Environmental Phenomena                       | Frequency Range | section        | Test Result |  |  |  |  |
| AGC Threshold                                 | 758-862 MHz     | 4.2            | Pass        |  |  |  |  |
| Out of Band Rejection                         | 758-862 MHz     | 4.3            | Pass        |  |  |  |  |
| Input vs Output Signal Comparison             | 758-862 MHz     | 4.4            | Pass        |  |  |  |  |
| Input/output power and amplifier gain         | 758-862 MHz     | 4.5            | Pass        |  |  |  |  |
| Noise figure Measurements                     | 758-862 MHz     | 4.6            | Pass        |  |  |  |  |
| Out-of-band/out-of-block emissions conducted  | 758-862 MHz     | 4.7.2          | Pass        |  |  |  |  |
| measurements                                  |                 |                |             |  |  |  |  |
| EUT spurious emissions conducted measurements | 30-9,000 MHz    | 4.7.3          | Pass        |  |  |  |  |
| Frequency Stability                           | N/A             | 4.7            | Note 1      |  |  |  |  |
| Field Strength of Spurious Radiated emissions | 30-9,000 MHz    | 4.9            | Pass        |  |  |  |  |
| Spurious emissions per 90.543 (e) & (f)       | 30-9,000 MHz    | 4.7.3          | Pass        |  |  |  |  |

Note 1: Test not required since the amplifier, repeater does not alter the input signal in any way.

## 3.0 EQUIPMENT UNDER TEST (EUT) DETAILS

## 3.1 EUT Description

The EUT is a Bi-Directional Amplifier, Public Safety Signal Booster, Model PS71090E, manufactured by Westell, Inc. The RF communications link is encrypted in both directions. The EUT was in good working condition during the tests, with no known defects.

The EUT was tested at 120 VAC 60 Hz input power.

The EUT has a gain of 90 dB, Power of 33 dBm, and a frequency range of 788-805 MHz for uplink The EUT has a gain of 90 dB, Power of 33 dBm, and a frequency range of 806-817 MHz for uplink The EUT has a gain of 90 dB, Power of 33 dBm, and a frequency range of 758-775 MHz for downlink The EUT has a gain of 90 dB, Power of 33 dBm, and a frequency range of 851-862 MHz for downlink The output signal coupling attenuation is 0 dB

Note: The 0.5W version has an attenuation of 10 dB and a gain of 80 dB.

## 4.0 TESTED SYSTEM DETAILS

### 4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations. The identification for all equipment used in the tested system is:

**Tested System Configuration List** 

| Iter | n Description Type'                   |  | Manufacturer              | Model Number | Serial Number |
|------|---------------------------------------|--|---------------------------|--------------|---------------|
| 1    | Bi-Directional Amplifier; 2W E        |  | Westell Technologies Inc. | PS71090E     | 19RF11060004  |
| 2    | Bi-Directional Amplifier E<br>0.5watt |  | Westell Technologies Inc. | PS51080E     | 19RF11060004  |

\* Type: E = EUT, S = Support Equipment

## 4.2 EUT Operating Modes

The following Modulations were used during the tests:

| Modulation | Description                                                                              |
|------------|------------------------------------------------------------------------------------------|
| AWGN       | Broadband modulation with an occupied bandwidth (OBW) of 4.1 MHz. This is representative |
|            | of a 5 MHz LTE channel                                                                   |
| CW         | Continuous Wave; No Modulation                                                           |
| FM 4 kHz   | Frequency Modulation; 4 kHz OBW, 6.25 kHz Channel Bandwidth, 1 kHz Audio Freq.           |
| FM 11 kHz  | Frequency Modulation; 11.3 kHz OBW, 12.5 kHz Channel Bandwidth, 1 kHz Audio Freq.        |
| FM 16 kHz  | Frequency Modulation; 16 kHz OBW, 25 kHz Channel Bandwidth, 1 kHz Audio Freq.            |

## 4.3 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

| Document              | Date | Title                                                                                                                             |
|-----------------------|------|-----------------------------------------------------------------------------------------------------------------------------------|
| FCC KDB<br>935210 D05 | 2019 | Measurements Guidance for Industrial and Non-Consumer Signal Bi-<br>Directional Wireless, Repeater, and Amplifier Devices; v01r03 |
| FCC KDB<br>971168 D01 | 2018 | Measurement Guidance for Certification of Licensed Digital Transmitters v03r01                                                    |
| TIA-603-E             | 2016 | Land Mobile FM or PM Communications Equipment – Measurement and Performance Standards                                             |
| ANSI C63.26           | 2015 | American National Standard for Compliance Testing of Transmitters<br>Used in Licensed Radio Services                              |

## 5.0 TEST SPECIFICATIONS AND RELATED DOCUMENTS

## 6.0 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 2017 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.org).

The following is a list of shielded enclosures located in Romeoville, Illinois used during the tests:

- Chamber A: Is an anechoic chamber that measures 24' L X 12' W X 12' H. The walls and ceiling are fully lined with ferrite absorber tiles. The floor has a 10' x 10' section of ferrite absorber tiles located in the center. Panashield of Rowayton, Connecticut manufactured the chamber. The enclosure is NAMAS certified.
- Chamber B: Is a shielded enclosure that measures 20' L X 12' W X 8' H. Erik A. Lindgren & Associates of Chicago, Illinois manufactured the enclosure.
- Chamber E: Is a custom-made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber.

A separate ten-foot long, brass plated, steel ground rod attached via a 6-inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with the Industry Canada as site number IC3124A-1.

## 7.0 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

## 8.0 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification. The results relate only to the EUT listed herein. Any modifications made to the EUT subsequent to the indicated test date will invalidate the data and void this certification.

## 9.0 TEST EQUIPMENT TABLE

|          |               |                    |           |               | Frequency    | Cal    | Cal      |
|----------|---------------|--------------------|-----------|---------------|--------------|--------|----------|
| RMC ID   | Manufacturer  | Description        | Model No. | Serial No.    | Range        | Period | Date     |
| ANT-06   | EMCO          | Log-Periodic Ant.  | 3146      | 1248          | 200-1000MHz  | 24 Mo. | 12/13/19 |
| ANT-07   | RMC           | Log-Periodic Ant.  | LP1000    | 1001          | 200-1000MHz  | 24 Mo. | 11/19/18 |
| ANT-08   | RMC           | Log-Periodic Ant.  | LP1000    | 1002          | 200-1000MHz  | 24 Mo. | 11/19/18 |
| ANT-13   | EMCO          | Horn Antenna       | 3115      | 2502          | 1.0-18GHz    | 24 Mo. | 01/16/19 |
| ANT-36   | Ailtech-Eaton | Horn Antenna       | 96001     | 2013          | 1.0-18GHz    | 24 Mo. | 11/19/18 |
| ANT-66   | ETS-Lindgren  | Horn Antenna       | 3115      | 62580         | 1.0-18GHz    | 24 Mo. | 03/05/19 |
| ATT-53   | Weinschel     | Attenuator (20 dB) | 23-20-34  | CG7857        | DC-18 GHz    | 12 Mo  | 11/06/19 |
| ATT-54   | Weinschel     | Attenuator (20 dB) | 34-20-34  | BP7085        | DC-4 GHz     | 12 Mo  | 07/16/19 |
| CAB-044A | Teledyne      | Coaxial Cable      | N/A       | 044A          | DC-18 GHz    | 24 Mo. | 05/15/18 |
| CAB-090C | Teledyne      | Coaxial Cable      | N/A       | 090C          | DC-18 GHz    | 24 Mo. | 05/15/18 |
| CAB-114F | Teledyne      | Coaxial Cable      | N/A       | 114F          | DC-18 GHz    | 24 Mo. | 05/15/18 |
| CAB-114G | Teledyne      | Coaxial Cable      | N/A       | 114G          | DC-18 GHz    | 24 Mo. | 05/15/18 |
| CAB-142G | Teledyne      | Coaxial Cable      | N/A       | 142G          | DC-18 GHz    | 24 Mo. | 05/09/18 |
| CAB-144F | Teledyne      | Coaxial Cable      | N/A       | 142G          | DC-18 GHz    | 24 Mo. | 05/15/18 |
| CAB-160B | Teledyne      | Coaxial Cable      | N/A       | 160B          | DC-18 GHz    | 24 Mo. | 05/09/18 |
| CAB-210A | Teledyne      | Coaxial Cable      | N/A       | 210A          | DC-18 GHz    | 24 Mo. | 05/09/18 |
| CAB-210B | Teledyne      | Coaxial Cable      | N/A       | 210B          | DC-18 GHz    | 24 Mo. | 05/09/18 |
| CAB-272A | Teledyne      | Coaxial Cable      | N/A       | 272A          | DC-18 GHz    | 24 Mo. | 05/09/18 |
| CAB-1090 | Teledyne      | Coaxial Cable      | N/A       | 1090          | DC-18 GHz    | 24 Mo. | 05/16/18 |
| COM-01   | Anaren        | Coupler            | 10023-3   | COM-01        | 250-1000MHz  | 12 Mo. | 12/06/19 |
| COM-W1   | CSI           | Combiner/Splitter  | CSI-S2BSC | None          | 500-3000MHz  | 12 Mo. | 12/06/19 |
| REC-11   | Agilent       | Spectrum Analyzer  | E7405A    | US39110103    | 9kHz-3GHz    | 24 Mo. | 04/02/18 |
|          |               |                    |           |               |              |        | 01/06/18 |
| REC-21   | Agilent       | Spectrum Analyzer  | E7405A    | MY45118341    | 9kHz-26.5GHz | 24 Mo. | 01/14/20 |
|          | Rohde         |                    |           |               |              |        |          |
| REC-22   | Schwarz       | Spectrum Analyzer  | ESIB 26   | 100145        | 26.5 GHz     | 24 Mo  | 09/16/19 |
| REC-31   | Agilent       | Spectrum Analyzer  | E7402A    | US41160415    | 9kHz-3GHz    | 24 Mo. | 05/20/19 |
|          |               |                    |           | MY42510244    |              |        |          |
| RNT-17   | Agilent       | Spectrum Analyzer  | E4440A    | 1DS202512B7.1 | 3Hz-26.5GHz  | 36 Mo  | 07/19/17 |
| SIG-21   | HP / Agilent  | Signal Generator   | 8341B     | 2910A02352    | 0.01-20 GHz  | 12 Mo. | 07/26/19 |
|          | Rohde         | Vector Signal      |           |               |              |        |          |
| SIG-31   | Schwarz       | Generator          | SMJ 100A  | 101395        | 100kHz-6GHz  | 36 Mo. | 08/25/17 |
| THM-03   | Fluke         | Temp/Humid Meter   | 971       | 95850465      | N/A          | 12 Mo. | 05/03/19 |

Note: All calibrated equipment is subject to periodic checks.

NCR – No Calibration Required. Device monitored by calibrated equipment. N/A: Not Applicable.

For each individual test, the equipment used was within its calibration interval during the test.

## 9.1 Test Software

| Software Company | Test Software Name | Version  | Applicable Tests                          |
|------------------|--------------------|----------|-------------------------------------------|
| Radiometrics     | REREC11D           | 06.18.18 | RF Radiated Emissions (ISED; FCC Part 15) |
| Agilent          | PSA/ESA-E/L/EMC    | 2.4.0.42 | Bandwidth and screen shots                |

## **10.0 TEST SECTIONS**

The following sections are the detailed results in accordance to FCC KDB 935210 D05.

## 11.0 AGC THRESHOLD

## **11.1 Applicable Standard**

The EUT shall comply with FCC KDB 935210 section 4.2.

## **11.2 Test procedures**

a) A signal generator was connected to the input of the EUT.

b) A power meter was connected to the output of the EUT using an external 20 dB attenuator.

c) A signal generator was initially configured to produce a CW signal

d) The signal generator frequency was set to the center frequency of the EUT operating band.

e) While monitoring the output power of the EUT, measured using the methods of 3.5.3 of KDB 935210, the input level was increased until a 1 dB increase in the input signal power no longer causes a 1 dB increase in the output signal power.

f) This level was recorded as the AGC threshold level.

g) The procedure was repeated with the remaining test signal bands.

## **11.2.1 AGC Threshold Test Results**

| Model          | PS71090E              | Specifications | FCC KDB 935210 D05 Sec. 4.2 |
|----------------|-----------------------|----------------|-----------------------------|
| Serial Number  | 19RF11060004          | Test Date      | 04/02/2020 & 4/17/2020      |
| Test Personnel | Richard L. Tichgelaar | Test Location  | Chamber B                   |
|                | Joseph Strzelecki     |                |                             |
| Test Equipment | EMI Receiver (REC-21) |                |                             |

|            | Transmit | Generator |       | Uncorrected | Output | Output |
|------------|----------|-----------|-------|-------------|--------|--------|
|            | Band     | Οι        | Itput | Reading     | Change | Power  |
| Modulation | MHz      | MHz       | dBm   | dBm         | dB     | dBm    |
| CW         | 788-805  | 796.5     | -58.6 | 11.0        | N/A    | 31.0   |
| CW         | 788-805  | 796.5     | -57.6 | 12.0        | 1.0    | 32.0   |
| CW         | 788-805  | 796.5     | -56.6 | 13.0        | 1.0    | 33.0   |
| CW         | 788-805  | 796.5     | -55.6 | 12.5        | -0.5   | 32.5   |
| CW         | 806-817  | 811.5     | -59.0 | 9.9         | N/A    | 30.0   |
| CW         | 806-817  | 811.5     | -58.0 | 10.9        | 1.0    | 31.0   |
| CW         | 806-817  | 811.5     | -57.0 | 11.9        | 1.0    | 32.0   |
| CW         | 806-817  | 811.5     | -56.0 | 12.9        | 0.9    | 32.9   |
| CW         | 806-817  | 811.5     | -55.0 | 12.8        | -0.1   | 32.8   |
| CW         | 758-775  | 766.5     | -60.1 | 9.0         | N/A    | 29.0   |
| CW         | 758-775  | 766.5     | -59.1 | 10.0        | 1.0    | 30.0   |
| CW         | 758-775  | 766.5     | -58.1 | 11.0        | 1.0    | 31.0   |
| CW         | 758-775  | 766.5     | -57.1 | 12.0        | 1.0    | 32.0   |
| CW         | 758-775  | 766.5     | -56.1 | 13.0        | 1.0    | 33.0   |
| CW         | 758-775  | 766.5     | -55.1 | 12.5        | -0.5   | 32.5   |
| CW         | 851-862  | 856.5     | -59.1 | 10.0        | N/A    | 30.1   |
| CW         | 851-862  | 856.5     | -58.1 | 11.0        | 1.0    | 31.1   |
| CW         | 851-862  | 856.5     | -57.1 | 12.0        | 1.0    | 32.1   |
| CW         | 851-862  | 856.5     | -56.1 | 13.0        | 1.0    | 33.0   |
| CW         | 851-862  | 856.5     | -54.1 | 12.4        | -0.6   | 32.4   |
| AWGN       | 758-775  | 763.0     | -38.0 | 9.9         | N/A    | 29.9   |
| AWGN       | 758-775  | 763.0     | -37.0 | 11.8        | 1.9    | 31.8   |
| AWGN       | 758-775  | 763.0     | -36.0 | 11.8        | 0.0    | 31.8   |

|            | Transmit | Gen   | erator | Uncorrected | Output | Output |
|------------|----------|-------|--------|-------------|--------|--------|
|            | Band     | Οι    | Itput  | Reading     | Change | Power  |
| Modulation | MHz      | MHz   | dBm    | dBm         | dB     | dBm    |
| AWGN       | 758-775  | 763.0 | -35.0  | 12.9        | 1.1    | 32.9   |
| AWGN       | 758-775  | 763.0 | -34.5  | 12.3        | -0.6   | 32.3   |
| AWGN       | 788-798  | 793.0 | -38.0  | 9.8         | N/A    | 29.8   |
| AWGN       | 788-798  | 793.0 | -37.0  | 10.8        | 0.9    | 30.8   |
| AWGN       | 788-798  | 793.0 | -36.0  | 11.8        | 1.1    | 31.8   |
| AWGN       | 788-798  | 793.0 | -35.0  | 12.9        | 1.1    | 32.9   |
| AWGN       | 788-798  | 793.0 | -34.5  | 12.3        | -0.6   | 32.3   |

The Highlighted cells are the AGC Threshold.

### **12.0 OUT OF BAND REJECTION**

### **12.1 Applicable Standard**

The EUT shall comply with sections 4.3 of FCC KDB 935210 for passband gain.

#### 12.2 Test Procedures

The internal gain control of the EUT was adjusted to the maximum gain for which equipment certification is sought.

a) A signal generator was connected to the input of the EUT.

b) The swept CW signal was configured with the following parameters:

1) The frequency range was set to  $\pm 250$  % of the manufacturer's specified pass band.

2) The CW amplitude was 3 dB below the AGC threshold and shall not activate the AGC threshold throughout the test.

3) Dwell time = approximately 10 mS.

4) Frequency step = 50 kHz.

c) A spectrum analyzer was connected to the output of the EUT using appropriate attenuation.

d) The RBW of the spectrum analyzer was set to between 1 % and 5 % of the manufacturer's rated passband, and VBW =  $3 \times RBW$ .

e) The detector was set to Peak and the trace to Max-Hold.

f) After the trace was completely filled, a marker was placed at the peak amplitude, which is designated as f0, and with two additional delta markers at the 20 dB bandwidth (where the level has fallen by 20 dB).

g) The frequency response plot was captured for inclusion in the test report.

#### **12.3 Passband Bandwidth Test Results**

| Model          | PS71090E              | Specification | KDB 935210 D05 Sec 4.3 |
|----------------|-----------------------|---------------|------------------------|
| Serial Number  | 19RF11060004          | Test Date     | 1/10/2020              |
| Test Personnel | Richard L. Tichgelaar | Test Location | Chamber B              |
| Test Equipment | EMI Receiver (REC-11) |               |                        |

|     |     |             | 20 dB Down |           | 20 dB | Max Reading |       |
|-----|-----|-------------|------------|-----------|-------|-------------|-------|
| RBW | VBW |             | 1st Freq.  | 2nd Freq. | BW    | F0          |       |
| MHz | MHz | Band in MHz | MHz        | MHz       | MHz   | MHz         | dBm   |
| 0.3 | 1.0 | 788-805     | 787.17     | 806.17    | 19.0  | 791.8       | 32.97 |
| 0.3 | 1.0 | 806-824     | 805.2      | 825.51    | 20.31 | 806.24      | 31.17 |
| 0.3 | 1.0 | 758-775     | 756.57     | 776.5     | 19.93 | 759.91      | 32.05 |
| 0.3 | 1.0 | 851-869     | 849.35     | 870.65    | 21.3  | 855.61      | 33.62 |

The above data shows the additional marker data from the plots below.

| 🔆 Agil      | ent 16:02:0    | 06 Jan 10, 20                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |  |  |  |
|-------------|----------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|
| FCC Sec     | : 4.3 Out of B | and Rejection                                                                                                  | Plot.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mkr3 825.51 MHz                                                                                                  |  |  |  |
| lef 40 d    | Bm             |                                                                                                                | Atten 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.18 dBm                                                                                                        |  |  |  |
| 'eak [      |                |                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| og 🛛        |                |                                                                                                                | T. Hard Street of the street o | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |  |  |  |
| ս ⊢         |                |                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| B/  -       |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| )ffst ⊨     |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
|             |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| вГ          |                | Mary Market                                                                                                    | the state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| - h         |                | the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second secon | **************************************                                                                           |  |  |  |
| Г           |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| F           |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| F           |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| L           |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
|             | J MHZ          |                                                                                                                | AVDIAL 4 MIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stop 860 MHZ                                                                                                     |  |  |  |
| Kes DV      | V 300 KHZ      | T                                                                                                              | #VBW1MHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.99 ms (2000 pts)                                                                                              |  |  |  |
| manker<br>1 | (1)            | Frea                                                                                                           | A AXIS<br>806.24 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.17 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |  |  |  |
| 2           | (1)            | Freq                                                                                                           | 805.21 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.64 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |  |  |  |
| 3           | (1)            | Freq                                                                                                           | 825.51 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.18 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |  |  |  |
| FCC Sec     | c 4.3 Out of B | and Rejection                                                                                                  | Plot.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mkr3 806.17 MHz                                                                                                  |  |  |  |
| Ref 40 d    | Bm             |                                                                                                                | Atten 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.91 dBm                                                                                                        |  |  |  |
| 'eak        |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an and a constant of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| og          |                |                                                                                                                | a state of the sta |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
|             |                |                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |  |  |  |
| 1B/ -       |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| Jinst L     |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| ib          |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| - L         | 4              |                                                                                                                | de calierat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Man Martin marsham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Martin and a de la la seconda de la second |  |  |  |
| F           |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| -           |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| L           |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| L           |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| Start 754   | 4 MHz          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 839 MHz                                                                                                     |  |  |  |
| Res BV      | V 300 kHz      |                                                                                                                | #VBW 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.99 ms (2000 pts)                                                                                              |  |  |  |
| Marker      | Trace          | Туре                                                                                                           | X Axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Amplitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |  |  |  |
| 1           | (1)            | Freq                                                                                                           | 791.80 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32.97 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                  |  |  |  |
| ∠<br>3      | (1)            | Freq                                                                                                           | 806.17 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.90 dBm<br>13.91 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |  |  |  |
| -           | ~~~            | · · - ٦                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
|             |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |
| Jolink      |                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |  |  |

Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E

| 🔆 Aç                                                                                                                                                         | gilent 15:02                                                                                              | 2:50 Jan 10, 20                   | 20                                                                    | RT                       |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------|--------------------------|------------------------------|
| FCC Se                                                                                                                                                       | ec 4.3 Out of                                                                                             | Band Reiection                    | Plot.                                                                 |                          | Mkr3 870.65 MHz              |
| Ref 40                                                                                                                                                       | dBm                                                                                                       |                                   | Atten 30 dB                                                           |                          | 13.84 dBm                    |
| Peak                                                                                                                                                         |                                                                                                           |                                   |                                                                       |                          |                              |
|                                                                                                                                                              |                                                                                                           |                                   |                                                                       |                          |                              |
| 10                                                                                                                                                           |                                                                                                           |                                   | 4                                                                     |                          |                              |
| 10                                                                                                                                                           |                                                                                                           |                                   | •                                                                     | <b>è</b>                 |                              |
| dB/                                                                                                                                                          |                                                                                                           |                                   |                                                                       |                          |                              |
| Offst                                                                                                                                                        |                                                                                                           |                                   |                                                                       |                          |                              |
| 20                                                                                                                                                           |                                                                                                           |                                   |                                                                       |                          |                              |
| dB                                                                                                                                                           |                                                                                                           |                                   |                                                                       | Nex Art                  |                              |
|                                                                                                                                                              |                                                                                                           | Suna and a second                 | mannel                                                                | Lean and a second second |                              |
|                                                                                                                                                              |                                                                                                           |                                   |                                                                       |                          |                              |
|                                                                                                                                                              |                                                                                                           |                                   |                                                                       |                          |                              |
|                                                                                                                                                              |                                                                                                           |                                   |                                                                       |                          |                              |
|                                                                                                                                                              |                                                                                                           |                                   |                                                                       |                          |                              |
| Start 8                                                                                                                                                      | 15 MHz                                                                                                    |                                   |                                                                       | 1 1                      | Stop 905 MHz                 |
| #Dec P                                                                                                                                                       | W 200 LU-                                                                                                 |                                   | #V/DW/1 MU-                                                           | Swaan 1                  | 210p 505 minz                |
| #Res D                                                                                                                                                       |                                                                                                           | T. e.e.                           |                                                                       | Sweep 1                  | 5.55 ms (2000 pts)           |
| Marker<br>4                                                                                                                                                  | r Irace<br>(4)                                                                                            | i ype<br>Fred                     | A AXIS<br>855 B1 MU≁                                                  | Amplitude<br>33.62 dBm   |                              |
|                                                                                                                                                              | (1)                                                                                                       | Freq                              | 849.35 MHz                                                            | 14.07 dBm                |                              |
| 3                                                                                                                                                            | ú                                                                                                         | Freq                              | 870.65 MHz                                                            | 13.84 dBm                |                              |
| <br>Downl                                                                                                                                                    | ink                                                                                                       |                                   |                                                                       |                          |                              |
| <br>Downl<br>🔆 Ag                                                                                                                                            | ink<br>jilent 14:48                                                                                       | 3:57 Jan 10, 20                   | 20                                                                    | R T                      |                              |
| Downl                                                                                                                                                        | ink<br>jilent 14:48<br>ec 4.3 Out of l                                                                    | 3:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.                                                           | RT                       | Mkr3 776.51 MHz              |
| Downl<br>Mag<br>FCC Se<br><b>Ref 40</b>                                                                                                                      | ink<br>jilent 14:48<br>ec 4.3 Out of I<br><b>dBm</b>                                                      | 3:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br><b>Atten 30 dB</b>                                     | R T                      | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>Ag<br>FCC Se<br>Ref 40<br>Peak                                                                                                                      | ink<br>jilent 14:48<br>ec 4.3 Out of I<br><b>dBm</b>                                                      | 3:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            | R T                      | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>* Ag<br>FCC Se<br>Ref 40<br>Peak<br>Log                                                                                                             | ink<br>jilent 14:48<br>ec 4.3 Out of I<br><b>dBm</b>                                                      | 3:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            | R T                      | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10                                                                                                               | ink<br>jilent 14:48<br>ec 4.3 Out of I<br><b>dBm</b>                                                      | 3:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            | R T                      | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10<br>dB/                                                                                                        | ink<br>jilent 14:48<br>ec 4.3 Out of I<br>dBm                                                             | 8:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            | R T                      | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10<br>dB/<br>Offst                                                                                               | ink<br>jilent 14:48<br>ec 4.3 Out of I<br>dBm                                                             | 8:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            | R T                      | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10<br>dB/<br>Offst<br>20                                                                                         | ink<br>jilent 14:48<br>ec 4.3 Out of I<br>dBm                                                             | 3:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            |                          | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>Magential<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10<br>dB/<br>Offst<br>20<br>dB                                                                      | ink<br>ilent 14:48<br>ec 4.3 Out of l<br>dBm                                                              | 3:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            |                          | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10<br>dB/<br>Offst<br>20<br>dB                                                                                   | ink<br>jilent 14:48<br>ec 4.3 Out of 1<br>dBm                                                             | 3:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            | R T                      | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10<br>dB/<br>Offst<br>20<br>dB                                                                                   | ink<br>jilent 14:48<br>ec 4.3 Out of 1<br>dBm                                                             | 3:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            | R T                      | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10<br>dB/<br>Offst<br>20<br>dB                                                                                   | ink<br>jilent 14:48<br>ec 4.3 Out of 1<br>dBm                                                             | 8:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            |                          | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10<br>dB/<br>Offst<br>20<br>dB                                                                                   | ink<br>jilent 14:48<br>ec 4.3 Out of l<br>dBm                                                             | 8:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            |                          | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10<br>dB/<br>Offst<br>20<br>dB                                                                                   | ink<br>jilent 14:48<br>ec 4.3 Out of l<br>dBm                                                             | 3:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB<br>4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                          | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>Mag<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10<br>dB/<br>Offst<br>20<br>dB                                                                            | ink<br>illent 14:48<br>ac 4.3 Out of l<br>dBm                                                             | 3:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            |                          | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>Magential<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10<br>dB/<br>Offst<br>20<br>dB<br>Start 72<br>40 - 20                                               | ink<br>illent 14:48<br>ac 4.3 Out of 1<br>dBm                                                             | 3:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            |                          | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>Ag<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10<br>dB/<br>Offst<br>20<br>dB<br>Start 72<br>#Res B                                                       | ink<br>illent 14:48<br>dBm<br>dBm<br>14:48<br>dBm<br>24 MHz<br>W 300 kHz                                  | 3:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            | R T                      | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>Ref 40<br>Peak<br>Log<br>10<br>dB/<br>Offst<br>20<br>dB<br>Start 72<br>#Res B                                                                       | ink<br>jilent 14:48<br>ec 4.3 Out of 1<br>dBm<br>dBm<br>24 MHz<br>W 300 kHz<br>Trace                      | 3:57 Jan 10, 20<br>Band Rejection | 20 Plot. Atten 30 dB                                                  | R T                      | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10<br>dB/<br>Offst<br>20<br>dB<br>Start 72<br>#Res B<br>Marker<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | ink<br>jilent 14:48<br>ec 4.3 Out of 1<br>dBm<br>dBm<br>24 MHz<br>W 300 kHz<br>Trace<br>(1)               | 3:57 Jan 10, 20<br>Band Rejection | 20 Plot. Atten 30 dB                                                  | R T                      | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10<br>dB/<br>Offst<br>20<br>dB<br>Start 72<br>#Res B<br>Marker<br>1<br>2<br>3                                    | ink<br>jilent 14:48<br>ec 4.3 Out of 1<br>dBm<br>dBm<br>24 MHz<br>W 300 kHz<br>Trace<br>(1)<br>(1)<br>(1) | B:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            | R T                      | Mkr3 776.51 MHz<br>11.47 dBm |
| Downl<br>FCC Se<br>Ref 40<br>Peak<br>Log<br>10<br>dB/<br>Offst<br>20<br>dB<br>Start 72<br>#Res B<br>Marker<br>1<br>2<br>3                                    | ink<br>gilent 14:48<br>ec 4.3 Out of 1<br>dBm<br>dBm<br>24 MHz<br>W 300 kHz<br>Trace<br>(1)<br>(1)<br>(1) | 3:57 Jan 10, 20<br>Band Rejection | 20<br>Plot.<br>Atten 30 dB                                            | R T                      | Mkr3 776.51 MHz<br>11.47 dBm |

Downlink

## **13.0 INPUT VS OUTPUT SIGNAL COMPARISON**

## 13.1 Applicable Standard

The EUT shall comply with FCC KDB 935210 section 4.4.



Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E

## 13.2 Test procedures

A 26 dB bandwidth measurement was performed on the input signal and the output signal.

Refer to the applicable regulatory requirements (e.g., § 90.210) for emission mask specifications.

a) A signal generator was connected to the input of the EUT.

b) The signal generator was configured to transmit the appropriate test signal associated with the public safety emission designation (see Table 1).

c) The signal level was configured to be just below the AGC threshold (see results from 4.2).

d) A spectrum analyzer was connected to the output of the EUT using appropriate attenuation as necessary.

e) The spectrum analyzer center frequency was set to the nominal EUT channel center frequency. The span range for the spectrum analyzer was between 2 times to 5 times the EBW (or OBW).

f) The nominal RBW was be 300 Hz for 16K0F3E, and 100 Hz for all other emissions types.

g) The reference level of the spectrum analyzer was set to accommodate the maximum input amplitude level, i.e., the level at f0 per 4.2.

h) The spectrum analyzer detection mode was set to peak, and trace mode to max hold.

i) The trace was allowed to fully stabilize.

j) The signal was confirmed to be contained within the appropriate emissions mask.

k) The marker function was used to determine the maximum emission level and record the associated frequency as f0.

I) The emissions mask plot was captured for inclusion in the test report (output signal spectra).

m) The EUT input signal power (signal generator output signal) was measured directly from the signal generator using power measurement guidance provided in KDB Publication 971168 [R8] (input signal spectra). n) The spectral plot of the output signal (determined in step k) was compared to the input signal (determined in step I) to affirm they are similar (in passband and roll off characteristic features and relative spectral locations).

o) Steps d) to n) were repeated with the input signal amplitude set 3 dB above the AGC threshold.

p) Steps b) to o) were repeated for all authorized operational bands and emissions types (see applicable regulatory specifications, e.g., § 90.210).

q) All accumulated spectral plots depicting EUT input signal and EUT output signal were included in the test report and noted any observed dissimilarities.

| Model          | PS71090E                    | Specifications | FCC KDB 935210 D05 Sec. 4.4 |
|----------------|-----------------------------|----------------|-----------------------------|
| Serial Number  | 19RF11060004                | Test Date      | 1/10/2020 thru 04/16/2020   |
| Test Personnel | Richard L. Tichgelaar       | Test Location  | Chamber B                   |
| Test Equipment | EMI Receiver (REC-21 & REC- | ·11)           |                             |

### 13.2.1 Input Vs Output Test Results

|                |                |           | Generator Settings |               | Channel   | Analyzer   |            |              | 26 dB BW       | EUT         |
|----------------|----------------|-----------|--------------------|---------------|-----------|------------|------------|--------------|----------------|-------------|
| Output<br>Mode | Modul.<br>Type | Plot<br># | with 20 d<br>MHz   | B Att.<br>dBm | BW<br>kHz | RBW<br>kHz | VBW<br>kHz | Test<br>Port | Reading<br>MHz | AGC<br>Mode |
| UP             | FM 16k         | 1         | 796.5              | -22.0         | 25        | 0.30       | 1          | Generator    | 20.27          | ON+3        |
| UP             | FM 16k         | 2         | 796.5              | -25.5         | 25        | 0.30       | 1          | Amp Out      | 20.27          | Below       |
| UP             | FM 16k         | 3         | 796.5              | -22.0         | 25        | 0.30       | 1          | Amp Out      | 20.3           | ON+3        |
| UP             | FM 16k         | 7         | 815                | -22.0         | 25        | 0.30       | 1          | Generator    | 20.3           | ON+3        |
| UP             | FM 16k         | 8         | 815                | -25.5         | 25        | 0.30       | 1          | Amp Out      | 20.3           | Below       |
| UP             | FM 16k         | 9         | 815                | -22.0         | 25        | 0.30       | 1          | Amp Out      | 20.3           | ON+3        |
| DOWN           | FM 16k         | 13        | 766.5              | -22.0         | 25        | 0.30       | 1          | Generator    | 20.3           | ON+3        |
| DOWN           | FM 16k         | 14        | 766.5              | -25.5         | 25        | 0.30       | 1          | Amp Out      | 20.2           | Below       |
| DOWN           | FM 16k         | 15        | 766.5              | -22.0         | 25        | 0.30       | 1          | Amp Out      | 20.3           | ON+3        |

# R

# **Radiometrics Midwest Corporation**

# Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E

|        |             |      | Generator S | Settinas | Channel | Analy | zer |           | 26 dB BW | EUT   |
|--------|-------------|------|-------------|----------|---------|-------|-----|-----------|----------|-------|
| Output | Modul.      | Plot | with 20 d   | B Att.   | BW      | RBW   | VBW | Test      | Reading  | AGC   |
| Mode   | Туре        | #    | MHz         | dBm      | kHz     | kHz   | kHz | Port      | MHz      | Mode  |
| DOWN   | FM 16k      | 19   | 860         | -23.5    | 25      | 0.30  | 1   | Generator | 20.25    | ON+3  |
| DOWN   | FM 16k      | 20   | 860         | -27.0    | 25      | 0.30  | 1   | Amp Out   | 20.26    | Below |
| DOWN   | FM 16k      | 21   | 860         | -23.5    | 25      | 0.30  | 1   | Amp Out   | 20.26    | ON+3  |
| UP     | FM 11k      | 4    | 796.5       | -22      | 12.5    | 0.10  | 1   | Generator | 14.1     | ON+3  |
| UP     | FM 11k      | 5    | 796.5       | -26.5    | 12.5    | 0.10  | 1   | Amp Out   | 14.1     | Below |
| UP     | FM 11k      | 6    | 796.5       | -22      | 12.5    | 0.10  | 1   | Amp Out   | 14.1     | ON+3  |
| UP     | FM 11k      | 10   | 815         | -22      | 12.5    | 0.10  | 1   | Generator | 14.1     | ON+3  |
| UP     | FM 11k      | 11   | 815         | -26      | 12.5    | 0.10  | 1   | Amp Out   | 14.1     | Below |
| UP     | FM 11k      | 12   | 815         | -22      | 12.5    | 0.10  | 1   | Amp Out   | 14.1     | ON+3  |
| DOWN   | FM 11k      | 16   | 766.5       | -22      | 12.5    | 0.10  | 1   | Generator | 14.1     | ON+3  |
| DOWN   | FM 11k      | 17   | 766.5       | -26      | 12.5    | 0.10  | 1   | Amp Out   | 14.1     | Below |
| DOWN   | FM 11k      | 18   | 766.5       | -22      | 12.5    | 0.10  | 1   | Amp Out   | 14.1     | ON+3  |
| DOWN   | FM 11k      | 22   | 860         | -23.5    | 12.5    | 0.10  | 1   | Generator | 14.1     | ON+3  |
| DOWN   | FM 11k      | 23   | 860         | -27.5    | 12.5    | 0.10  | 1   | Amp Out   | 14.1     | Below |
| DOWN   | FM 11k      | 24   | 860         | -23.5    | 12.5    | 0.10  | 1   | Amp Out   | 14.1     | ON+3  |
| UP     | FM 4k       | 25   | 796.5       | -22.4    | 12.5    | 0.10  | 1   | Generator | 4.161    | ON+3  |
| UP     | FM 4k       | 26   | 796.5       | -26      | 12.5    | 0.10  | 1   | Amp Out   | 4.161    | Below |
| UP     | FM 4k       | 27   | 796.5       | -22.4    | 12.5    | 0.10  | 1   | Amp Out   | 4.161    | ON+3  |
| UP     | FM 4k       | 28   | 815         | -21.2    | 12.5    | 0.10  | 1   | Generator | 4.168    | ON+3  |
| UP     | FM 4k       | 29   | 815         | -24.7    | 12.5    | 0.10  | 1   | Amp Out   | 4.168    | Below |
| UP     | FM 4k       | 30   | 815         | -21.2    | 12.5    | 0.10  | 1   | Amp Out   | 4.168    | ON+3  |
| DOWN   | FM 4k       | 31   | 766.5       | -22.6    | 6.25    | 0.10  | 1   | Generator | 4.161    | ON+3  |
| DOWN   | FM 4k       | 32   | 766.5       | -26.1    | 6.25    | 0.10  | 1   | Amp Out   | 4.161    | Below |
| DOWN   | FM 4k       | 33   | 766.5       | -22.6    | 6.25    | 0.10  | 1   | Amp Out   | 4.161    | ON+3  |
| DOWN   | FM 4k       | 34   | 860         | -22      | 6.25    | 0.10  | 1   | Generator | 4.168    | ON+3  |
| DOWN   | FM 4k       | 35   | 860         | -25.5    | 6.25    | 0.10  | 1   | Amp Out   | 4.168    | Below |
| DOWN   | FM 4k       | 36   | 860         | -22      | 6.25    | 0.10  | 1   | Amp Out   | 4.168    | ON+3  |
| UP     | FM 16k      | B1   | 802         | -21      | 25      | 0.30  | 1   | Generator | 20.29    | ON+3  |
| UP     | FM 16k      | B2   | 802         | -31      | 25      | 0.30  | 1   | Amp Out   | 20.29    | Below |
| UP     | FM 16k      | B3   | 802         | -27      | 25      | 0.30  | 1   | Amp Out   | 20.3     | ON+3  |
| UP     | FM 11k      | B4   | 802         | -21      | 12.5    | 0.10  | 1   | Generator | 14.12    | ON+3  |
| UP     | FM 11k      | B5   | 802         | -31      | 12.5    | 0.10  | 1   | Amp Out   | 14.1     | Below |
| UP     | FM 11k      | B6   | 802         | -27      | 12.5    | 0.10  | 1   | Amp Out   | 14.1     | ON+3  |
| UP     | FM 4k       | B7   | 802         | -21      | 6.25    | 0.10  | 1   | Generator | 4.17     | ON+3  |
| UP     | FM 4k       | B8   | 802         | -31      | 6.25    | 0.10  | 1   | Amp Out   | 4.17     | Below |
| UP     | FM 4k       | B9   | 802         | -27      | 6.25    | 0.10  | 1   | Amp Out   | 4.17     | ON+3  |
| UP     | AWGN        | B10  | 802         | -23      | 4100    | 100   | 300 | Generator | 4.41     | ON+3  |
| UP     | AWGN        | B11  | 802         | -33      | 4100    | 100   | 300 | Amp Out   | 4.415    | Below |
| UP     | AWGN        | B12  | 802         | -29      | 4100    | 100   | 10  | Amp Out   | 4.405    | ON+3  |
| Down   | FM 16k      | B13  | 772         | -21      | 25      | 0.30  | 1   | Generator | 20.286   | ON+3  |
| Down   | FM 16k      | B14  | 772         | -31      | 25      | 0.30  | 1   | Amp Out   | 20.27    | Below |
| Down   | FM 16k      | B15  | 772         | -27      | 25      | 0.30  | 1   | Amp Out   | 20.29    | ON+3  |
| Down   | FM 11k      | B16  | 772         | -21      | 12.5    | 0.10  | 1   | Generator | 14.12    | ON+3  |
| Down   | FM 11k      | B17  | 772         | -31      | 12.5    | 0.10  | 1   | Amn Out   | 14.1     | Below |
| Down   | FM 11k      | B18  | 772         | -27      | 12.5    | 0.10  | 1   | Amp Out   | 14 1     | ON+3  |
| 2000   | 1 101 1 111 | 2.0  |             |          | 1       | 0.10  |     | 7 mp Out  | 1 7.1    | 0.110 |

Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E

|                |                |           | Generator S      | Generator Settings |           | Analyzer   |            |              | 26 dB BW       | EUT         |
|----------------|----------------|-----------|------------------|--------------------|-----------|------------|------------|--------------|----------------|-------------|
| Output<br>Mode | Modul.<br>Type | Plot<br># | with 20 d<br>MHz | B Att.<br>dBm      | BW<br>kHz | RBW<br>kHz | VBW<br>kHz | Test<br>Port | Reading<br>MHz | AGC<br>Mode |
| Down           | FM 4k          | B19       | 772              | -21                | 6.25      | 0.10       | 1          | Generator    | 4.17           | ON+3        |
| Down           | FM 4k          | B20       | 772              | -31                | 6.25      | 0.10       | 1          | Amp Out      | 4.17           | Below       |
| Down           | FM 4k          | B21       | 772              | -27                | 6.25      | 0.10       | 1          | Amp Out      | 4.17           | ON+3        |
| Down           | AWGN           | B22       | 772              | -23                | 4100      | 100        | 300        | Generator    | 4.404          | ON+3        |
| Down           | AWGN           | B23       | 772              | -33                | 4100      | 100        | 300        | Amp Out      | 4.39           | Below       |
| Down           | AWGN           | B24       | 772              | -29                | 4100      | 100        | 300        | Amp Out      | 4.405          | ON+3        |

The generator output signal is the amplifier input.

## 13.2.1.1 Occupied Bandwidth Results

## FM; 796.5 MHz Results



Input Signal to Amp; FM 16K

#### AMP Output: Below AGC, FM 16K



AMP Output: Level Above AGC, FM 16K

#### Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E





Input Signal to Amp; FM 16K

AMP Output: Below AGC; FM 16K



#### AMP Output: Level Above AGC; FM 16K



Input Signal to Amp; FM 16K

Amp output, Below AGC; FM 16K



Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E



AMP Output: Level Above AGC; FM 16K



Input Signal to Amp; 300 Hz, FM 16K

Amp output, Below AGC, FM 16K



AMP Output: Level above AGC; FM 16K

#### Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E



#### FM; 796.5 MHz Results

Input Signal to Amp; FM 11K

AMP Output: Below AGC, FM 11K



AMP Output: Level above AGC; FM 11K



Input Signal to Amp; FM 11K





Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E



AMP Output: Level above AGC; FM 11K



Input Signal to Amp; FM 11K

AMP Output: Below AGC, FM 11K



AMP Output: Level above AGC; FM 11K

#### Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E



#### FM; 860 MHz Results







AMP Output: Level above AGC; FM 11K



#### Input Signal to Amp; FM 4K

AMP Output: Below AGC, FM 4K



Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E



AMP Output: Level above AGC; FM 11K



Input Signal to Amp; FM 4K





AMP Output: Level above AGC; FM 4K

Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E

#### FM; 766.5 MHz Results



Input Signal to Amp; FM 4K

AMP Output: Below AGC, FM 4K



AMP Output: Level above AGC; FM 4K



RP-9209A3 Rev. 0

#### Input Signal to Amp; FM 4K

#### AMP Output: Below AGC, FM 4K



AMP Output: Level above AGC; FM 11K



Generator; FM 16K



AMP Output, FM 16K

AMP Output, FM 16K



AMP Output, FM 11K

Generator; FM 11K



AMP Output, FM 11K





AMP Output, FM 4K







AMP Output, AWGN

## FM; 772 MHz Results



Generator; FM 16K



AMP Output, FM 16K



AMP Output, FM 16K



AMP Output, FM 11K



Generator; FM 4K



AMP Output, FM 4K

AMP Output, FM 4K

## Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E



AMP Output, AWGN

Judgement: Pass

# 13.2.1.2 Emissions Masks per 90.210

| Model          | PS71090E              | Specifications | FCC KDB 935210 D05 Sec. 4.4 |
|----------------|-----------------------|----------------|-----------------------------|
| Serial Number  | 19RF11060004          | Test Date      | 1/13/2020                   |
| Test Personnel | Richard L. Tichgelaar | Test Location  | Chamber B                   |
| Test Equipment | EMI Receiver (RNT-17) |                |                             |

|        |            | EUT   |      | Generator |      | Settings |      |           |
|--------|------------|-------|------|-----------|------|----------|------|-----------|
| Output | Modulation | AGC   | Plot | Output    |      | RBW      | VBW  | Test      |
| Mode   | Туре       | Mode  | #    | MHz       | Mask | Hz       | Hz   | Port      |
| Up     | FM 11k     | Below | 1    | 796.5     | Н    | 100      | 300  | Amp Out   |
| Up     | FM 11k     | ON+3  | 2    | 796.5     | Н    | 100      | 300  | Amp Out   |
| Up     | FM 16k     | Below | 3    | 796.5     | G    | 300      | 1000 | Amp Out   |
| Up     | FM 16k     | ON+3  | 4    | 796.5     | G    | 300      | 1000 | Amp Out   |
| Up     | FM 11k     | Below | 5    | 815       | Н    | 100      | 300  | Amp Out   |
| Up     | FM 11k     | ON+3  | 6    | 815       | Н    | 100      | 300  | Amp Out   |
| Up     | FM 16k     | Below | 7    | 815       | G    | 300      | 1000 | Amp Out   |
| Up     | FM 16k     | ON+3  | 8    | 815       | G    | 300      | 1000 | Amp Out   |
| Down   | FM 11k     | Below | 9    | 766.5     | Н    | 100      | 300  | Amp Out   |
| Down   | FM 11k     | ON+3  | 10   | 766.5     | Н    | 100      | 300  | Amp Out   |
| Down   | FM 16k     | Below | 11   | 766.5     | G    | 300      | 1000 | Amp Out   |
| Down   | FM 16k     | ON+3  | 12   | 766.5     | G    | 300      | 1000 | Amp Out   |
| Down   | FM 11k     | Below | 13   | 860       | Н    | 100      | 300  | Amp Out   |
| Down   | FM 11k     | ON+3  | 14   | 860       | Н    | 100      | 300  | Amp Out   |
| Down   | FM 16k     | Below | 15   | 860       | G    | 300      | 1000 | Amp Out   |
| Down   | FM 16k     | ON+3  | 16   | 860       | G    | 300      | 1000 | Amp Out   |
| N/A    | FM 16k     | N/A   | 17   | 796.5     | G    | 300      | 1000 | Generator |
| N/A    | FM 11k     | N/A   | 18   | 796.5     | Н    | 100      | 300  | Generator |
| N/A    | FM 16k     | N/A   | 19   | 815       | G    | 300      | 1000 | Generator |
| N/A    | FM 11k     | N/A   | 20   | 815       | Н    | 100      | 300  | Generator |
| N/A    | FM 16k     | N/A   | 21   | 766.5     | G    | 300      | 1000 | Generator |
| N/A    | FM 11k     | N/A   | 22   | 766.5     | Н    | 100      | 300  | Generator |
| N/A    | FM 16k     | N/A   | 23   | 860       | G    | 300      | 1000 | Generator |
| N/A    | FM 11k     | N/A   | 24   | 860       | Н    | 100      | 300  | Generator |



#### Since the EUT does not have an audio low pass filter, Mask G or H are applied.



Level Above AGC; H Mask; Amp Out

## Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E





Level Above AGC; G Mask; Amp Out

Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E





Level Above AGC; H Mask; Amp Out

Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E





Level Above AGC; G Mask; Amp Out

Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E





Level Above AGC; H Mask; Amp Out

Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E





Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E





Level Above AGC; H Mask; Amp Out

Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E





## Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E





## Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E





## Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E





## Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E





## 14.0 INPUT/OUTPUT POWER AND AMPLIFIER GAIN

## 14.1 Applicable Standard

The EUT shall comply with FCC KDB 935210 section 4.5.

In accordance with section 4.5 of KDB 935210 D05, the mean input and output power and the amplifier gain was measured by adjusting the internal gain control of the EUT to the maximum gain for which equipment certification is sought. Any EUT attenuation settings were set to their minimum value.

Input power levels (uplink and downlink) were set to maximum input ratings while confirming that the device is not capable of operating in saturation (non-linear mode) at the rated input levels, including during the performance of the input/output power measurements.

## 14.2 Test procedures

a) A signal generator was connected to the input of the EUT.

b) The frequency of the signal generator was set to the frequency f0 as determined from 3.3 of KDB 935210.
 c) A power meter was connected to the output of the EUT using an external attenuator.

d) The signal generator amplitude was configured to be zero to 0.5 dB below the AGC threshold level.

e) The output power of the EUT measured and recorded.

f) The EUT was removed from the measurement setup. Using the same signal generator settings, the power measurement was repeated at the signal generator port, which was used as the input signal to the EUT and recorded as the input power.

h) Steps e) and f) were repeated with input signal amplitude set to 3 dB above the AGC threshold level. j) Steps d) to f) were repeated for all frequency bands authorized for use by the EUT.

The mean gain was reported for each authorized operating frequency band and each test signal stimulus.

After the mean input and output power levels have been measured as described in the preceding subclauses, the mean gain of the EUT can be determined from:

Gain (dB) = output power (dBm) – input power (dBm).

## 14.3 Gain Test Results

| Model          | PS51080E & PS71090E   | Specification | FCC KDB 935210 Sec. 4.5 |
|----------------|-----------------------|---------------|-------------------------|
| Serial Number  | 19RF11060004          | Test Date     | January 16, 2020        |
| Test Personnel | Richard L. Tichgelaar | Test Location | Chamber B               |
| Test Equipment | EMI Receiver (REC-11) |               |                         |

Notes: A CW signal was used. The lower and

#### 0.5-Watt version

|          |       |         |              | Peak  |          | Cable | Output | Output |         |
|----------|-------|---------|--------------|-------|----------|-------|--------|--------|---------|
|          | Freq. | Sig Gen | Total Atten. | power | Output   | Loss  | Power  | power  |         |
| Mode     | MHz   | dBm     | dB           | dBm   | Atten dB | dB    | dBm    | Watts  | Gain dB |
| UP (1)   | 796.5 | -33.0   | 40.3         | 6.5   | 19.8     | 0.2   | 26.5   | 0.447  | 79.8    |
| UP (2)   | 796.5 | -29.5   | 40.3         | 6.5   | 19.8     | 0.2   | 26.5   | 0.447  | 76.3    |
| UP (1)   | 815.0 | -32.4   | 40.3         | 6.4   | 19.8     | 0.2   | 26.4   | 0.437  | 79.1    |
| UP (2)   | 815.0 | -28.9   | 40.3         | 6.4   | 19.8     | 0.2   | 26.4   | 0.437  | 75.6    |
| Down (1) | 766.5 | -32.3   | 40.3         | 6.4   | 19.8     | 0.2   | 26.4   | 0.437  | 79.0    |
| Down (2) | 766.5 | -28.8   | 40.3         | 6.4   | 19.8     | 0.2   | 26.4   | 0.437  | 75.5    |



Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E

| Mode     | Freq.<br>MHz | Sig Gen<br>dBm | Total Atten.<br>dB | Peak<br>power<br>dBm | Output<br>Atten dB | Cable<br>Loss<br>dB | Output<br>Power<br>dBm | Output<br>power<br>Watts | Gain dB |
|----------|--------------|----------------|--------------------|----------------------|--------------------|---------------------|------------------------|--------------------------|---------|
| Down (1) | 860.0        | -33.3          | 40.3               | 6.4                  | 19.8               | 0.2                 | 26.4                   | 0.437                    | 80.0    |
| Down (2) | 860.0        | -29.8          | 40.3               | 6.3                  | 19.8               | 0.2                 | 26.3                   | 0.427                    | 76.4    |

#### 2-Watt version

| Mode     | Freq.<br>MHz | Sig Gen<br>dBm | Total<br>Atten. dB | Peak<br>power<br>dBm | Output<br>Atten dB | Cable<br>Loss dB | Output<br>Power<br>dBm | Output<br>power<br>Watts | Gain dB |
|----------|--------------|----------------|--------------------|----------------------|--------------------|------------------|------------------------|--------------------------|---------|
| UP (1)   | 796.5        | -36.2          | 40.3               | 12.5                 | 19.8               | 0.2              | 32.5                   | 1.778                    | 89.0    |
| UP (2)   | 796.5        | -32.7          | 40.3               | 12.2                 | 19.8               | 0.2              | 32.2                   | 1.660                    | 85.2    |
| UP (1)   | 815.0        | -36.3          | 40.3               | 12.4                 | 19.8               | 0.2              | 32.4                   | 1.738                    | 89.0    |
| UP (2)   | 815.0        | -32.8          | 40.3               | 12.0                 | 19.8               | 0.2              | 32.0                   | 1.585                    | 85.1    |
| Down (1) | 766.5        | -37.0          | 40.3               | 12.4                 | 19.8               | 0.2              | 32.4                   | 1.738                    | 89.7    |
| Down (2) | 766.5        | -33.5          | 40.3               | 12.1                 | 19.8               | 0.2              | 32.1                   | 1.622                    | 85.9    |
| Down (1) | 860.0        | -37.1          | 40.3               | 12.5                 | 19.8               | 0.2              | 32.5                   | 1.778                    | 89.9    |
| Down (2) | 860.0        | -33.6          | 40.3               | 12.0                 | 19.8               | 0.2              | 32.0                   | 1.585                    | 85.9    |

(1) Level is 0.5 dB below AGC threshold; (2) Level is 3 dB above AGC threshold

Judgement: Pass; The passband gain did not exceed the nominal gain.

## 14.4 ERP calculations

| Model          | PS71090E              | Specifications | FCC Part 90.219(d)(6) |
|----------------|-----------------------|----------------|-----------------------|
| Serial Number  | 19RF11060004          | Test Date      | 01/07/2020            |
| Test Personnel | Richard L. Tichgelaar | Test Location  | Chamber B             |
| Test Equipment | EMI Receiver (REC-11) |                |                       |

| Transmitter | Freq.<br>MHz | Max<br>Power<br>dBm | Max Ant<br>Gain dBi | Duty<br>Cycle<br>% | EIRP W | AGC Mode   |
|-------------|--------------|---------------------|---------------------|--------------------|--------|------------|
| Uplink      | 788          | 33.0                | 3.8                 | 100.0              | 4.7863 | 5dB Below  |
| Uplink      | 788          | 32.2                | 3.8                 | 100.0              | 3.9811 | +3dB above |
| DownLink    | 758          | 33.0                | 3.0                 | 100.0              | 3.9811 | 5dB Below  |
| DownLink    | 758          | 32.1                | 3.0                 | 100.0              | 3.2359 | +3dB above |
| Uplink      | 806          | 33.0                | 3.8                 | 100.0              | 4.7863 | 5dB Below  |
| Uplink      | 806          | 32.0                | 3.8                 | 100.0              | 3.8019 | +3dB above |
| DownLink    | 851          | 33.0                | 3.0                 | 100.0              | 3.9811 | 5dB Below  |
| DownLink    | 851          | 32.0                | 3.0                 | 100.0              | 3.1623 | +3dB above |

## **15.0 NOISE FIGURE MEASUREMENTS**

### 15.1 Applicable Standard

The EUT shall comply with sections 4.6 of KDB 935210 D05.

§ 90.219(e)(2) limits the noise figure of a signal Bi-Directional amplifier to  $\leq$  9 dB in either direction.

## **15.2 Test procedures for section 4.6**

- a) A spectrum analyzer was connected to the downlink output of the amplifier.
- b) The uplink was unterminated.
- c) The spectrum analyzer was set to 200 trace average in the RMS average mode.
- d) A peak reading was recorded
- e) The noise figure was calculated using the following formula
- $NF = P_{NOUT} (-174dBm/Hz + 10*LOG_{10}(RBW) + Gain)$

#### Notes

 $P_{NOUT}$  = Output noise of the amplifier in dBm

174 = Thermal noise for 1 Hz RBW at room temperature

The Thermal noise for 1 MHz RBW =  $-174 + 10*LOG_{10}(1E6)$ 

RBW = Resolution Bandwidth of Spectrum analyzer in Hz

Gain = Gain of amplifier in dB

f) Steps a) to e) were repeated with the analyzer connected to the uplink output of the amplifier

## 15.3 Results for Section 4.6

| Model          | PS71090E                                                   | Specification | FCC KDB 935210 Sec. 4.6 |  |  |  |
|----------------|------------------------------------------------------------|---------------|-------------------------|--|--|--|
| Serial Number  | 19RF11060004                                               | Test Date     | 1/13/2020               |  |  |  |
| Test Personnel | Richard L. Tichgelaar, Joseph<br>Strzelecki                | Test Location | Chamber B               |  |  |  |
| Test Equipment | EMI Receiver (RNT-17); RBW= 1 MHz; VBW= 3 MHz; 8000 points |               |                         |  |  |  |

#### 0.5-Watt version

|      |       |      |        |         |      | Thermal | Cable | Noise  |          |
|------|-------|------|--------|---------|------|---------|-------|--------|----------|
|      | Start | Stop | Center | Reading | Gain | Noise   | Loss  | Figure | NF Limit |
| Mode | MHz   | MHz  | MHz    | dBm     | dB   | dB      | dB    | dB     | dB       |
| UP   | 785   | 808  | 796.5  | -31.5   | 79.8 | -114.0  | 0.4   | 3.1    | 9.0      |
| UP   | 806   | 824  | 815    | -33.0   | 79.1 | -114.0  | 0.4   | 2.3    | 9.0      |
| Down | 755   | 778  | 766.5  | -27.2   | 79.0 | -114.0  | 0.4   | 8.2    | 9.0      |
| Down | 848   | 872  | 860    | -25.7   | 80.0 | -114.0  | 0.4   | 8.7    | 9.0      |

#### 2-Watt version

|      |       |      |        |         |      | Thermal | Cable | Noise  |          |
|------|-------|------|--------|---------|------|---------|-------|--------|----------|
|      | Start | Stop | Center | Reading | Gain | Noise   | Loss  | Figure | NF Limit |
| Mode | MHz   | MHz  | MHz    | dBm     | dB   | dB      | dB    | dB     | dB       |
| UP   | 785   | 808  | 796.5  | -22.7   | 89.0 | -114.0  | 0.4   | 2.7    | 9.0      |
| UP   | 806   | 824  | 815    | -24.1   | 89.0 | -114.0  | 0.4   | 1.3    | 9.0      |
| Down | 755   | 778  | 766.5  | -21.1   | 89.7 | -114.0  | 0.4   | 3.6    | 9.0      |
| Down | 848   | 872  | 860    | -18.6   | 89.9 | -114.0  | 0.4   | 5.9    | 9.0      |

Judgement: Pass

## Low Power Mode: 0.5W



## High Power Mode- 2.0W



## 16.0 OUT-OF-BAND/OUT-OF-BLOCK EMISSIONS

## **16.1 Applicable Standard**

The EUT shall comply with sections 4.7.2 of KDB 935210 D05.

For a multi-channel enhancer, any intermodulation product level must be attenuated, relative to P, by at least:  $43+10xLog_{10}P$ , or 70 dB, whichever is less stringent, where P is the total RF output power of the test tones in watts. Since  $43 + 10xLog_{10}P$  is less stringent than 70 dB, that limit was used.

Spurious emissions shall be measured using a single test signal sequentially tuned to the low, middle, and high channels or frequencies within each authorized frequency band of operation.

Out-of-band/out-of-block emissions (including intermodulation products) was measured under each of the following two stimulus conditions:

a) two adjacent test signals sequentially tuned to the lower and upper frequency band/block edges,

b) a single test signal sequentially tuned to the lowest and highest frequencies or channels within the frequency band/block under examination.

### 16.2 Test procedures for section 4.7.2

a) A signal generator was connected to the input of the EUT.

Note; If the signal generator is not capable of producing two independent modulated carriers simultaneously, then two discrete signal generators can be connected, with an appropriate combining network to support the two-signal test.

b) The two signal generators were configured to produce CW on frequencies spaced consistent with 4.7.1, with amplitude levels set to just below the AGC threshold (see 4.2).

c) A spectrum analyzer was connected to the EUT output.

- d) The span was set to 100 kHz.
- e) RBW was set = 300 Hz with VBW  $\ge$  3 × RBW.
- f) The detector was set to power averaging (rms).
- g) A marker was placed on the highest intermodulation product amplitude.
- h) The plot was captured for inclusion in the test report.
- i) Steps c) to h) were repeated with the composite input power level set to 3 dB above the AGC threshold.
- j) Steps b) to i) were repeated for all operational bands.

Any frequency outside the authorized bandwidth was attenuated by at least 43 + 10 log (P) dB. This corresponds to an absolute level of -13 dBm.

#### 16.3 Results for Section 4.7.2

| Model          | PS71090E                        | Specification    | FCC KDB 935210 Sec. 4.7.2 |
|----------------|---------------------------------|------------------|---------------------------|
| Serial Number  | 19RF11060004                    | Test Date        | 01/13/2020 & 4/6/2020     |
| Test Personnel | Joseph Strzelecki               | Test Location    | Chamber B                 |
| Test Equipment | EMI Receiver (RNT-17) (1/13/202 | 0) and REC-31 (4 | /6/2020)                  |

The spectrum analyzer was set to max hold mode. Both signal generators were set to CW



## Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E

|      |     |      |         | Signal Genera | itor      | input to |     | Analyzer  |          | Max     |
|------|-----|------|---------|---------------|-----------|----------|-----|-----------|----------|---------|
| Plot | RBW | VBW  | Channel | #1            | #2        | Combine  |     | Center    | Freq     | Reading |
| #    | Hz  | Hz   | kHz     | MHz           | MHz       | dBm      | AGC | MHz       | MHz      | dBm     |
| 1    | 300 | 1000 | 12.5    | 796.5125      | 796.525   | -35      | off | 796.51875 | 796.5380 | -22.2   |
| 2    | 300 | 1000 | 12.5    | 796.5125      | 796.525   | -31      | on  | 796.51875 | 796.5380 | -22     |
| 3    | 300 | 1000 | 12.5    | 815.0000      | 815.0125  | -35      | off | 815.00625 | 815.0251 | -23.4   |
| 4    | 300 | 1000 | 12.5    | 815.0000      | 815.0125  | -31      | on  | 815.00625 | 815.0251 | -23.5   |
| 5    | 300 | 1000 | 25      | 796.525       | 796.55    | -35      | off | 796.53750 | 796.5752 | -24.2   |
| 6    | 300 | 1000 | 25      | 796.525       | 796.55    | -31      | on  | 796.53750 | 796.5752 | -24.2   |
| 7    | 300 | 1000 | 25      | 815.0000      | 815.025   | -35      | off | 815.01250 | 815.0502 | -24.3   |
| 8    | 300 | 1000 | 25      | 815.0000      | 815.025   | -31      | on  | 815.01250 | 815.0502 | -24.4   |
|      |     |      |         |               |           |          |     |           |          |         |
| 9    | 300 | 1000 | 12.5    | 766.5125      | 766.525   | -35      | off | 766.51875 | 766.5377 | -21.6   |
| 10   | 300 | 1000 | 12.5    | 766.5125      | 766.525   | -31      | on  | 766.51875 | 766.5377 | -23.6   |
| 11   | 300 | 1000 | 12.5    | 860.000       | 860.0125  | -35      | off | 860.00625 | 860.0252 | -25.6   |
| 12   | 300 | 1000 | 12.5    | 860.000       | 860.0125  | -31      | on  | 860.00625 | 860.0252 | -25.5   |
| 13   | 300 | 1000 | 25      | 766.525       | 766.55    | -35      | off | 766.53750 | 766.5752 | -24.8   |
| 14   | 300 | 1000 | 25      | 766.525       | 766.55    | -31      | on  | 766.53750 | 766.5752 | -22.3   |
| 15   | 300 | 1000 | 25      | 860.0000      | 860.025   | -35      | off | 860.01250 | 860.0502 | -24.7   |
| 16   | 300 | 1000 | 25      | 860.0000      | 860.025   | -31      | on  | 860.01250 | 860.0502 | -24.8   |
|      |     |      |         |               |           |          |     |           |          |         |
| 17   | 300 | 1000 | 6.25    | 793.00625     | 793.0125  | -35      | off | 793.00938 | 793.0146 | -19.96  |
| 18   | 300 | 1000 | 6.25    | 793.00625     | 793.0125  | -31      | on  | 793.00938 | 793.0191 | -19.77  |
| 19   | 300 | 1000 | 6.25    | 802.00625     | 802.0125  | -35      | off | 802.00938 | 802.1910 | -16.69  |
| 20   | 300 | 1000 | 6.25    | 802.00625     | 802.0125  | -31      | on  | 802.00938 | 802.1910 | -18.55  |
| 21   | 300 | 1000 | 6.25    | 815.0000      | 815.00625 | -35      | off | 815.00313 | 814.9938 | -17.65  |
| 22   | 300 | 1000 | 6.25    | 815.0000      | 815.00625 | -31      | on  | 815.00313 | 815.0127 | -17.54  |
| 23   | 300 | 1000 | 6.25    | 763.00625     | 763.0125  | -35      | off | 763.00938 | 763.0000 | -21.4   |
| 24   | 300 | 1000 | 6.25    | 763.00625     | 763.0125  | -31      | on  | 763.00938 | 762.9935 | -22.94  |
| 25   | 300 | 1000 | 6.25    | 772.00625     | 772.0125  | -35      | off | 772.00938 | 772.0192 | -20.1   |
| 26   | 300 | 1000 | 6.25    | 772.00625     | 772.0125  | -31      | on  | 772.00938 | 772.0192 | -20.55  |
| 27   | 300 | 1000 | 6.25    | 860.0000      | 860.00625 | -35      | off | 860.00313 | 860.0127 | -20.46  |
| 28   | 300 | 1000 | 6.25    | 860.0000      | 860.00625 | -31      | on  | 860.00313 | 860.0128 | -19.37  |

The table shows the highest spurious noise from the amplifier. The limit is -13 dBm.

Judgement: Pass

## 16.3.1 Combined Output Results; Out-of-band/out-of-block emissions



12.5 kHz







25 kHz



#### Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E









R T

Mkr1 766.575 18 MH

#### 6.25 kHz











R T

Mkr1

## **Radiometrics Midwest Corporation** Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E

🔆 Agilent 08:59:56 Jan 13, 2020

#### Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E



#### 6.25 kHz



<sup>6.25</sup> kHz





# R

#### **Radiometrics Midwest Corporation**

#### Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E









## 17.0 SPURIOUS EMISSIONS CONDUCTED MEASUREMENTS

## **17.1 Applicable Standard**

The EUT shall comply with sections 4.7.3 of KDB 935210 D05, since it is a Multi-Channel Enhancer.

For a multi-channel enhancer, any intermodulation product level must be attenuated, relative to P, by at least:  $43+10xLog_{10}P$ , or 70 dB, whichever is less stringent, where P is the total RF output power of the test tones in watts. Since  $43+10xLog_{10}P$  is less stringent than 70 dB, that limit was used.

Spurious emissions shall be measured using a single test signal sequentially tuned to the low, middle, and high channels or frequencies within each authorized frequency band of operation.

Out-of-band/out-of-block emissions (including intermodulation products) was measured under each of the following two stimulus conditions:

a) two adjacent test signals sequentially tuned to the lower and upper frequency band/block edges.
b) a single test signal sequentially tuned to the lowest and highest frequencies or channels within the frequency band/block under examination.

## 17.2 Test procedures for section 4.7.3

a) A signal generator was connected to the input of the EUT.

b) The signal generator was configured to produce a CW signal.

c) The frequency of the CW signal was set to the center channel of the EUT passband.

d) The output power level was set so that the resultant signal is just below the AGC threshold (see 4.2).

e) A spectrum analyzer was connected to the output of the EUT, using appropriate attenuation as necessary.

f) The RBW was set = 100 kHz. (i.e., for 30 MHz to 1 GHz PLMRS and/or PSRS Bi-Directional devices)

g) The VBW was set =  $3 \times RBW$ .

h) The Sweep time was set = auto-couple.

i) The detector was set to PEAK.

j) The spectrum analyzer start frequency was set to 30 MHz (or the lowest radio frequency signal generated in the EUT, without going below 9 kHz if the EUT has additional internal clock. frequencies), and the stop frequency to 10 times the highest allowable frequency of the EUT passband.

k) MAX HOLD was selected, and the marker peak function was used to find the highest emission(s) outside the passband. (This could be either at a frequency lesser or greater than the passband frequencies.)
 I) A plot was captured for inclusion in the test report.

m) Steps c) to I) were repeated for each authorized frequency band/block of operation.

Any frequency outside the authorized bandwidth was attenuated by at least 43 + 10 log (P) dB. This corresponds to an absolute level of -13 dBm.

## 17.3 Results for Section 4.7.3

| Model          | PS71090E              | Specification | FCC KDB 935210 Sec. 4.7.3 |
|----------------|-----------------------|---------------|---------------------------|
|                |                       |               | FCC part 90.543 (e)(3)    |
| Serial Number  | 19RF11060004          | Test Date     | 01/10/2020 & 01/13/2020   |
| Test Personnel | Dave Jarvis           | Test Location | Chamber B                 |
| Test Equipment | EMI Receiver (RNT-17) |               |                           |

The spectrum analyzer was set to max hold mode.

|      |     |     |      |       |         |     | Spectru | ım Analyzer | Max reading |       |
|------|-----|-----|------|-------|---------|-----|---------|-------------|-------------|-------|
| Plot | RBW | VBW |      |       | Sig Gen |     | Start   | Stop        | Freq        |       |
| #    | MHz | MHz | Mode | Modul | MHz     | dBm | MHz     | MHz         | MHz         | dBm   |
| 1    | 0.1 | 0.3 | UP   | CW    | 796.5   | -25 | 30      | 420         | 372.8       | -42.3 |
| 2    | 0.1 | 0.3 | UP   | CW    | 796.5   | -25 | 420     | 788         | 787.86      | -22.4 |
| 3    | 0.1 | 0.3 | UP   | CW    | 796.5   | -25 | 805     | 1000        | 805.29      | -24.3 |
| 4    | 1   | 3   | UP   | CW    | 796.5   | -25 | 1000    | 5000        | 3055.3      | -28.6 |
| 5    | 1   | 3   | UP   | CW    | 796.5   | -25 | 5000    | 9000        | 6764.2      | -28.4 |
| 6    | 0.1 | 0.3 | UP   | CW    | 815.0   | -24 | 30      | 420         | 366.6       | -41.2 |
| 7    | 0.1 | 0.3 | UP   | CW    | 815.0   | -24 | 420     | 806         | 805.95      | -25.9 |
| 8    | 0.1 | 0.3 | UP   | CW    | 815.0   | -24 | 824     | 1000        | 824.81      | -25.7 |
| 9    | 1   | 3   | UP   | CW    | 815.0   | -24 | 1000    | 5000        | 3079.8      | -27.8 |
| 10   | 1   | 3   | UP   | CW    | 815.0   | -24 | 5000    | 9000        | 7473.8      | -29.2 |
| 11   | 0.1 | 0.3 | Down | CW    | 766.5   | -24 | 30      | 420         | 363.1       | -42   |
| 12   | 0.1 | 0.3 | Down | CW    | 766.5   | -24 | 420     | 758         | 758         | -24   |
| 13   | 0.1 | 0.3 | Down | CW    | 766.5   | -24 | 775     | 1000        | 775         | -19.9 |
| 14   | 1   | 3   | Down | CW    | 766.5   | -24 | 1000    | 5000        | 3274.3      | -29.3 |
| 15   | 1   | 3   | Down | CW    | 766.5   | -24 | 5000    | 9000        | 7142.3      | -29.2 |

Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E

|      |     |     |      |       |         |       | Spectru | ım Analyzer | Max reading |       |
|------|-----|-----|------|-------|---------|-------|---------|-------------|-------------|-------|
| Plot | RBW | VBW |      |       | Sig Gen | -     | Start   | Stop        | Freq        |       |
| #    | MHz | MHz | Mode | Modul | MHz     | dBm   | MHz     | MHz         | MHz         | dBm   |
| 16   | 0.1 | 0.3 | Down | CW    | 860.0   | -25.5 | 30      | 420         | 351.4       | -41.8 |
| 17   | 0.1 | 0.3 | Down | CW    | 860.0   | -25.5 | 420     | 600         | 525.9       | -42.1 |
| 18   | 0.1 | 0.3 | Down | CW    | 860.0   | -25.5 | 600     | 851         | 850.9       | -17.2 |
| 19   | 0.1 | 0.3 | Down | CW    | 860.0   | -25.5 | 869     | 1000        | 869.3       | -17.9 |
| 20   | 1   | 3   | Down | CW    | 860.0   | -25.5 | 1000    | 5000        | 3230.8      | -29.3 |
| 21   | 1   | 3   | Down | CW    | 860.0   | -25.5 | 5000    | 9000        | 7110.3      | -29.7 |



796.5 MHz Injected Signal

#### 796.5 MHz Injected Signal





<sup>796.5</sup> MHz Injected Signal



#### Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E









815 MHz Injected Signal

#### 815 MHz Injected Signal



RP-9209A3 Rev. 0



#### Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E







766.5 MHz Injected Signal

766.5 MHz Injected Signal



766.5 MHz Injected Signal

<sup>766.5</sup> MHz Injected Signal



#### Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E







860 MHz Injected Signal



860 MHz Injected Signal

860 MHz Injected Signal

| *             | Agilent 14:                    | 42:47 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an 10, 20                     | 20                    |                   |     |   | RΤ               |                            |                              | * 1           | Agilent 14:                | :44:04 J                        | an 10, 20            | 20            |          |                                              |                                                                                                                 | RΤ            |                                  |           |
|---------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|-------------------|-----|---|------------------|----------------------------|------------------------------|---------------|----------------------------|---------------------------------|----------------------|---------------|----------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|----------------------------------|-----------|
| FCC s         | ect. 4.7.3                     | ; plot 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                       |                   |     |   |                  | Mkr1 3.2                   | 30 8 GHz                     | FCC s         | ect. 4.7.3                 | 3; plot 21                      |                      |               |          |                                              |                                                                                                                 | ١             | 1kr1 7.1                         | 10 3 GHz  |
| Ref 3         | 5 dBm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | At                            | ten 30 d              | В                 |     |   |                  | -2                         | 9.26 dBm                     | Ref 35        | 5 dBm                      |                                 | At                   | ten 30 d      | В        |                                              |                                                                                                                 |               | -29                              | ).68 dBm  |
| #Peak         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              | #Peak         |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
| Log           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              | Log           |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
| 10            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              | 10            |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
| dB/           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              | dB/           |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
| UffSt<br>20   |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              | UffSt<br>20   |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
| ∠ø<br>dB      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              | Z⊎<br>dR      |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
|               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              | ni            |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
| _13 й         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              | _13 0         |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
| dÊm           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              | dBm           |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
| LaAv          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              | LaAv          |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
| -0            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              | -0            |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
| V1 S:         | 2                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              | V1 S2         | 2                          |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
| \$3 F0        | 2                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   | \$  |   |                  |                            |                              | \$3 FC        |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
| Af            | Andersteinen                   | المطالب الاستو                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No. L. Stale                  | (buch bound           | di la chini di la |     |   | hin and a little | dias adda a                | distallar particular         | AA            | and whether                | washingtown                     | and a state of the   | and shall and |          | allahi di sebugan dalam<br>madika kasa sakén | and the second secon | t-within till | in the state of the state of the |           |
| <b>£</b> (f): | <mark>ahihing pangkapan</mark> | a and the state of | a series ( an addition of the | Concent National Pro- |                   | 11  |   |                  | the official states of the | a dente di la di participa d | <b>£</b> (f): | <b>entre de la company</b> | a na ha na ha na ha na ha na ha | and the bird of pict | -Apply March  |          |                                              |                                                                                                                 |               | -N.R. P. B. LAND                 |           |
| FTun          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              | FTun          |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
| Swp           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              | Ѕ₩р           |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
|               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              |               |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
|               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              |               |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
|               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       |                   |     |   |                  |                            |                              |               |                            |                                 |                      |               |          |                                              |                                                                                                                 |               |                                  |           |
| Start         | 1.000 0 0                      | θHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                       |                   |     |   |                  | Stop 5.0                   | 00 0 GHz                     | Start         | 5.000 0 0                  | GHz                             |                      |               |          |                                              |                                                                                                                 |               | Stop 9.00                        | 00 0 GHz  |
| #Res          | BW 1 MHz                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                       | #VBW 3 №          | 1Hz | S | weep 6.9         | 132 ms (8                  | 000 pts)_                    | #Res [        | 3W 1 MHz                   |                                 |                      |               | ₩VBW 3 M | Hz                                           | S                                                                                                               | weep 6.9      | 32 ms (8                         | 000 pts)_ |
| 000           |                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | 1                     |                   |     |   |                  |                            |                              | 00            | ~ • • • •                  | 1                               |                      | · · · · I     |          |                                              |                                                                                                                 |               |                                  |           |

860 MHz Injected Signal

860 MHz Injected Signal

## 17.4 Results for Section 90.543 (e)

| Model          | PS71090E              | Specification | FCC 90.543 (e) |
|----------------|-----------------------|---------------|----------------|
| Serial Number  | 19RF11060004          | Test Date     | 04/06/2020     |
| Test Personnel | Joseph Strzelecki     | Test Location | Chamber B      |
| Test Equipment | EMI Receiver (RNT-17) |               |                |

This is an excerpt from FCC 90.543. The text in red is Radiometrics notes.

**90.543 (e)** For operations in the 758-768 MHz and the 788-798 MHz bands, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations.

The limit is equivalent to -46 dBm. This limit was used since it is the most stringent. Judgement: Pass

(2) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations. See above; Judgement: Pass

(3) On any frequency between 775-788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB. (-13 dBm) OK Done. The results are shown in section 17.3 herein. Judgement: Pass

|      |      |     |      |       |         |       |       | ım Analyzer | Max reading |         |
|------|------|-----|------|-------|---------|-------|-------|-------------|-------------|---------|
| Plot | RBW  | VBW |      |       | Sig Gen |       | Start | Stop        | Freq        |         |
| #    | MHz  | kHz | Mode | Modul | MHz     | dBm   | MHz   | MHz         | MHz         | dBm     |
| 1    | 6.25 | 20  | UP   | CW    | 793.0   | -26.3 | 799   | 805         | 803.631     | -52.052 |
| 2    | 6.25 | 20  | Down | CW    | 763.0   | -25.3 | 769   | 775         | 772.203     | -47.74  |

The spectrum analyzer was set to max hold mode.

Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E

| ₩ A                    | gilent 12:        | 04:34 Ap        | ır 6,202 | 0               |                                          |                             |                                       | RT                          |                             |                                                        |
|------------------------|-------------------|-----------------|----------|-----------------|------------------------------------------|-----------------------------|---------------------------------------|-----------------------------|-----------------------------|--------------------------------------------------------|
| Ref 35                 | dBm               |                 | At       | ten 30 dl       | 3                                        |                             |                                       | ł                           | 4kr1 772<br>-47.            | .203 MHz<br>746 dBm                                    |
| Samp<br>Log            |                   |                 |          |                 |                                          |                             |                                       |                             |                             |                                                        |
| 10<br>dB/              |                   |                 |          |                 |                                          |                             |                                       |                             |                             |                                                        |
| Uffst<br>20<br>dB      |                   |                 |          |                 |                                          |                             |                                       |                             |                             |                                                        |
| <br>DI<br>46.0         | Marke             | r               |          |                 |                                          |                             |                                       |                             |                             |                                                        |
| dBm<br>LaAv            | //2.2<br>_47.7    | 03000<br>46 dBr | MHZ<br>n |                 |                                          |                             |                                       |                             |                             |                                                        |
| 100<br>W1 S2           |                   |                 |          |                 |                                          |                             |                                       |                             |                             |                                                        |
| S3 FS<br>AA            |                   |                 |          |                 |                                          |                             |                                       |                             |                             |                                                        |
| <b>£</b> (f):<br>f>50k |                   |                 |          |                 |                                          | 1                           |                                       |                             |                             |                                                        |
| Swp                    | Huy Hartor (Plate |                 |          | pappin, Handren | a an | and way to an orthogonal of | Maria Sala Manana Ang Pangana Pangana | in the second second second | le generation in the second | an yana yana ang ng n |
|                        |                   |                 |          |                 |                                          |                             |                                       |                             |                             |                                                        |
| Start Ż                | ,<br>69.000 M     | IHz             |          |                 |                                          |                             |                                       |                             | Stop 775.                   | 000 MHz                                                |
| #Res B                 | W 6.2 kHz         | Z               |          | +               | VBW 20 k                                 | :Hz                         | S                                     | weep 46%                    | 9.4 ms (20                  | 000 pts)                                               |

| ₩ А                    | gilent 12:         | 09:50 Ap        | or 6,202                  | 0                         |                                  |                                                                                 |                      | RT       |                            |                     |
|------------------------|--------------------|-----------------|---------------------------|---------------------------|----------------------------------|---------------------------------------------------------------------------------|----------------------|----------|----------------------------|---------------------|
| Ref 35                 | dBm                |                 | At                        | ten 30 dl                 | В                                |                                                                                 |                      |          | Mkr1 803<br>–52.           | .631 MHz<br>052 dBm |
| Samp<br>Log            |                    |                 |                           |                           |                                  |                                                                                 |                      |          |                            |                     |
| 10<br>dB/              |                    |                 |                           |                           |                                  |                                                                                 |                      |          |                            |                     |
| Uffst<br>20<br>dB      |                    |                 |                           |                           |                                  |                                                                                 |                      |          |                            |                     |
| ае<br>DI<br>- 46 0     | Marke              | r               |                           |                           |                                  |                                                                                 |                      |          |                            |                     |
| dBm<br>LaAv            | 803.6<br>-52 0     | 31000<br>52 dBi | MHz <sup>—</sup><br>n     |                           |                                  |                                                                                 |                      |          |                            |                     |
| 100<br>W1 S2           | 02.0               |                 |                           |                           |                                  |                                                                                 |                      |          |                            |                     |
| S3 FS<br>AA            |                    |                 |                           |                           |                                  |                                                                                 |                      |          |                            |                     |
| <b>£</b> (f):<br>f>50k |                    |                 |                           |                           |                                  |                                                                                 |                      |          |                            |                     |
| Ѕพр                    | m.t.d. jurnet dute | en de la contra | atan kan sund tanàna Mili | (1.1.16.1.1.1.16.191/1110 | and a second state of the second | ورياوي مرجول المراجع والم                                                       | ومرار المعامر المرار |          | he he manual and his mines | eine tate teach     |
|                        |                    |                 |                           |                           |                                  |                                                                                 |                      |          |                            |                     |
| Start 7                | 799.000 M          | IHz             |                           |                           |                                  |                                                                                 |                      |          | Stop 805                   | .000 MHz            |
| #Res B                 | 3W 6.2 kHz         | Z               |                           | +                         | +VBW 20 I                        | <hz< td=""><td>S</td><td>weep 46%</td><td>9.4 ms (2</td><td>000 pts)</td></hz<> | S                    | weep 46% | 9.4 ms (2                  | 000 pts)            |

## **18.0 SPURIOUS RADIATED EMISSIONS**

## **18.1 Applicable Standard**

The EUT shall comply with section 4.9 of FCC KDB 935210 D05 and FCC Part 2.1053. This test is intended to capture any emissions that radiate directly from the case, cabinet, control circuits, etc., instead of via the antenna output port, and thus would not be captured in conducted spurious emission measurements.

Spurious emissions of zone enhancers shall be suppressed as much as possible. Any emission must be attenuated below the power (P) of the highest emission contained within the authorized band, by at least:  $43+10xLog_{10}P$ , or 70 dB, whichever is less stringent, where P is the total RF output power of the test tones in watts. Since  $43+10xLog_{10}P$  is less stringent than 70 dB, that limit was used.

## **18.2 Test Procedures**

Radiated emission measurements in the restricted bands were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists. Radiated emissions measurements were performed in the anechoic chamber at a test distance of 3 meters. The entire frequency range from 30 to 7500 MHz was slowly scanned and the emissions in the restricted frequency bands were recorded. Measurements were performed using the peak detector function.

The spectrum analyzer was adjusted for the following settings:

1) Resolution Bandwidth = 100 kHz for spurious emissions below 1 GHz, and 1 MHz for spurious emissions above 1GHz.

2) Video Bandwidth = 300 kHz for spurious emissions below 1 GHz, and 3 MHz for spurious emissions above 1 GHz.

- 3) Sweep Speed = Slow enough to maintain measurement calibration.
- 4) Detector Mode = Positive Peak.

The transmitter to be tested was placed on the turntable in the standard test site, or an FCC listed site compliant with ANSI C63.4. The transmitter is transmitting into a non-radiating load that is placed on the turntable (except for the fundamental reading which had an antenna). Since the transmitter has an integral antenna, the tests are to be run with the unit operating into the integral antenna. Measurements were made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier. The transmitter was keyed during the tests.

For each spurious frequency, the test antenna was raised and lowered from 1 m to 4m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Then the turntable was rotated 360° to determine the maximum reading. This procedure was repeated to obtain the highest possible reading. This maximum reading was recorded.

Each measurement was repeated for each spurious frequency with the test antenna polarized vertically.



Figure 1. Drawing of Radiated Emissions Setup

ANSI C63.4 Listed Test Site

#### Notes:

- Test Antenna height varied from 1 to 4 meters
- Distance from antenna to tested system is 3 meters
- Not to Scale

| Frequency<br>MHz | Test<br>Antenna | Substitution<br>Antenna | Receiver | Signal<br>Generator |
|------------------|-----------------|-------------------------|----------|---------------------|
| 30 - 200         | ANT-80          | ANT-79                  | REC-21   | SIG-21              |
| 200 - 1000       | ANT-06          | ANT-07                  | REC-21   | SIG-21              |
| 1000-9,000       | ANT-13          | ANT-66                  | REC-21   | SIG-21              |

The transmitter was removed and replaced with a broadband substitution antenna. The substitution antenna is calibrated so that the gain relative to a dipole is known. The center of the substitution antenna was approximately at the same location as the center of the transmitter.

The substitution antenna was fed at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized, and with the signal generator tuned to a particular spurious frequency, the test antenna was raised and lowered to obtain a maximum reading at the spectrum analyzer. The level of the signal generator output was adjusted until the previously recorded maximum reading for this set of conditions was obtained. The measurements were repeated with both antennas horizontally and vertically polarized for each spurious frequency.

The power in dBm into a reference ideal half-wave dipole antenna was calculated by reducing the readings obtained in steps k) and l) by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:

Pd(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dB)

where:

Pd is the dipole equivalent power and

*Pg* is the generator output power into the substitution antenna.

The Pd levels record in step m) are the absolute levels of radiated spurious emissions in dBm.

Since by mathematical definition, P(dBm) - (43+10xLOG P(W)) = -13 dBm, the limit for spurious emissions was set to -13 dBm equivalent radiated power.

## **18.2.1 Spurious Radiated Emissions Test Results**

| Model          | PS71090E          | Specification | FCC KDB 935210         |
|----------------|-------------------|---------------|------------------------|
| Serial Number  | 19RF11060004      | Test Date     | December 19 & 26, 2019 |
| Test Distance  | 3 Meters          | Notes         | Transmit Mode          |
| Test Personnel | Joseph Strzelecki | Test Location | Chamber E              |
| Toot Equipmont | DEC 21            |               |                        |

Test Equipment REC-21

The emissions were measured from 30-8700 MHz. The worst case is shown below.

Transmit at 766.5 MHz; 758-775 MHz Band

| _      |       | _    |       |       | Margin   |
|--------|-------|------|-------|-------|----------|
| Freq.  |       | Ant. | EUT   | Limit | Under    |
| MHz    | Dect. | Pol. | dBm   | dBm   | Limit dB |
| 68.4   | P     | H    | -45.8 | -13.0 | 32.8     |
| 187.5  | Р     | Н    | -42.4 | -13.0 | 29.4     |
| 250.0  | Р     | Н    | -45.5 | -13.0 | 32.5     |
| 263.4  | Q     | Н    | -36.5 | -13.0 | 23.5     |
| 263.4  | Р     | Н    | -34.1 | -13.0 | 21.1     |
| 991.3  | Р     | Н    | -29.3 | -13.0 | 16.3     |
| 1982.5 | Р     | Н    | -26.5 | -13.0 | 13.5     |
| 2972.5 | Р     | Н    | -39.7 | -13.0 | 26.7     |
| 3965.0 | Р     | Н    | -43.9 | -13.0 | 30.9     |
| 4955.0 | Р     | Н    | -42.7 | -13.0 | 29.7     |
| 6760.0 | Р     | Н    | -41.7 | -13.0 | 28.7     |
| 7405.0 | Р     | Н    | -36.8 | -13.0 | 23.8     |
| 8587.5 | Р     | Н    | -36.8 | -13.0 | 23.8     |
| 71.4   | Р     | V    | -46.4 | -13.0 | 33.4     |
| 94.1   | Р     | V    | -43.8 | -13.0 | 30.8     |
| 264.0  | Р     | V    | -38.7 | -13.0 | 25.7     |
| 284.8  | Р     | V    | -37.8 | -13.0 | 24.8     |
| 991.3  | Р     | V    | -32.1 | -13.0 | 19.1     |
| 1982.5 | Р     | V    | -26.1 | -13.0 | 13.1     |
| 2972.5 | Р     | V    | -42.7 | -13.0 | 29.7     |
| 3965.0 | Р     | V    | -44.2 | -13.0 | 31.2     |
| 4955.0 | Р     | V    | -42.5 | -13.0 | 29.5     |
| 7887.5 | Р     | V    | -42.1 | -13.0 | 29.1     |
| 8020.0 | Р     | V    | -42.6 | -13.0 | 29.6     |

Transmit at 860 MHz; 851-862 MHz band

| Freq.<br>MHz | Dect. | Ant.<br>Pol. | EUT<br>dBm | Limit<br>dBm | Margin<br>Under |
|--------------|-------|--------------|------------|--------------|-----------------|
|              |       |              |            |              | Limit dB        |
| 32.1         | Р     | Н            | -44.9      | -13.0        | 31.9            |

Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E

| Freq.  | Dect. | Ant. | EUT   | Limit | Margin   |
|--------|-------|------|-------|-------|----------|
| MHz    |       | Pol. | dBm   | dBm   | Under    |
|        |       |      |       |       | Limit dB |
| 70.2   | Р     | Н    | -44.9 | -13.0 | 31.9     |
| 94.6   | Р     | Н    | -48.0 | -13.0 | 35.0     |
| 187.5  | Р     | Н    | -40.5 | -13.0 | 27.5     |
| 230.6  | Р     | Н    | -45.0 | -13.0 | 32.0     |
| 250.0  | Р     | Н    | -44.4 | -13.0 | 31.4     |
| 263.4  | Q     | Н    | -36.0 | -13.0 | 23.0     |
| 263.5  | Р     | Н    | -33.4 | -13.0 | 20.4     |
| 284.9  | Р     | Н    | -45.8 | -13.0 | 32.8     |
| 646.3  | Р     | Н    | -48.5 | -13.0 | 35.5     |
| 757.5  | Р     | Н    | -44.0 | -13.0 | 31.0     |
| 991.3  | Р     | H    | -28.1 | -13.0 | 15.1     |
| 1982.5 | Р     | H    | -27.8 | -13.0 | 14.8     |
| 2972.5 | Р     | H    | -39.9 | -13.0 | 26.9     |
| 4955.0 | Р     | Н    | -43.5 | -13.0 | 30.5     |
| 7927.5 | Р     | Н    | -40.3 | -13.0 | 27.3     |
| 8145.0 | Р     | Н    | -42.8 | -13.0 | 29.8     |
| 8860.0 | Р     | Н    | -43.5 | -13.0 | 30.5     |
| 71.9   | Р     | V    | -44.5 | -13.0 | 31.5     |
| 94.1   | Р     | V    | -43.7 | -13.0 | 30.7     |
| 187.5  | Р     | V    | -44.9 | -13.0 | 31.9     |
| 264.1  | Р     | V    | -38.5 | -13.0 | 25.5     |
| 285.1  | Р     | V    | -36.2 | -13.0 | 23.2     |
| 991.0  | Р     | V    | -30.9 | -13.0 | 17.9     |
| 1982.5 | Р     | V    | -26.0 | -13.0 | 13.0     |
| 2972.5 | Р     | V    | -44.2 | -13.0 | 31.2     |
| 3727.5 | Р     | V    | -50.9 | -13.0 | 37.9     |
| 3965.0 | Р     | V    | -46.0 | -13.0 | 33.0     |
| 4185.0 | Р     | V    | -48.9 | -13.0 | 35.9     |
| 4955.0 | Р     | V    | -42.4 | -13.0 | 29.4     |
| 7862.5 | Р     | V    | -43.0 | -13.0 | 30.0     |

## Transmit at 796.5 MHz; 788-805 MHz Band

| Freq.<br>MHz | Dect. | Ant.<br>Pol. | EUT<br>dBm | Limit<br>dBm | Margin<br>Under<br>Limit dB |
|--------------|-------|--------------|------------|--------------|-----------------------------|
| 34.2         | Р     | Н            | -44.3      | -13.0        | 31.3                        |
| 187.8        | Р     | Н            | -39.9      | -13.0        | 26.9                        |
| 250.0        | Р     | Н            | -42.8      | -13.0        | 29.8                        |
| 263.5        | Р     | Н            | -32.4      | -13.0        | 19.4                        |
| 284.9        | Р     | Н            | -44.5      | -13.0        | 31.5                        |
| 757.7        | Р     | Н            | -43.8      | -13.0        | 30.8                        |
| 991.3        | Р     | Н            | -26.8      | -13.0        | 13.8                        |
| 1625.0       | Р     | Н            | -51.1      | -13.0        | 38.1                        |
| 1982.5       | Р     | Н            | -27.0      | -13.0        | 14.0                        |
| 2972.5       | Р     | Н            | -39.3      | -13.0        | 26.3                        |
| 6957.5       | Р     | Н            | -44.6      | -13.0        | 31.6                        |
| 7122.5       | Р     | Н            | -44.4      | -13.0        | 31.4                        |
| 7787.5       | Р     | Н            | -43.1      | -13.0        | 30.1                        |

Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E

| Freq.<br>MHz | Dect. | Ant.<br>Pol. | EUT<br>dBm | Limit<br>dBm | Margin<br>Under<br>Limit dB |
|--------------|-------|--------------|------------|--------------|-----------------------------|
| 8937.5       | Р     | Н            | -40.8      | -13.0        | 27.8                        |
| 94.3         | Р     | V            | -41.6      | -13.0        | 28.6                        |
| 187.7        | Р     | V            | -43.3      | -13.0        | 30.3                        |
| 232.3        | Р     | V            | -44.0      | -13.0        | 31.0                        |
| 264.2        | Р     | V            | -35.8      | -13.0        | 22.8                        |
| 285.1        | Р     | V            | -36.1      | -13.0        | 23.1                        |
| 329.7        | Р     | V            | -46.4      | -13.0        | 33.4                        |
| 715.0        | Р     | V            | -46.7      | -13.0        | 33.7                        |
| 991.3        | Q     | V            | -29.9      | -13.0        | 16.9                        |
| 1982.5       | Р     | V            | -27.7      | -13.0        | 14.7                        |
| 2972.5       | Р     | V            | -43.6      | -13.0        | 30.6                        |
| 4955.0       | Р     | V            | -43.2      | -13.0        | 30.2                        |
| 8300.0       | Р     | V            | -41.2      | -13.0        | 28.2                        |
| 8875.0       | Р     | V            | -39.1      | -13.0        | 26.1                        |

## Transmit at 815 MHz; 806-817 MHz Band

| Freq.<br>MHz | Dect. | Ant.<br>Pol. | EUT<br>dBm | Limit<br>dBm | Margin<br>Under<br>Limit dB |
|--------------|-------|--------------|------------|--------------|-----------------------------|
| 34.8         | Р     | Н            | -43.6      | -13.0        | 30.6                        |
| 69.8         | Р     | Н            | -41.6      | -13.0        | 28.6                        |
| 187.5        | Р     | Н            | -38.9      | -13.0        | 25.9                        |
| 263.6        | Q     | Н            | -34.5      | -13.0        | 21.5                        |
| 263.6        | Р     | Н            | -31.1      | -13.0        | 18.1                        |
| 285.0        | Р     | H            | -44.7      | -13.0        | 31.7                        |
| 757.8        | Р     | Н            | -42.2      | -13.0        | 29.2                        |
| 883.9        | Р     | H            | -46.4      | -13.0        | 33.4                        |
| 991.3        | Р     | H            | -26.9      | -13.0        | 13.9                        |
| 1875.0       | Р     | H            | -51.9      | -13.0        | 38.9                        |
| 1982.5       | Р     | Н            | -28.5      | -13.0        | 15.5                        |
| 2972.5       | Р     | H            | -39.7      | -13.0        | 26.7                        |
| 7417.5       | Р     | H            | -42.1      | -13.0        | 29.1                        |
| 8842.5       | Р     | Н            | -40.1      | -13.0        | 27.1                        |
| 70.0         | Р     | V            | -42.6      | -13.0        | 29.6                        |
| 94.3         | Р     | V            | -40.7      | -13.0        | 27.7                        |
| 187.8        | Р     | V            | -42.4      | -13.0        | 29.4                        |
| 232.3        | Р     | V            | -41.0      | -13.0        | 28.0                        |
| 264.3        | Р     | V            | -35.8      | -13.0        | 22.8                        |
| 285.1        | Р     | V            | -34.9      | -13.0        | 21.9                        |
| 715.2        | Р     | V            | -44.3      | -13.0        | 31.3                        |
| 991.3        | Р     | V            | -30.0      | -13.0        | 17.0                        |
| 1982.5       | Р     | V            | -28.0      | -13.0        | 15.0                        |
| 2972.5       | Р     | V            | -43.1      | -13.0        | 30.1                        |
| 7940.0       | Р     | V            | -42.7      | -13.0        | 29.7                        |
| 8820.0       | Р     | V            | -40.2      | -13.0        | 27.2                        |

Judgment: Passed by at least 12 dB.

## 18.2.2 Results for Section 90.543 (f)

| Model          | PS71090E                                                                      | Specification | FCC 90.543 (f) |  |  |
|----------------|-------------------------------------------------------------------------------|---------------|----------------|--|--|
| Serial Number  | 19RF11060004                                                                  | Test Date     | 04/09/2020     |  |  |
| Test Personnel | Joseph Strzelecki                                                             | Test Location | Chamber E      |  |  |
| Test Equipment | REC-31                                                                        |               |                |  |  |
| Notes          | Tested with AI617-6000H06i360A Antenna at uplink output. The input signals    |               |                |  |  |
|                | were chosen to produce the worst case emissions in the 1559 to 1610 MHz band. |               |                |  |  |

This is an excerpt from FCC 90.543.

**90.543 (f)** For operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

The spectrum analyzer was set to max hold mode using peak detector. The frequency range was scanned from 1559 to 1610 MHz for each of the following tests. A standard antenna was installed on the EUT.

|         |           | Input from | Generator | Measured | Maximu   | IM EIRP    |       | Margin I | Under Limit |
|---------|-----------|------------|-----------|----------|----------|------------|-------|----------|-------------|
| Receive | r Setting |            | Freq      | Freq     | Vertical | Horizontal | Limit | Vertical | Horizontal  |
| RBW     | VBW       | Modulation | MHz       | MHz      | dBm      | dBm        | dBm   | dB       | dB          |
| 1 MHz   | 3 MHz     | AWGN       | 790.0     | 1580.00  | -45.1    | -44.2      | -40.0 | 5.1      | 4.2         |
| 1 MHz   | 3 MHz     | AWGN       | 804.0     | 1608.00  | -44.4    | -44.7      | -40.0 | 4.4      | 4.7         |
| 10 kHz  | 30 kHz    | CW         | 790.0     | 1580.00  | -56.7    | -52.3      | -50.0 | 6.7      | 2.3         |
| 10 kHz  | 30 kHz    | CW         | 804.0     | 1608.00  | -57.8    | -54.5      | -50.0 | 7.8      | 4.5         |

Judgement: Pass by 2.3 dB

## **19.0 MEASUREMENT INSTRUMENTATION UNCERTAINTY**

| Measurement                                            | Uncertainty          |
|--------------------------------------------------------|----------------------|
| Radiated Emissions, E-field, 3 meters, 30 to 200 MHz   | 3.3 dB               |
| Radiated Emissions, E-field, 3 meters, 200 to 1000 MHz | 4.9 dB               |
| Radiated Emissions, E-field, 3 meters, 1 to 18 GHz     | 4.8 dB               |
| Bandwidth using marker delta method                    | 1% of frequency span |
| Conducted power                                        | 0.8 dB               |
| Amplitude measurement 1-9000 MHz;                      | 1.5 dB               |

The uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2 in accordance with CISPR 16-4-2.



Part 90 Test Report for the Westell Technologies, Inc., Bi-Directional Amplifier, Model PS71090E

## **20.0 REVISION HISTORY**

| RP-9209A3 Revisions: |                      |             |           |  |  |
|----------------------|----------------------|-------------|-----------|--|--|
| Rev.                 | Affected<br>Sections | Description | Rationale |  |  |
|                      |                      |             |           |  |  |
|                      |                      |             |           |  |  |
|                      |                      |             |           |  |  |
|                      |                      |             |           |  |  |
|                      |                      |             |           |  |  |
|                      |                      |             |           |  |  |