

Electromagnetic Compatibility Test Report

Tests Performed on a Westell Technologies, Incorporated

Booster Amplifier, Model DSP85-L7/AW

Radiometrics Document RP-8562E

Draduat	Detaile				
Product	D: NVRDSP85-L7AW				
		0 746 MUz inductrial	lbootor	omplifier	
Equip	ment type: 698-716 & 72		Dooster	ampimer	
Tost Sta	andards:				
	KDB 935210: 2016				
	Parts 2, 20 and 27 CFR	Title 17: 2016			
	ans 2, 20 and 27 GFR	1100 47.2010			
Tests P	erformed For:		Test Facil	ity:	
	ell Technologies, Incor	porated	Radiometrics Midwest Corporation		
750 N	orth Commons Drive		12 East Devonwood		
Aurora	a IL, 60504		Romeoville, IL 60446		
(630)	375-4724		Phone: (815) 293-0772		
Test Da	te(s): (Month-Day-Year)				
	st 31 thru October 13, 20	016			
	-				
Docur	nent RP-8562E Revisior	าร:			
Rev.	Issue Date	Affected Sections		Revised By	
0	February 17, 2017				
	1	1		1	

Table of Contents

1.0 ADMINISTRATIVE DATA	3
2.0 TEST SUMMARY AND RESULTS	3
3.0 EQUIPMENT UNDER TEST (EUT) DETAILS	
3.1 EUT Description	4
3.1.1 DC Voltages and Currents of Final Transmitter Stage	4
4.0 TESTED SYSTEM DETAILS	4
4.1 Tested System Configuration	4
4.1.1 EUT Modifications	
4.2 EUT Operating Modes	4
4.3 Special Accessories	5
5.0 TEST SPECIFICATIONS AND RELATED DOCUMENTS	5
6.0 RADIOMETRICS' TEST FACILITIES	
7.0 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	6
8.0 CERTIFICATION	6
9.0 TEST EQUIPMENT TABLE	6
10.0 TEST SECTIONS	
11.0 AGC THRESHOLD	7
11.1 Applicable Standard	7
11.2 Test procedures	
11.2.1 AGC Threshold Test Results	7
12.0 OUT OF BAND REJECTION	8
12.1 Applicable Standard	
12.2 Test Procedures	
12.3 Passband Bandwidth Test Results	
13.0 INPUT VS OUTPUT COMPARISON; WITH OCCUPIED BANDWIDTH	10
13.1 Applicable Standard	10
13.2 Test procedures	
13.2.1 Input Vs Output Test Results	
14.0 MEAN POWER OUTPUT AND AMPLIFIER GAIN	
14.1 Applicable Standard	
14.2 Test procedures	
14.3 Gain Test Results	
15.0 SPURIOUS EMISSIONS	
15.1 Applicable Standard	
15.2 Test procedures for section 3.6.2	
15.3 Results for Section 3.6.2	
15.3.1 Combined Output Results	21
15.4 Test procedures 3.6.3	26
15.5 Test Results for Section 3.6.3	27
16.0 FIELD STRENGTH OF SPURIOUS RADIATED EMISSIONS	
16.1 Applicable Standard	
16.2 Test Procedures	39
Figure 1. Drawing of Radiated Emissions Setup	40
16.2.1 Spurious Radiated Emissions Test Results	
17.0 RF EXPOSURE	43
18.0 MEASUREMENT INSTRUMENTATION UNCERTAINTY	43

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

1.0 ADMINISTRATIVE DATA

Equipment Under Test:							
An Westell, Incorporated Booster Amplifier							
Model: DSP85-L7/AW; Serial Number: C6WH61	931						
This will be referred to as the EUT in this Report							
Date EUT Received at Radiometrics: (Month-Day-Year)	Test Date(s): (Month-Day-Year)						
August 31, 2016	August 31 thru October 13, 2016						
Test Report Written By:	Test Witnessed By:						
Joseph Strzelecki	The tests were not witnessed by personnel from						
Senior EMC Engineer	Westell Technologies, Incorporated						
Radiometrics' Personnel Responsible for Test:	Test Report Approved By						
Joseph Strzelechi 02/17/2017	Chris W. Carlson Director of Engineering						
Date	NARTE EMC-000921-NE						
Joseph Strzelecki							
Senior EMC Engineer							
NARTE EMC-000877-NE							
Richard L. Tichgelaar							
EMC Technician							

2.0 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is a Booster Amplifier, Model DSP85-L7/AW, manufactured by Westell Technologies, Incorporated. The detailed test results are presented in a separate section. The following is a summary of the test results.

Transmitter Requirements								
Environmental Phenomena	Frequency Range	FCC KDB 935210 section	Test Result					
AGC Threshold	698-746 MHz	3.2	Pass					
Amplifier Bandwidth	698-746 MHz	3.3	Pass					
Mean output power	698-746 MHz	3.4	Pass					
Amplifier Gain	698-746 MHz	3.5	Pass					
Band Edge	698-746 MHz	3.6.2	Pass					
Spurious Emissions	30-7,500 MHz	3.6.3	Pass					
Frequency Stability	N/A	3.7	Note 1					
Field Strength of Spurious Radiated emissions	30-7,500 MHz	3.8	Pass					

Note 1: Test not required since the amplifier repeater does not alter the input signal in any way.

The product tested was originally labeled as Model DSP85-L7. The DSP85-L7/AW is electrically identical to the DSP85-L7.

3.0 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is a Booster Amplifier, Model DSP85-L7/AW, manufactured by Westell Technologies, Incorporated. The RF communications link is encrypted in both directions. The EUT was in good working condition during the tests, with no known defects.

The EUT was tested a 120 VAC 60 Hz input power. The EUT has a gain of 85 dB and a frequency range of 698-716 and 728-746 MHz The amplifier's rated mean output power (Prated) is 1 watt. The output signal coupling attenuation is 0 dB There is no frequency stability since it does not translate frequency.

3.1.1 DC Voltages and Currents of Final Transmitter Stage

Frequency Range	698-716 and 728-746 MHz			
DC input Voltage Range	+28 VDC, + 5 VDC (On-Off)			
DC current	130mA at 1 Watt			

4.0 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations. The identification for all equipment, used in the tested system, is:

Tested System Configuration List

Item	Description Type*		Manufacturer	Model Number	Serial Number			
1	Booster Amplifier	Е	Westell	DSP85-L7/AW	C6WH61931			
2	AC-DC Power supply	S	Westell	UDIT-PSCH-148VMOD	C101EG166393			

* Type: E = EUT, S = Support Equipment

4.1.1 EUT Modifications

No modifications were made to the EUT at Radiometrics' test facility in order to comply with the standards listed in this report.

4.2 EUT Operating Modes

The following are descriptions of the operating states of the amplifier. The mode number in the first column will be listed elsewhere in this report.

Mode	Description	Frequency Range
1	Signal Generator to Donor with AWGN Modulation	728-746 MHz
2	Signal Generator to Server with AWGN Modulation	698-716 MHz
3	Signal Generator to Donor with MSK Modulation	728-746 MHz
4	Signal Generator to Server with MSK Modulation	698-716 MHz
5	Signal Generator to Donor CW Signal	728-746 MHz

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

Mode	Description	Frequency Range
6	Signal Generator to Server with CW Signal	698-716 MHz

Modulations used

Modulation	Description
AWGN	Broadband modulation with an occupied bandwidth (OBW) of 4.1 MHz. This is representative of a 5 MHz LTE channel
MSK	Narrowband MSK modulation. It has a Gaussian Filter of 0.3 and a data rate of 270 kbps. This is representative of a GSM-TDMA signal.
CW	Continuous Wave; No Modulation

4.3 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

5.0 TEST SPECIFICATIONS AND RELATED DOCUMENTS

Document	Date	Title
FCC KDB 935210 D03	2016	Measurements Guidance for Industrial and Non-Consumer Signal Booster, Repeater, and Amplifier Devices; v01r01
FCC KDB 971168	2014	Measurement Guidance for Certification of Licensed Digital Transmitters
TIA-603-D	2010	Land Mobile FM or PM Communications Equipment – Measurement and Performance Standards

6.0 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 2005 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.org).

The following is a list of shielded enclosures located in Romeoville, Illinois used during the tests:

- Chamber A: Is an anechoic chamber that measures 24' L X 12' W X 12' H. The walls and ceiling are fully lined with ferrite absorber tiles. The floor has a 10' x 10' section of ferrite absorber tiles located in the center. Panashield of Rowayton, Connecticut manufactured the chamber. The enclosure is NAMAS certified.
- Chamber B: Is a shielded enclosure that measures 20' L X 12' W X 8' H. Erik A. Lindgren & Associates of Chicago, Illinois manufactured the enclosure.
- Chamber E: Is a custom made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber.

A separate ten-foot long, brass plated, steel ground rod attached via a 6-inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with the Industry Canada as site number IC3124A-1.

7.0 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

8.0 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification. The results relate only to the EUT listed herein. Any modifications made to the EUT subsequent to the indicated test date will invalidate the data and void this certification.

9.0 TEST EQUIPMENT TABLE

					Frequency Range	Cal	Cal
RMC ID	Manufacturer	Description	Model No.	Serial No.		Period	Date
AMP-05	Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	12 Mo.	01/05/16
AMP-20	Avantek	Pre-amplifier	SF8-0652	15221	8-18GHz	12 Mo	01/05/16
ANT-03	Tensor	Biconical Antenna	4104	2231	20-250MHz	24 Mo.	12/07/15
ANT-04	Tensor	Biconical Antenna	4104	2246	20-250MHz	24 Mo.	05/16/16
ANT-06	EMCO	Log-Periodic Ant.	3146	1248	200-1000MHz	24 Mo.	11/25/15
ANT-07	RMC	Log-Periodic Ant.	LP1000	1001	200-1000MHz	24 Mo.	08/10/16
ANT-13	EMCO	Horn Antenna	3115	2502	1.0-18GHz	24 Mo.	12/01/14
ANT-36	Ailtech-Eaton	Horn Antenna	96001	2013	1.0-18GHz	24 Mo.	10/20/14
ANT-48	RMC	Std Gain Horn	HW2020	1001	18-26 GHz	24 Mo.	12/15/15
ATT-27	Narda	Attenuator(6dB)	757B-6	3131	DC - 6 GHz	24 Mo.	12/01/15
ATT-28	Narda	Attenuator(6dB)	757B-6	3131	DC - 6 GHz	24 Mo.	12/01/15
ATT-45	Narda	Attenuator(10dB)	779C-10dB	03078	DC-18 GHz	12 Mo.	12/03/15
ATT-47	HP	Attenuator(20dB)	8491A	53862	DC-23 GHz	24 Mo.	09/18/15
ATT-51	China	Attenuator(20dB)	ATT-51 20dB	ATT-51	DC-3GHz	12 Mo.	08/29/16
ATT-53	Weinschel	Attenuator(20dB)	23-20-34	CG7857	DC-23 GHz	12 Mo.	09/26/16
ATT-MC	Mini-Circuits	Variable Attenuator	ZX73-2500M-S	RUU45501601	10-2500MHz	N/A	NCR
CAB-065A	Times Wire	Coaxial Cable	N/A	065A	DC-4 GHz	24 Mo.	04/19/16
CAB-069A	Storm	Coaxial Cable	N/A	069A	DC-18 GHz	24 Mo.	04/19/16
CAB-094A	Times Wire	Coaxial Cable	N/A	094A	DC-4 GHz	24 Mo.	04/19/16
CAB-110A	Times Wire	Coaxial Cable	N/A	110A	DC-4 GHz	24 Mo.	04/19/16
CAB-142G	Storm	Coaxial Cable	N/A	142G	DC-18 GHz	24 Mo.	04/21/16
CAB-142H	Storm	Coaxial Cable	N/A	142H	DC-18 GHz	24 Mo.	04/27/16
CAB-210B	Storm	Coaxial Cable	N/A	210B	DC-18 GHz	24 Mo.	04/21/16
CAB-418A	Times Wire	Coaxial Cable	N/A	418A	DC-4 GHz	24 Mo.	04/19/16
COM-01	Anaren	Coupler	10023-3	COM-01	250-1000MHz	N/A	NCR
COM-W1	CSI	Combiner/Splitter	CSI-S2BSC	None	500-3000MHz	12 Mo.	09/22/16
PWM-01	Boonton	Power Meter	4230	22503	50kHz-18GHz	24 Mo.	12/11/15
REC-11	HP / Agilent	Spectrum Analyzer	E7405A	US39110103	9kHz-26.5GHz	12 Mo.	03/23/16
			85460A	33330A00135			
REC-20	HP / Agilent	Spectrum Analyzer	84562A	3410A00178	30Hz-6GHz	24 Mo.	07/13/16
REC-21	Agilent	Spectrum Analyzer	E7405A	MY45118341	9Hz-26.5 GHz	12 Mo.	12/22/15
SIG-28	Hittite	RF Synthesizer	HMC-T2240	0000426	10MHz-40GHz	12 Mo.	03/31/16
	Rohde &						
SIG-30	Schwarz	Signal Generator	SMC100A	102914	9k-3.2GHz	24 Mo.	10/07/15

					Frequency Range	Cal	Cal
RMC ID	Manufacturer	Description	Model No.	Serial No.		Period	Date
SIG-W1	Agilent	Signal Generator	N5182B	MY51350062	9kHz-6GHz	36 Mo.	10/04/14
SIG-W2	Agilent	Signal Generator	E4432B	US40052748	250kHz-3.0 GHz	24 Mo.	03/17/16
THM-03	Fluke	Temp/Humid Meter	971	95850465	N/A	12 Mo.	01/11/16

Note: All calibrated equipment is subject to periodic checks.

NCR – No Calibration Required. Device monitored by calibrated equipment. N/A: Not Applicable.

10.0 TEST SECTIONS

The following sections are the detailed results in accordance to FCC KDB 935210 D05.

11.0 AGC THRESHOLD

11.1 Applicable Standard

The EUT shall comply with FCC KDB 935210 section 3.2.

11.2 Test procedures

a) A signal generator was connected to the input of the EUT.

b) A spectrum analyzer or power meter was connected to the output of the EUT using appropriate attenuation as necessary.

c) The signal generator was initially configured to produce either of the required test signals (i.e., broadband AWGN or narrowband MSK)

d) The signal generator frequency was set to the center frequency of the EUT operating band.

e) While monitoring the output power of the EUT, measured using the methods of 3.5.3 of KDB 935210, the input level was increased until a 1 dB increase in the input signal power no longer causes a 1 dB increase in the output signal power.

f) This level was recorded as the AGC threshold level.

g) The procedure was repeated with the remaining test signals.

11.2.1 AGC Threshold Test Results

Model	DSP85-L7/AW	Specifications	FCC KDB 935210 D05 Sec. 3.2
Serial Number	C6WH61931	Test Date	September 14, 2016
Test Personnel	Richard L. Tichgelaar	Test Location	Station F
Test Equipment	Power Meter (PWM-01)		

The spectrum analyzer was set to Band power measurements using 100 trace average in the RMS peak mode.

					EUT		Anal.
		Generator		Anal.	Output	Gen	Cable
		Output		Reading	Change	ATT	Loss
Modul	Mode	MHz dBm		dBm	dB	dB	dB
AWGN	1	737	-40.0	7.87	start ref	20	0.4
AWGN	1	737	-39.0	8.95	1.08	20	0.4
AWGN	1	737 -38.0		10.02	1.07	20	0.4
AWGN	1	737	-37.0	11.06	1.04	20	0.4

www.radiomet.com

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

AWGN	1	737	-36.0	12.09	1.03	20	0.4
AWGN	1	737	-35.0	11.80	-0.29	20	0.4
AWGN	1	737	-34.0	12.21	0.41	20	0.4
						20	0.4
AWGN	2	707	-40.0	7.58	start ref	20	0.4
AWGN	2	707	-39.0	8.67	1.09	20	0.4
AWGN	2	707	-38.0	9.75	1.08	20	0.4
AWGN	2	707	-37.0	10.80	1.05	20	0.4
AWGN	2	707	-36.0	11.83	1.03	20	0.4
AWGN	2	707	-35.0	12.02	0.19	20	0.4
AWGN	2	707	-34.0	11.93	-0.09	20	0.4
						20	0.4
MSK	3	737	-40.0	5.67	start ref	20	0.4
MSK	3	737	-39.0	6.64	0.97	20	0.4
MSK	3	737	-38.0	7.59	0.95	20	0.4
MSK	3	737	-37.0	8.57	0.98	20	0.4
MSK	3	737	-36.0	9.59	1.02	20	0.4
MSK	3	737	-35.0	9.77	0.18	20	0.4
MSK	3	737	-34.0	9.70	-0.07	20	0.4
						20	0.4
MSK	2	707	-40.0	4.91	start ref	20	0.4
MSK	2	707	-39.0	5.91	1.00	20	0.4
MSK	2	707	-38.0	6.87	0.96	20	0.4
MSK	2	707	-37.0	7.88	1.01	20	0.4
MSK	2	707	-36.0	8.90	1.02	20	0.4
MSK	2	707	-35.0	9.51	0.61	20	0.4
MSK	2	707	-34.0	9.66	0.15	20	0.4

The Highlighted cells are the AGC Threshold. This is Level where a 1 dB change in increase in the input signal power no longer causes a 1 dB increase in the output signal power.

Note that there was a 20-dB attenuator between the Generator output and the EUT input.

12.0 OUT OF BAND REJECTION

12.1 Applicable Standard

The EUT shall comply with sections 3.3 of FCC KDB 935210 for passband gain.

12.2 Test Procedures

a) A signal generator was connected to the input of the EUT. A spectrum analyzer was connected to the output of the EUT using an external attenuator.

b) The swept CW signal was configured with the following parameters:

1) For each band, the analyzer and signal generator was set to a Frequency range \pm 250 % of the passband, for each applicable band.

2) The generator level was set to a level so that the out-of-band rejection is > 20 dB above the noise floor and will not engage the AGC during the entire sweep

3) The Dwell time of each frequency step was at least 10 ms.

4) Number of points was set to at least SPAN/(RBW/2).

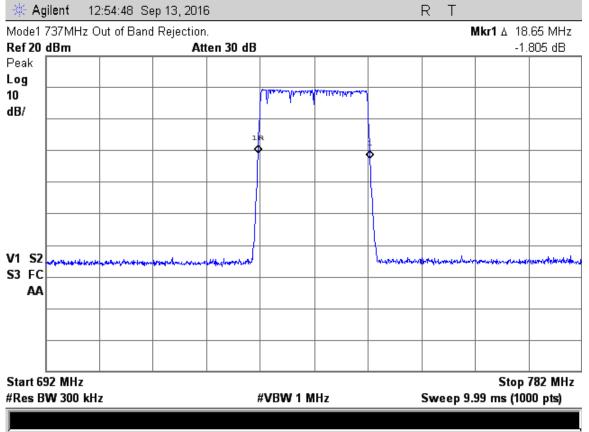
c) The resolution bandwidth (RBW) was set to 1 MHz and the video bandwidth (VBW) was set to 3 MHz.

d) The detector was set to Peak, Max-Hold and waited for the spectrum analyzer's spectral display to fill.

e) A marker was placed to the peak of the frequency response and record this frequency as f0.

f) Two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display, were placed such that each marker was at or slightly below the -20 dB down amplitude, to determine the 20-dB bandwidth.

g) The frequency response of the EUT was captured.


h) The procedure was repeated for all frequency bands applicable for use by the EUT.

12.3 Passband Bandwidth Test Results

Model	DSP85-L7/AW	Specification	KDB 935210 D05 Sec 3.3
Serial Number	C6WH61931	Test Date	October 18, 2106
Test Personnel	Richard L. Tichgelaar	Test Location	Chamber B
Test Equipment	EMI Receiver (REC-21)		

				Pass ban	d	20 dB	Down		Analyzer Re	eading
							2nd	Readin		-
RBW	VBW		#of	-250%	-250%	Freq.	Freq.	g	F0	F0
MHz	MHz	Mode	Points	MHz	MHz	MHz	MHz	MHz	MHz	dBm
300k	1M	1	600	692	782	727.7	746.3	18.65	728.9	9.315
300k	1M	2	600	662	752	697.7	716.3	18.65	710.8	9.68

Judgement: Pass; the 20-dB bandwidth did not exceed the nominal bandwidth stated by the manufacturer. Outside of the 20-dB bandwidth, the gain did not exceed the gain at the 20-dB point.

692-782 MHz Band Rejection

			Ra	adiometi	rics Mid	west Co	orporati	on	WWW
Test Repo	ort for the V	Vestell, In	corpora	ted, Boo	oster Am	plifier, N	lodel DS	SP85-L7/	AW
🔆 Agilent 👘	13:22:26 Se						RT		
	Hz Out of Bar	-						Mkr1 ∆ 18	
ef 20 dBm eak		Atte	en 30 dB					U	.581 dB
og									
)				ملاردي فسيدري	h held have				
3/									
			1	2		4			
			[
						1			
						ļ			
			[
1 52						1			
3 FC	and a second second	the state of the s	Annan Inder			han adalah dalah	⊥≸ ₀₽₽ ₩₽ ₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽₩₽	in the start of the	
AA									
tart 662 MHz									752 MHz
Res BW 300	kHz			VBW 1 M	Hz		Sweep 9	.99 ms (10)0 pts)

13.0 INPUT VS OUTPUT COMPARISON; WITH OCCUPIED BANDWIDTH

13.1 Applicable Standard

The EUT shall comply with FCC KDB 935210 section 3.4.

13.2 Test procedures

A 26-dB bandwidth measurement was performed on the input signal and the output signal.

a) A signal generator was connected to the input of the EUT.

b) The signal generator was configured to transmit the AWGN signal.

c) The signal generator amplitude was configured to be zero to 0.5 dB below the AGC threshold level.

d) A spectrum analyzer was connected to the output of the EUT using an external attenuator.

e) The spectrum analyzer center frequency was set to the center frequency of the operational band under test. The span range of the spectrum analyzer was between 2 times to 5 times the occupied bandwidth (OBW).

f) The nominal RBW was in the range of 1 % to 5 % of the anticipated OBW, and the VBW was \ge 3 × RBW. g) The reference level of the instrument was set as required to preclude the signal from exceeding the maximum spectrum analyzer input mixer level for linear operation.

h) The noise floor of the spectrum analyzer at the selected RBW was at least 36 dB below the reference level.

i) The spectrum analyzer detection function was set to positive peak.

j) The trace mode was set to max hold.

k) The reference value was determined by: Allowing the trace to stabilize, setting the spectrum analyzer marker to the highest amplitude level of the displayed trace (this is the reference value), and recording the associated frequency as f₀.

omet.com

⁶⁶²⁻⁷⁵² MHz Band Rejection

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

I) Two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display, were placed such that each marker is at or slightly below the -26 dB down amplitude. The 26 dB OBW is the positive frequency difference between the two markers. If the spectral envelope crosses the -26 dB down amplitude at multiple points, the lowest or highest frequency was selected as the frequencies that are the furthest removed from the center frequency at which the spectral envelope crosses the -26 dB down amplitude point.

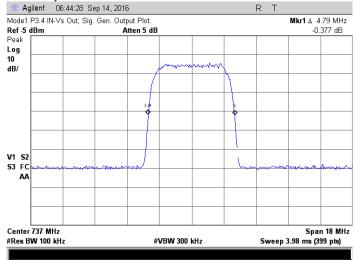
m) Steps e) to I) were repeated with the input signal connected directly to the spectrum analyzer (i.e., input signal measurement).

n) The spectral plot of the input signal (determined from step m) was compared to the output signal (determined from step I) to affirm that they are similar (in passband and roll off characteristic features and relative spectral locations).

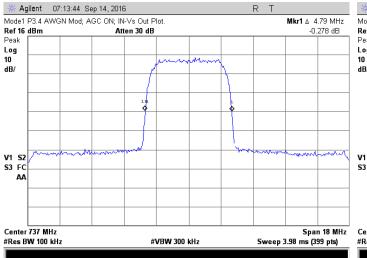
o) The procedure [steps e) to n)] was repeated with the input signal amplitude set to 3 dB above the AGC threshold.

p) Steps e) to o) were repeated with the signal generator set to the narrowband signal.

q) Steps e) to p) were repeated for all frequency bands authorized for use by the EUT.

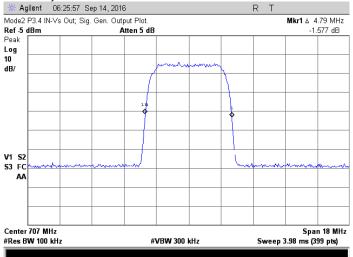

13.2.1 Input Vs Output Test Results

Model	DSP85-L7/AW	Specifications	FCC KDB 935210 D05 Sec. 3.4
Serial Number	C6WH61931	Test Date	September 16 & 22, 2016
Test Personnel	Richard L. Tichgelaar	Test Location	Chamber B
Test Equipment	Spectrum Analyzer (REC-21)		

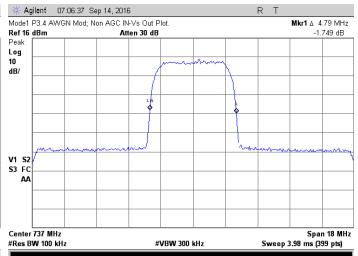

Test					Analyze	r reading			
Mode	Gene	rator	Settings		F0 Peak	F0 Peak	26db		EUT
Measured	O MH	utput	RBW	VBW	Freq	AMP	Reading		AGC
Output	z	dBm	MHz	MHz	MHz	dBm	MHz	Modulation	Mode
1 Sig Gen Out	737	-14.5	0.1	0.3	737.99	-19.68	4.79	AWGN	N/A
1 Server out	737	-35.5	0.1	0.3	737.32	4.775	4.79	AWGN	Non AGC
1 Server out	737	-31.5	0.1	0.3	737.36	4.52	4.79	AWGN	AGC ON
2 Donor Out	707	-35.5	0.1	0.3	707.349	4.43	4.74	AWGN	Non AGC
2 Donor Out	707	-31.5	0.1	0.3	707.329	5.00	4.74	AWGN	AGC ON
2 Sig Gen Out	707	-14.5	0.1	0.3	706.41	-19.3	4.79	AWGN	N/A
3 Sig Gen Out	737	-14	0.01	0.03	736.97	-16.56	0.3183	MSK	N/A
3 Server out	737	-36	0.01	0.03	737.01	7.09	0.3163	MSK	Non AGC
3 Server out	737	-32	0.01	0.03	736.99	7.431	0.3203	MSK	AGC ON
4 Donor Out	707	-35	0.01	0.03	706.99	7.06	0.3223	MSK	Non AGC
4 Donor Out	707	-31	0.01	0.03	707.03	7.70	0.3143	MSK	AGC ON
4 Sig Gen Out	707	-14	0.01	0.03	707.01	-15.62	0.3203	MSK	N/A

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

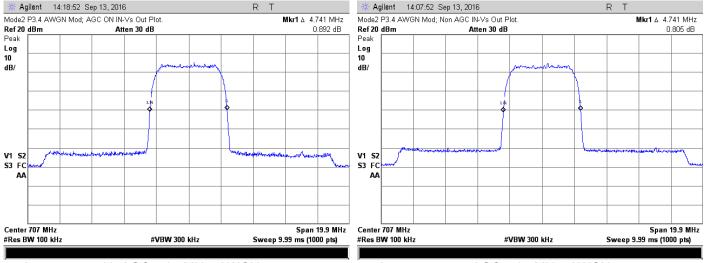
AWGN; 737 MHz Results



Generator output; 737 MHz, AWGN

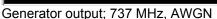


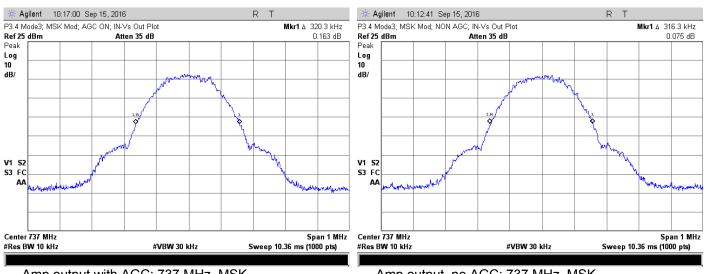
AWGN; 707 MHz Results



Generator output; 707 MHz, AWGN

Amp output, no AGC; 737 MHz, AWGN


Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW



Amp output with AGC; 707 MHz, AWGN

MSK; 737 MHz Results 🔆 Agilent 10:31:17 Sep 15, 2016 R Т Mkr1 & 318.3 kHz P3.4 Mode3; MSK Mod; Sig. Gen. Output Plot. Ref 0 dBm Atten 10 dB 0.177 dB Peak Log 10 dB/ V1 S2 **S**3 FC AA Center 737 MHz Span 1 MHz #VBW 30 kHz Sweep 10.36 ms (1000 pts) #Res BW 10 kHz

Amp output with AGC; 737 MHz, MSK

MSK; 707 MHz Results

Judgement: Pass

14.0 MEAN POWER OUTPUT AND AMPLIFIER GAIN

14.1 Applicable Standard

The EUT shall comply with FCC KDB 935210 section 3.5.

In accordance with section 3.5 of KDB 935210 D05, the mean input and output power and the amplifier gain was measured by adjusting the internal gain control of the EUT to the maximum gain for which equipment certification is sought. Any EUT attenuation settings were set to their minimum value.

Input power levels (uplink and downlink) were set to maximum input ratings while confirming that the device is not capable of operating in saturation (non-linear mode) at the rated input levels, including during the performance of the input/output power measurements.

14.2 Test procedures

a) A signal generator was connected to the input of the EUT.

b) The signal generator was configured to generate the AWGN (broadband) test signal.

c) The frequency of the signal generator was set to the frequency f0 as determined from 3.3 of KDB 935210.

d) A spectrum analyzer was connected to the output of the EUT using an external attenuator.

e) The signal generator amplitude was configured to be zero to 0.5 dB below the AGC threshold level.

f) The output power of the EUT measured and recorded; using 3.5.3 KDB 935210 for power measurement. g) The EUT was removed from the measurement setup. Using the same signal generator settings, the power measurement was repeated at the signal generator port, which was used as the input signal to the EUT, and recorded as the input power. EUT gain may be calculated as described in 3.5.5 KDB 935210.

h) Steps f) and g) were repeated with input signal amplitude set to 3 dB above the AGC threshold level.

i) Steps e) to h) were repeated with the narrowband test signal.

j) Steps e) to i) were repeated for all frequency bands authorized for use by the EUT.

The mean gain was reported for each authorized operating frequency band and each test signal stimulus.

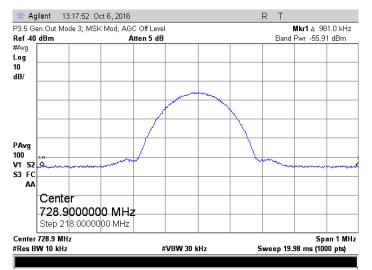
After the mean input and output power levels have been measured as described in the preceding subclauses, the mean gain of the EUT can be determined from:

Gain (dB) = output power (dBm) – input power (dBm).

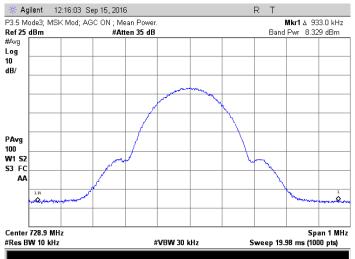
14.3 Gain Test Results

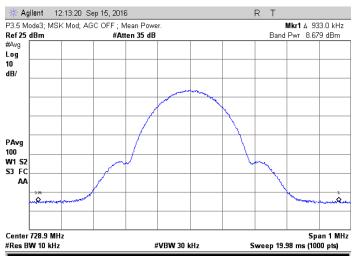
Model	DSP85-L7/AW	Specification	FCC KDB 935210 Sec. 3.5
Serial Number	C6WH61931	Test Date	September 15, 2016
Test Personnel	Richard L. Tichgelaar	Test Location	Chamber B
Test Equipment	EMI Receiver (REC-21)		

The spectrum analyzer was set to band power measurements using 100 trace average in the RMS peak mode. VBW>=3xRBW

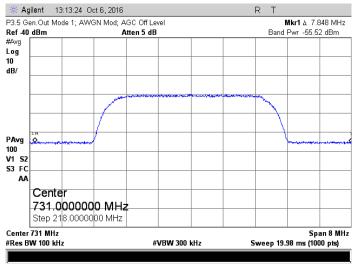

Modul	See Sec 3.3 F0 MHz	Sec 3.2 Sig Gen dBm	AGC	RBW MHz	Gen Out dBm	Amp out dBm	ATT dB	Cable Loss dB	pwr dBm	Watts	Gain dB
MSK	728.9	-36.0	Off	0.01	-55.9	8.7	20	0.5	29.2	0.832	85.1
MSK	728.9	-32.0	On	0.01	-52.9	8.3	20	0.5	28.80	0.759	81.7
AWGN	731.0	-36.0	Off	0.1	-55.5	9.0	20	0.5	29.54	0.899	85.0
AWGN	731.0	-32.0	On	0.1	-52.5	9.2	20	0.5	29.67	0.927	82.2
MSK	710.8	-35.0	Off	0.01	-55.1	9.3	20	0.5	29.78	0.951	84.9
MSK	710.8	-31.0	On	0.01	-52.8	9.3	20	0.5	29.84	0.964	82.6
AWGN	713.0	-36.0	Off	0.1	-55.9	8.7	20	0.5	29.23	0.838	85.1
AWGN	713.0	-32.0	On	0.1	-53.1	8.8	20	0.5	29.3	0.851	82.4

EUT output Power (dBm) = Amp out dBm + Output Atten (dB) + Cable Loss (dB)


EUT Gain (dB) = Amp out (dBm) – Input to Amp (dBm) + Output Atten (dB) + Input Atten (dB) + Cable Loss (dB)


Judgement: Pass; The passband gain did not exceed the nominal gain by more than 1.0 dB.

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW



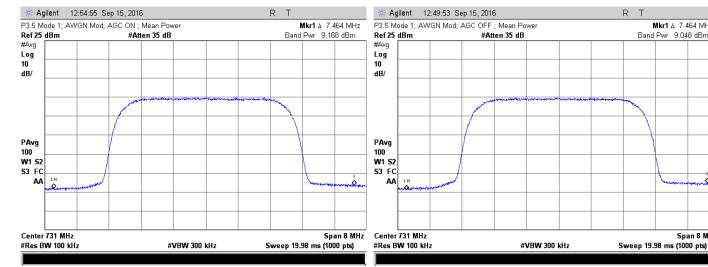
728.9 MHz MSK; Generator Out

728.9 MHz MSK; AGC On

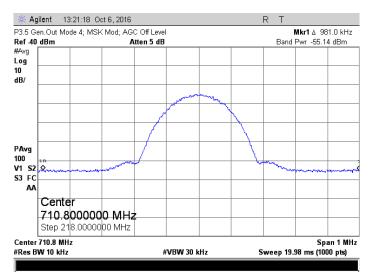
⁷³¹ MHz AWGN; Generator Out

728.9 MHz; MSK; AGC off

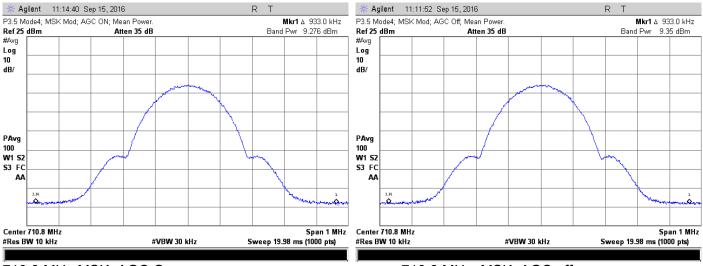
R


Mkr1 & 7.464 MHz

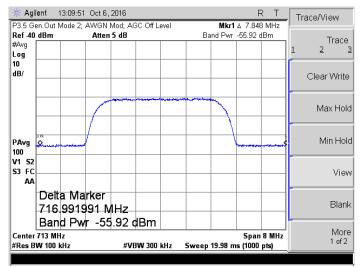
٥

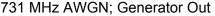

Span 8 MHz

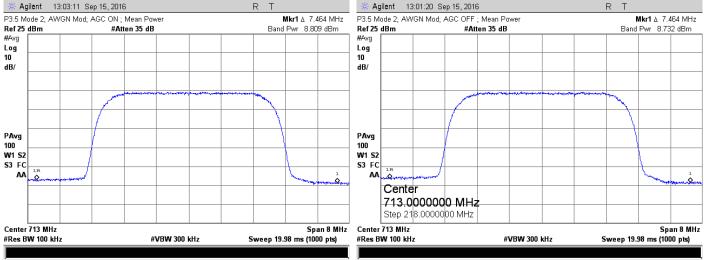
Band Pwr 9.048 dBm


Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

731 MHz AWGN; AGC On


710.8 MHz MSK; Generator Out




710.8 MHz MSK; AGC On

710.8 MHz; MSK; AGC off

731 MHz; AWGN; AGC off

⁷³¹ MHz AWGN; AGC On

15.0 SPURIOUS EMISSIONS

15.1 Applicable Standard

The EUT shall comply with sections 3.6.2 and 3.6.3 of KDB 935210 D05, since it is a Multi-Channel Enhancer.

For a multi-channel enhancer, any intermodulation product level must be attenuated, relative to P, by at least: $43+10xLog_{10}P$, or 70 dB, whichever is less stringent, where P is the total RF output power of the test tones in watts. Since $43+10xLog_{10}P$ is less stringent than 70 dB, that limit was used.

Spurious emissions shall be measured using a single test signal sequentially tuned to the low, middle, and high channels or frequencies within each authorized frequency band of operation.

Out-of-band/out-of-block emissions (including intermodulation products) was measured under each of the following two stimulus conditions:

a) two adjacent test signals sequentially tuned to the lower and upper frequency band/block edges; b) a single test signal, sequentially tuned to the lowest and highest frequencies or channels within the frequency band/block under examination.

⁷³¹ MHz; AWGN; AGC off

15.2 Test procedures for section 3.6.2

a) Two signal generators were connected to the input of the Device Under Test (EUT), via a combiner.

b) The signal generator was set to produce two AWGN signals as previously described (e.g., 4.1 MHz OBW).

c) The center frequencies were set such that the AWGN signals occupy adjacent channels at the upper edge of the frequency band or block under test.

d) The composite power levels were set to be zero to 0.5 dB below the AGC threshold level.

e) A spectrum analyzer was connected to the output of the EUT using an external attenuator.

f) The RBW = reference bandwidth was set in accordance with the applicable rule section for the supported frequency band (typically 1 % of the OBW or 100 kHz or 1 MHz).

g) The RBW was set so that the VBW = $3 \times RBW$.

h) The detector was set to power averaging (rms) detector.

i) The sweep time was set so that sweep time = auto-couple.

j) The spectrum analyzer start frequency was set to the upper block edge frequency, and the stop frequency to the upper block edge frequency plus 300 kHz or 3 MHz, for frequencies below and above 1 GHz, respectively. k) Trace averaged at least 100 traces in power averaging (rms) mode.

I) The marker function was used to find the maximum power level.

m) The spectrum analyzer trace of the power level was captured for inclusion in the test report.

n) Steps k) thru m) were repeated with the composite input power level set to 3 dB above the AGC threshold.

o) The frequencies of the input signals were reset to the lower edge of the frequency block or band under test.

p) The spectrum analyzer start frequency was reset to the lower block edge frequency minus 300 kHz or 3

MHz, for frequencies below and above 1 GHz, respectively, and the stop frequency to the lower band or block edge frequency.

q) Steps k) to n) were repeated.

r) Steps a) to q) were repeated with the signal generator configured for a single test signal tuned as close as possible to the block edges.

s) Steps a) to r) were repeated with the narrowband test signal.

t) Steps a) to s) were repeated for all authorized frequency bands or blocks used by the EUT.

On any frequency outside the authorized bandwidth shall be attenuated by at least 43 + 10 log (P) dB. This corresponds to an absolute level of -13 dBm.

15.3 Results for Section 3.6.2

Model	DSP85-L7/AW	Specification	FCC KDB 935210 Sec. 3.6.2
Serial Number	C6WH61931	Test Date	September 16, 2016
Test Personnel	Richard L. Tichgelaar	Test Location	Chamber B
Test Equipment	EMI Receiver (REC-21)		

The spectrum analyzer was set to 100 trace average in the RMS mode.

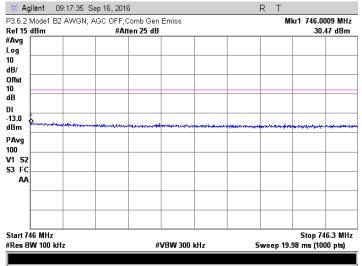
P.3.6.2 Combined Generators Out of block Emissions

RBW MHz	VBW MHz	Mode	Modul	#1 MHz	#2 MHz	dBm	AGC	Start MHz	Stop MHz	Trace Av Sweeps	Freq MHz	Max Reading dBm
0.1	0.3	1	AWGN	738.5	743.5	-36.0	off	746	746.3	100	746	-30.47
0.1	0.3	1	AWGN	738.5	743.5	-32.0	on	746	746.3	100	746	-29.3
0.1	0.3	1	AWGN	730.5	735.5	-36.0	off	727.7	728	100	728	-29.2
0.1	0.3	1	AWGN	730.5	735.5	-32.0	on	727.7	728	100	728	-28.6
0.01	0.03	3	MSK	745.6	745.8	-35.0	off	746	746.3	100	746	-31.2

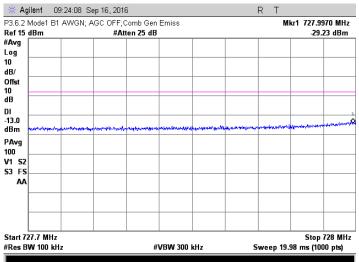
Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

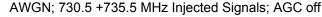
0.01	0.03	3	MSK	745.6	745.8	-31.0	on	746	746.3	100	746	-30.8
0.01	0.03	3	MSK	728.2	728.4	-35.0	off	727.7	728	100	727.99	-30.15
0.01	0.03	3	MSK	728.2	728.4	-31.0	on	727.7	728	100	728	-30.28
0.1	0.3	2	AWGN	708.5	713.5	-36.0	off	716	716.3	100	716	-29.08
0.1	0.3	2	AWGN	708.5	713.5	-32.0	on	716	716.3	100	716	-30.03
0.1	0.3	2	AWGN	700.5	705.5	-36.0	off	697.7	698	100	698	-28.5
0.1	0.3	2	AWGN	700.5	705.5	-32.0	on	697.7	698	100	698	-29.4
0.01	0.03	4	MSK	715.6	715.8	-35.0	off	716	716.3	100	716	-31.5
0.01	0.03	4	MSK	715.6	715.8	-31.0	on	716	716.3	100	716	-31.6
0.01	0.03	4	MSK	698.2	698.4	-35.0	off	697.7	698	100	698	-29.83
0.01	0.03	4	MSK	698.2	698.4	-31.0	on	697.7	698	100	697.98	-29.88

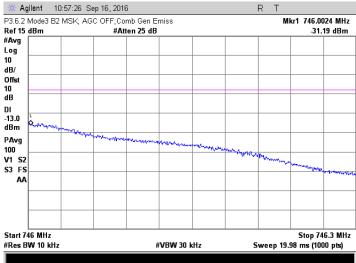
P.3.6.2 Single Generator Out of block Emissions

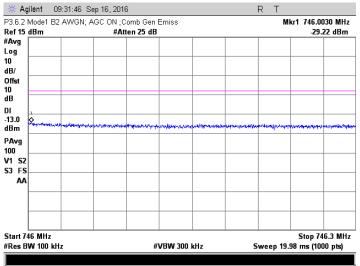

			Sig	Sig Gen			Analyz	er	Trace		
RBW MHz	VBW MHz	Mode	Modul	<i>#1</i> MHz	dBm	AGC	Start MHz	Stop MHz	Av Sweep s	Freq MHz	Max Reading dBm
0.1	0.3	1	AWGN	743.5	-36.0	off	746	746.3	100	746	-25.94
0.1	0.3	1	AWGN	743.5	-32.0	on	746	746.3	100	746	-25.77
0.1	0.3	1	AWGN	730.5	-36.0	off	727.7	728	100	728	-28.9
0.1	0.3	1	AWGN	730.5	-32.0	on	727.7	728	100	728	-28.7
0.01	0.03	3	MSK	745.8	-36.0	off	746	746.3	100	746	-28.6
0.01	0.03	3	MSK	745.8	-32.0	on	746	746.3	100	746	-27.52
0.01	0.03	3	MSK	728.2	-36.0	off	727.7	728	100	728	-28.4
0.01	0.03	3	MSK	728.2	-32.0	on	727.7	728	100	728	-27.55
0.1	0.3	2	AWGN	713.5	-36.0	off	716	716.3	100	716	-27.6
0.1	0.3	2	AWGN	713.5	-32.0	on	716	716.3	100	716	-26.9
0.1	0.3	2	AWGN	700.5	-36.0	off	697.7	698	100	698	-28.7
0.1	0.3	2	AWGN	700.5	-32.0	on	697.7	698	100	698	-27.8
0.01	0.03	4	MSK	715.8	-36.0	off	716	716.3	100	716	-28.8
0.01	0.03	4	MSK	715.8	-32.0	on	716	716.3	100	716	-28.3
0.01	0.03	4	MSK	698.2	-36.0	off	697.7	698	100	698	-28.25
0.01	0.03	4	MSK	698.2	-32.0	on	697.7	698	100	698	-27.58

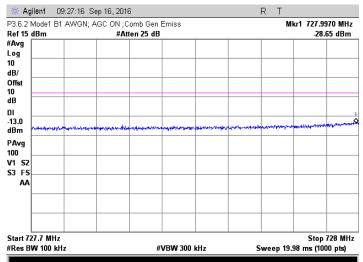
Judgement: Pass

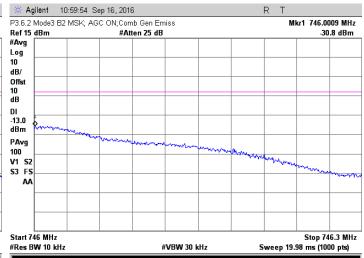

www.radiomet.com


Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW


15.3.1 Combined Output Results

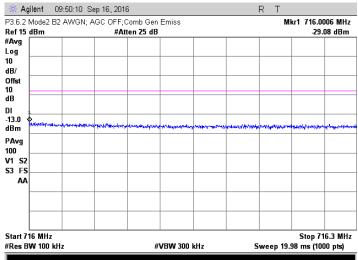

AWGN; 738.5 +743.5 MHz Injected Signals; AGC off

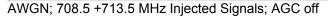


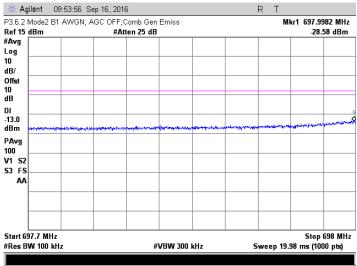

MSK; 745.6 +745.8 MHz Injected Signals; AGC off

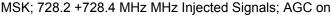
AWGN; 738.5 +743.5 MHz MHz Injected Signals; AGC on

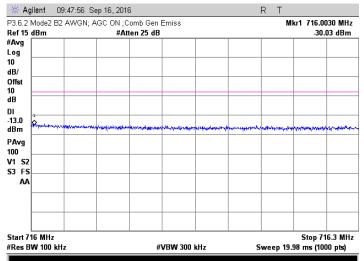
AWGN; 730.5 +735.5 MHz MHz Injected Signals; AGC on

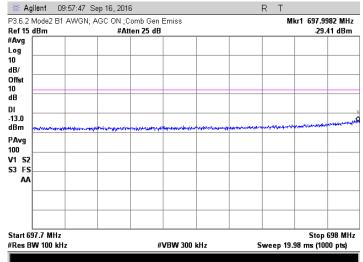

MSK; 745.6 +745.8 MHz MHz Injected Signals; AGC on

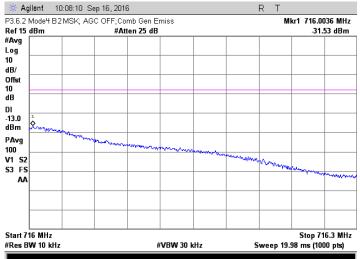

RP-8562E Rev. 0

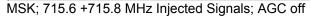

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

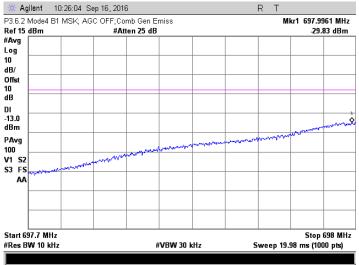


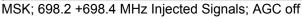



AWGN; 700.5 +705.5 MHz Injected Signals; AGC off

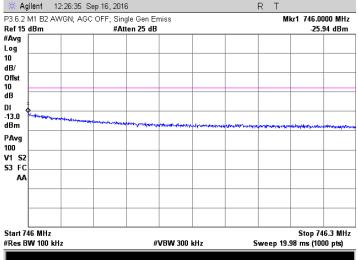


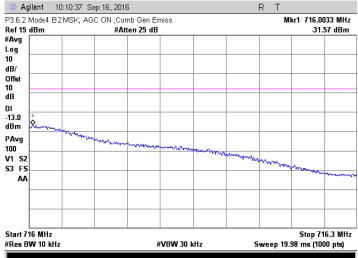

AWGN; 708.5 +713.5 MHz MHz Injected Signals; AGC on

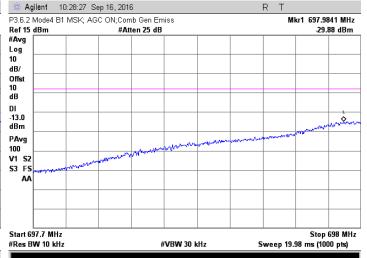


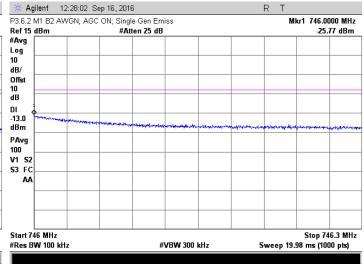

AWGN; 700.5 +705.5 MHz MHz Injected Signals; AGC on

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

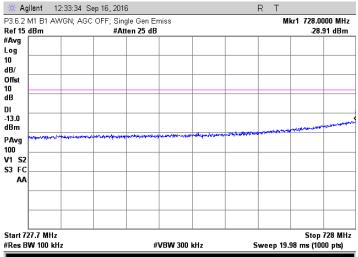


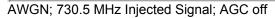


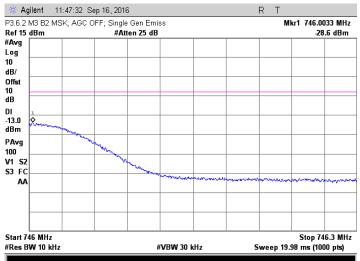


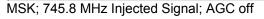

AWGN; 743.5 MHz Injected Signal; AGC off

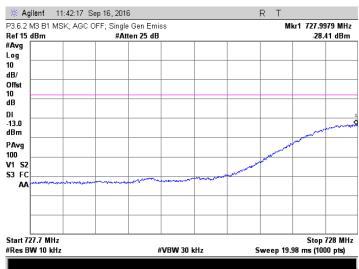
MSK; 715.6 +715.8 MHz MHz Injected Signals; AGC on

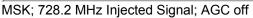


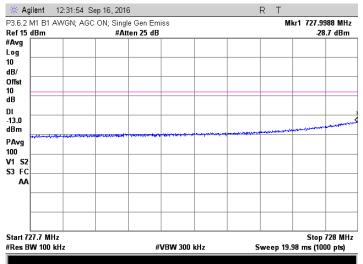

MSK; 698.2 +698.4 MHz MHz Injected Signals; AGC on

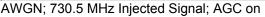


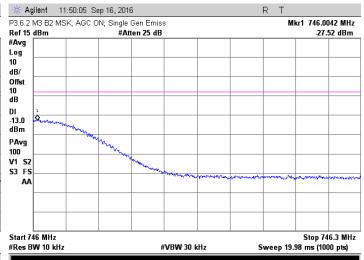

AWGN; 743.5 MHz Injected Signal; AGC on

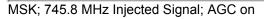

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

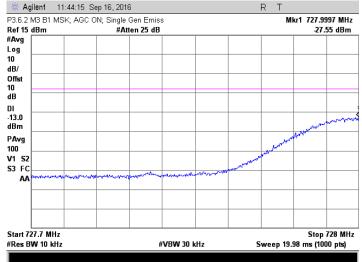


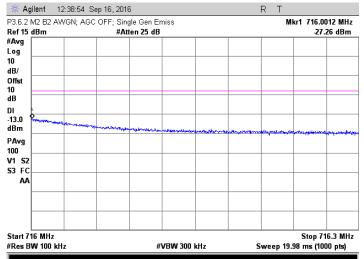


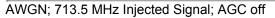


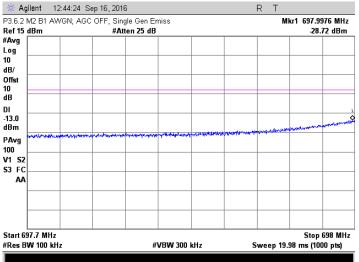


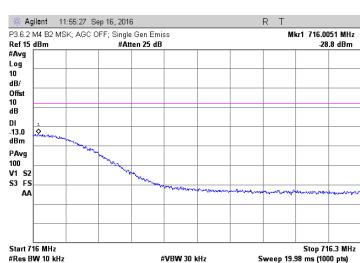


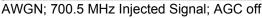


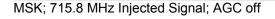


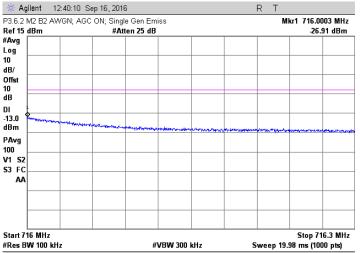


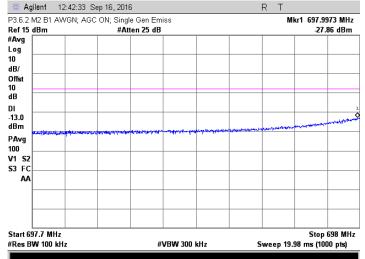


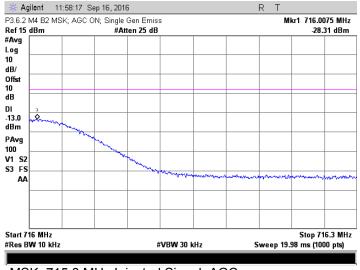

MSK; 728.2 MHz Injected Signal; AGC on


Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

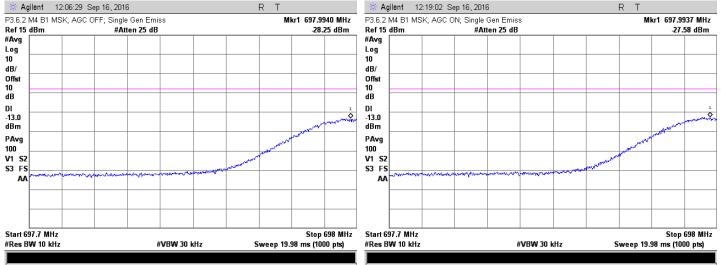








AWGN; 713.5 MHz Injected Signal; AGC on



MSK; 715.8 MHz Injected Signal; AGC on

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

MSK; 698.2 MHz Injected Signal; AGC off

MSK; 698.2 MHz Injected Signal; AGC on

15.4 Test procedures 3.6.3

a) A signal generator was connected to the input of the EUT.

b) The signal generator was set to produce the broadband test signal as previously described (i.e., 4.1 MHz OBW AWGN).

c) The center frequency of the test signal was set to the lowest available channel within the frequency band or block.

d) The EUT input power was set to zero to 0.5 dB below the AGC threshold level.

e) A spectrum analyzer was connected to the output of the EUT using appropriate attenuation as necessary. f) Set the RBW = reference bandwidth in the applicable rule section for the supported frequency band of operation (e.g., reference bandwidth is typically 100 kHz or 1 MHz).

g) The VBW was set as $\geq 3 \times RBW$.

h) The Sweep time was set to equal auto-couple.

i) The spectrum analyzer start frequency was set to the lowest RF signal generated in the equipment, without going below 9 kHz, and the stop frequency to the lower band/block edge frequency minus 100 kHz or 1 MHz, as specified in the applicable rule part. The number of measurement points in each sweep must be \geq (2 × span/RBW), which may require that the measurement range defined by the start and stop frequencies be subdivided, depending on the available number of measurement points provided by the spectrum analyzer. j) The power averaging (rms) detector function was selected.

k) A trace average measurement with at least 10 traces in power averaging (rms) mode was performed.
I) The peak marker function was used to identify the highest amplitude level over each measured frequency range. The frequency and amplitude were recorded and captured in a plot.

m) The spectrum analyzer start frequency was reset to the upper band/block edge frequency plus 100 kHz or 1 MHz, as specified in the applicable rule part, and the spectrum analyzer stop frequency to 10 times the highest frequency of the fundamental emission. The number of measurement points in each sweep was \geq (2 × span/RBW), which may require that the measurement range defined by the start and stop frequencies be subdivided, depending on the available number of measurement points provided by the spectrum analyzer. n) Trace averages were at least 10 traces in power averaging (rms) mode.

o) The peak marker function was used to identify the highest amplitude level over each of the measured frequency ranges. The frequency and amplitude were recorded and captured in a plot for inclusion in the test report; and tabular data was provided.

p) Steps i) to o) were repeated with the input test signals firstly tuned to a middle band/block

frequency/channel, and then tuned to a high band/block frequency/channel.

q) Steps b) to p) were repeated with the narrowband test signal.

r) Steps b) to q) were repeated for all authorized frequency bands/blocks used by the EUT.

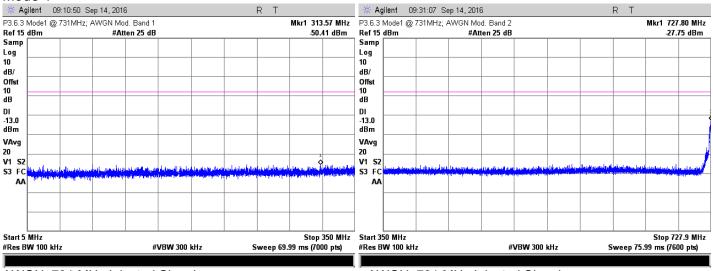
On any frequency outside the authorized bandwidth shall be attenuated by at least 50 + 10 log (P) dB. This corresponds to an absolute level of -13 dBm.

15.5 Test Results for Section 3.6.3

Model	DSP85-L7/AW	Specifications	FCC KDB 935210 Sec., 3.6.3
Serial Number	C6WH16931	Test Date	September 14 & 15,2016
Test Personnel	Richard L. Tichgelaar,	Test Location	Chamber C
	Joseph Strzelecki		
Test Equipment	EMI Receiver (REC-21)		

* The reading has a +20 dB offset due to an external attenuator.

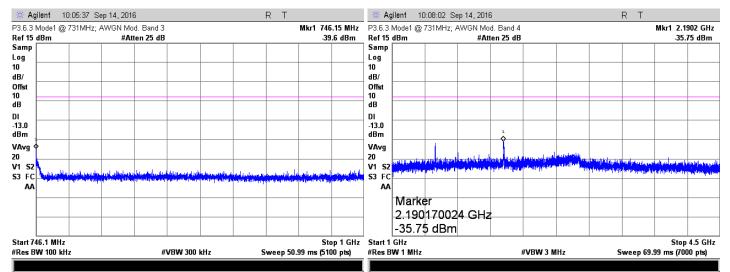
The spectrum analyzer was set to 20 trace average in the RMS mode.


Spur				Sig	Gen				Max	reading
3.6.3	RBW	VBW	EUT			Start	Stop	Min #	Freq	Reading
Plot #	MHz	MHz	Mode	Modul	MHz	MHz	MHz	points	MHz	dBm
1	0.1	0.3	1	AWGN	731	5	350	6900	313.57	-50.41
2	0.1	0.3	1	AWGN	731	350	727.9	7558	727.8	-27.75
3	0.1	0.3	1	AWGN	731	746.1	1000	5078	746.15	-39.6
4	1	3	1	AWGN	731	1000	4500	7000	2190	-35.75
5	1	3	1	AWGN	731	4500	8000	7000	7108	-41.97
6	0.1	0.3	1	AWGN	737	5	350	6900	313.67	-49.02
7	0.1	0.3	1	AWGN	737	350	727.9	7558	727.45	-39.88
8	0.1	0.3	1	AWGN	737	746.1	1000	5078	746.15	-40.73
9	1	3	1	AWGN	737	1000	4500	7000	2211	-37.11
10	1	3	1	AWGN	737	4500	8000	7000	7358	-41.88
11	0.1	0.3	1	AWGN	743	5	350	6900	285.97	-49.58
12	0.1	0.3	1	AWGN	743	350	727.9	7558	727.6	-37.87
13	0.1	0.3	1	AWGN	743	746.1	1000	5078	746.15	-26.76
14	1	3	1	AWGN	743	1000	4500	7000	2229.7	-37.29
15	1	3	1	AWGN	743	4500	8000	7000	7072	-41.96
16	0.1	0.3	2	AWGN	701	5	350	6900	112.95	-49.4
17	0.1	0.3	2	AWGN	701	350	697.9	6958	697.8	-27.57
18	0.1	0.3	2	AWGN	701	716.1	1000	5678	721.98	-38.75
19	1	3	2	AWGN	701	1000	4500	7000	1401	-46.5
20	1	3	2	AWGN	701	4500	8000	7000	7368	-50.58
21	0.1	0.3	2	AWGN	707	5	350	6900	340.14	-49.55
22	0.1	0.3	2	AWGN	707	350	697.9	6958	697.9	-39.79
23	0.1	0.3	2	AWGN	707	716.1	1000	5678	721.98	-38.38
24	1	3	2	AWGN	707	1000	4500	7000	1413.6	-37.3
25	1	3	2	AWGN	707	4500	8000	7000	6481.8	-42.91
26	0.1	0.3	2	AWGN	713	5	350	6900	179.64	-49.69
27	0.1	0.3	2	AWGN	713	350	697.9	6958	697.9	-37.85
28	0.1	0.3	2	AWGN	713	716.1	1000	5678	716.1	-26.72
29	1	3	2	AWGN	713	1000	4500	7000	1426	-35.89
30	1	3	2	AWGN	713	4500	8000	7000	7434	-42.56
31	0.1	0.3	3	MSK	731	5	350	6900	333.59	-50.27
32	0.1	0.3	3	MSK	731	350	727.9	7558	727.6	-38.22

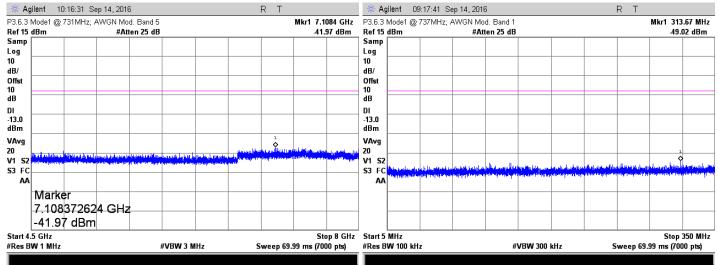
Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

Spur				Sig	Gen				Max	reading
3.6.3	RBW	VBW	EUT			Start	Stop	Min #	Freq	Reading
Plot #	MHz	MHz	Mode	Modul	MHz	MHz	MHz	points	MHz	dBm
33	0.1	0.3	3	MSK	731	746.1	1000	5078	746.1	-40.32
34	1	3	3	MSK	731	1000	4500	7000	2192.7	-34.08
35	1	3	3	MSK	731	4500	8000	7000	7221	-41.94
36	0.1	0.3	3	MSK	737	5	350	6900	334.82	-50.26
37	0.1	0.3	3	MSK	737	350	727.9	7558	726.71	-39.2
38	0.1	0.3	3	MSK	737	746.1	1000	5078	746.1	-41.87
39	1	3	3	MSK	737	1000	4500	7000	2210.7	-34.38
40	1	3	3	MSK	737	4500	8000	7000	7500	-42.57
41	0.1	0.3	3	MSK	743	5	350	6900	325.06	-49.99
42	0.1	0.3	3	MSK	743	350	727.9	7558	727.9	-39.57
43	0.1	0.3	3	MSK	743	746.1	1000	5078	746.1	-38.61
44	1	3	3	MSK	743	1000	4500	7000	2229.2	-35.67
45	1	3	3	MSK	743	4500	8000	7000	6918	-42.32
46	0.1	0.3	4	MSK	701	5	350	6900	336.84	-50.21
47	0.1	0.3	4	MSK	701	350	697.9	6958	697.9	-37.21
48	0.1	0.3	4	MSK	701	716.1	1000	5678	721.98	-38.15
49	1	3	4	MSK	701	1000	4500	7000	1402	-34.53
50	1	3	4	MSK	701	4500	8000	7000	7845	-42.46
51	0.1	0.3	4	MSK	707	5	350	6900	342.9	-50.02
52	0.1	0.3	4	MSK	707	350	697.9	6958	697.9	-41.09
53	0.1	0.3	4	MSK	707	716.1	1000	5678	721.98	-38.28
54	1	3	4	MSK	707	1000	4500	7000	1414	-33.69
55	1	3	4	MSK	707	4500	8000	7000	6961	-43.15
56	0.1	0.3	4	MSK	713	5	350	6900	236.77	-50.0
57	0.1	0.3	4	MSK	713	350	697.9	6958	697.9	-38.91
58	0.1	0.3	4	MSK	713	716.1	1000	5678	716.1	-36.6
59	1	3	4	MSK	713	1000	4500	7000	2139	-34.12
60	1	3	4	MSK	713	4500	8000	7000	7461	-42.0

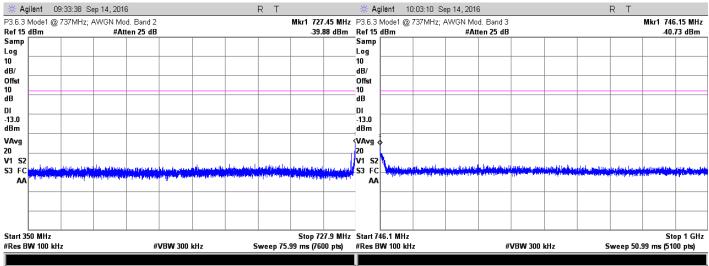
Judgement: Pass


Mode 1

AWGN; 731 MHz Injected Signal

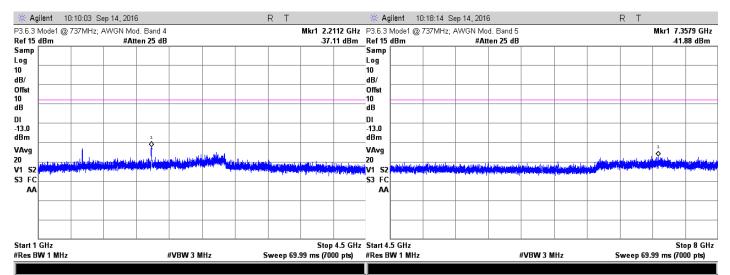

AWGN; 731 MHz Injected Signal

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

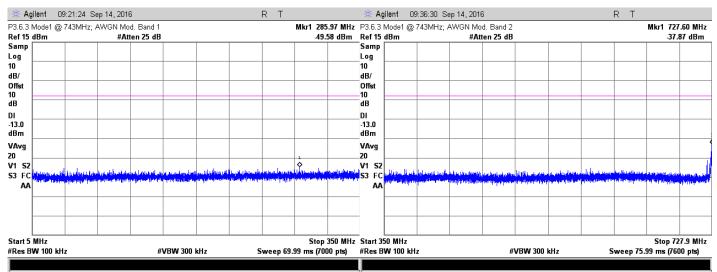

AWGN; 731 MHz Injected Signal

AWGN; 731 MHz Injected Signal

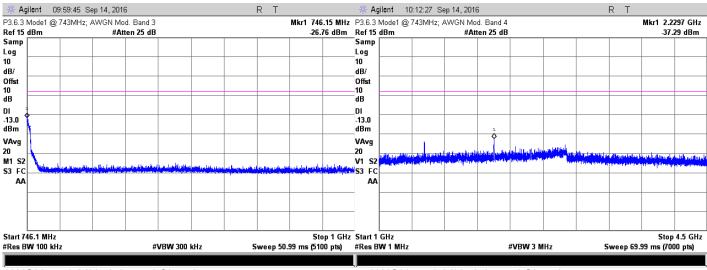
AWGN; 731 MHz Injected Signal


AWGN; 737 MHz Injected Signal

AWGN; 737 MHz Injected Signal

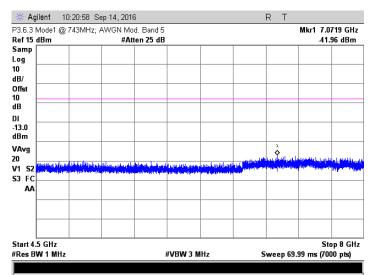

AWGN; 737 MHz Injected Signal

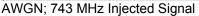
Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW


AWGN; 737 MHz Injected Signal

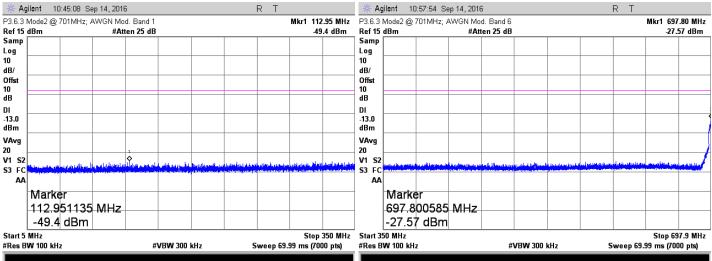
AWGN; 737 MHz Injected Signal

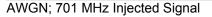
AWGN; 743 MHz Injected Signal

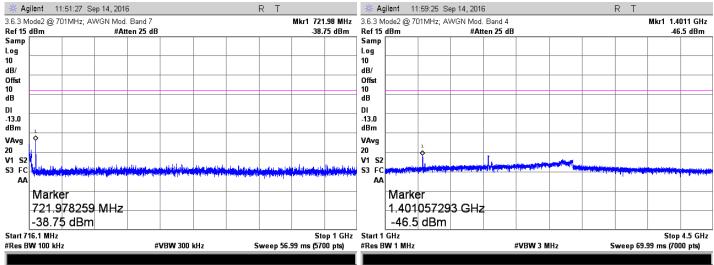

AWGN; 743 MHz Injected Signal



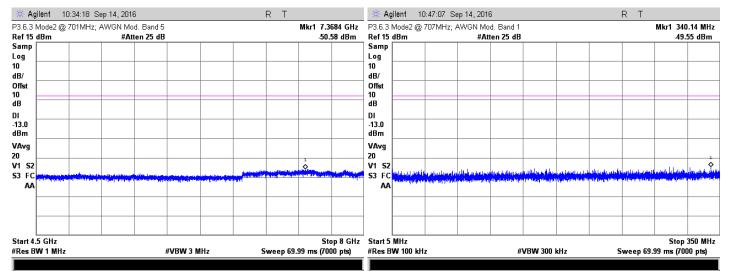
AWGN; 743 MHz Injected Signal


AWGN; 743 MHz Injected Signal

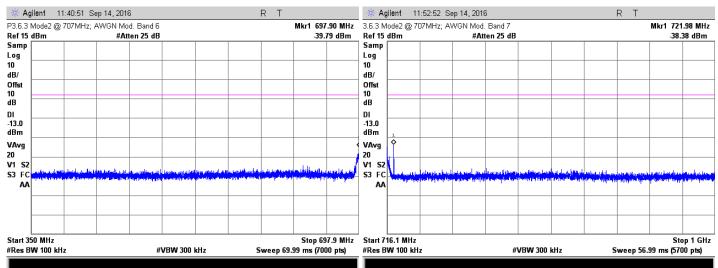

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW



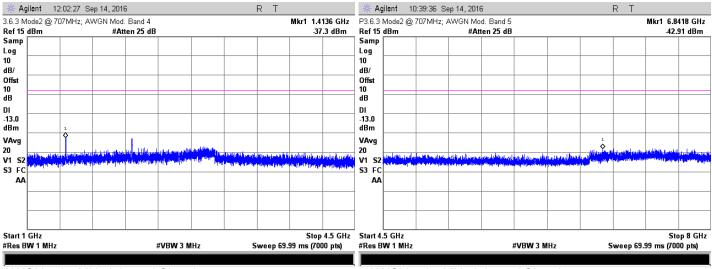
Mode 2


AWGN; 701 MHz Injected Signal

AWGN; 701 MHz Injected Signal

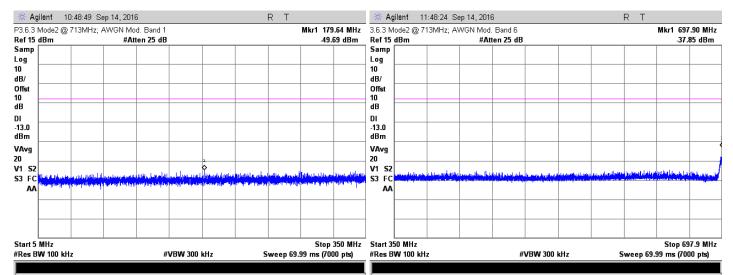

AWGN; 701 MHz Injected Signal

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

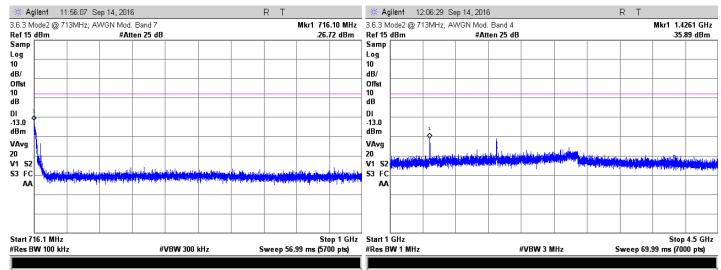

AWGN; 701 MHz Injected Signal

AWGN; 707 MHz Injected Signal

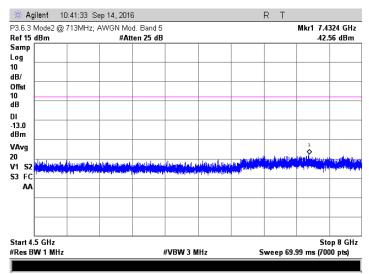
AWGN; 707 MHz Injected Signal


AWGN; 707 MHz Injected Signal

AWGN; 707 MHz Injected Signal


AWGN; 707 MHz Injected Signal

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

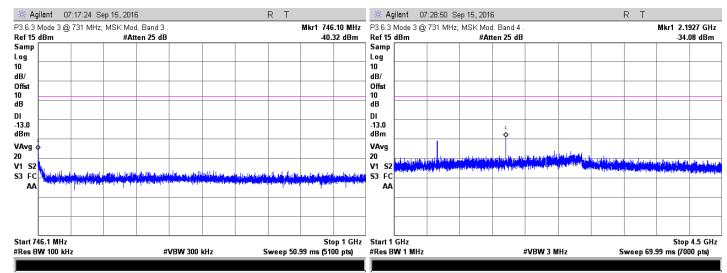


AWGN; 713 MHz Injected Signal

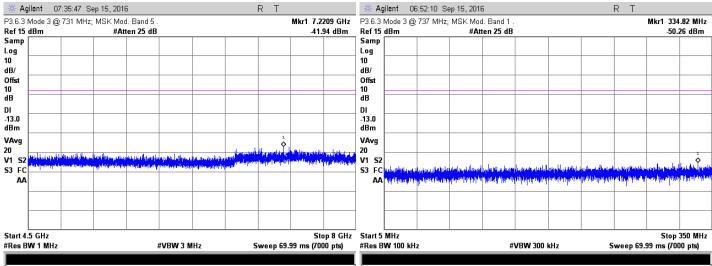
AWGN; 713 MHz Injected Signal

AWGN; 713 MHz Injected Signal

AWGN; 713 MHz Injected Signal

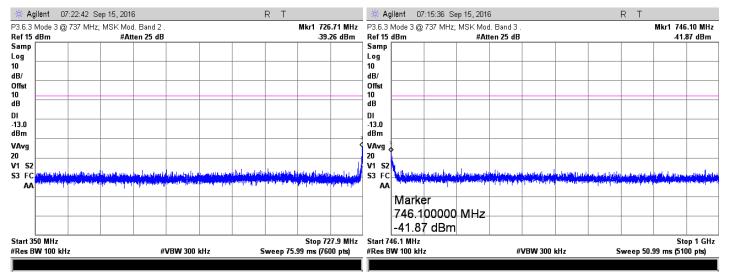

AWGN; 713 MHz Injected Signal

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

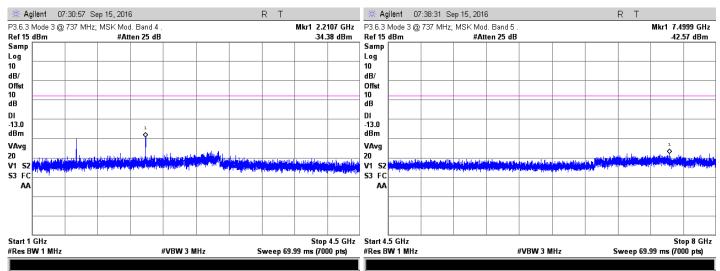

MSK; 731 MHz Injected Signal

MSK; 731 MHz Injected Signal

MSK; 731 MHz Injected Signal


MSK; 731 MHz Injected Signal

MSK; 731 MHz Injected Signal

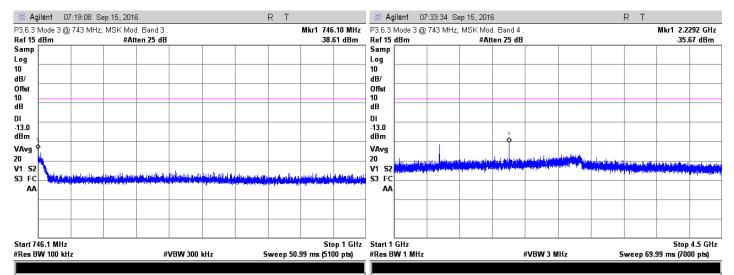

MSK; 737 MHz Injected Signal

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

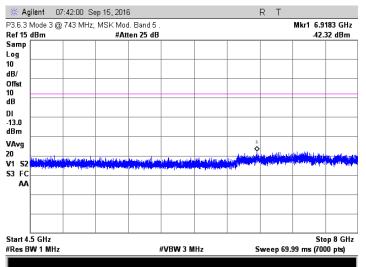
MSK; 737 MHz Injected Signal

MSK; 737 MHz Injected Signal

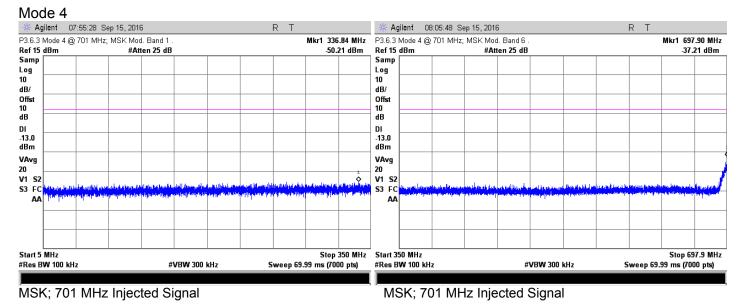
MSK; 737 MHz Injected Signal


🔆 Agilent 07:02:10 Sep 15, 2016 🔆 Agilent 07:26:31 Sep 15, 2016 R R Т Mkr1 325.06 MHz P3.6.3 Mode 3 @ 743 MHz; MSK Mod. Band 2 P3.6.3 Mode 3 @ 743 MHz; MSK Mod. Band 1 Mkr1 727.90 MHz Ref 15 dBm 49.99 dBm Ref 15 dBm #Atten 25 dB #Atten 25 dB -39.57 dBm Samp Samp Log Log 10 10 dB/ dB/ Offst Offst 10 dB 10 dB DI -13.0 DI -13.0 dBm dBm VAvg VAvg 20 20 V1 S2 Ŷ V1 S2 **S3** FC **S**3 FC AΑ - and the second of the second se AΑ Start 5 MHz Stop 350 MHz Start 350 MHz Stop 727.9 MHz #VBW 300 kHz #Res BW 100 kHz Sweep 69.99 ms (7000 pts) #Res BW 100 kHz #VBW 300 kHz Sweep 75.99 ms (7600 pts)

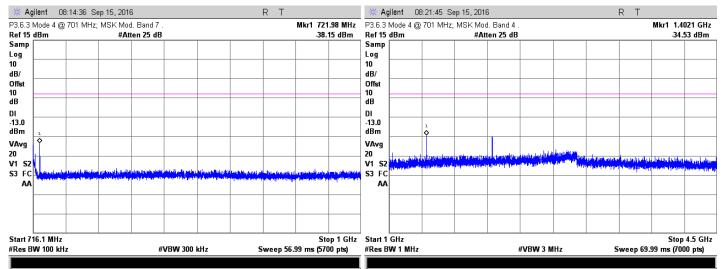
MSK; 743 MHz Injected Signal


MSK; 743 MHz Injected Signal

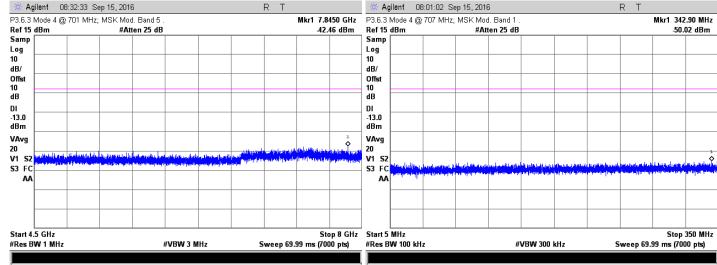
MSK; 737 MHz Injected Signal


Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

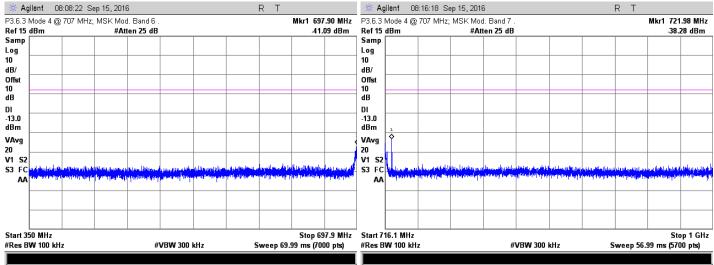
MSK; 743 MHz Injected Signal


MSK; 743 MHz Injected Signal

MSK; 743 MHz Injected Signal

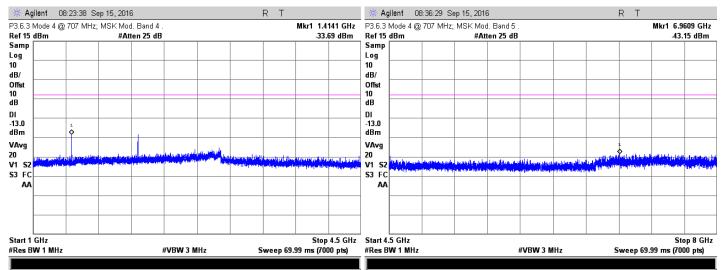

RP-8562E Rev. 0

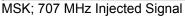
Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW


MSK; 701 MHz Injected Signal

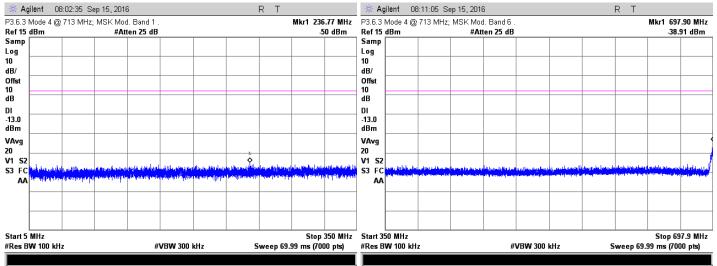
MSK; 701 MHz Injected Signal

MSK; 701 MHz Injected Signal

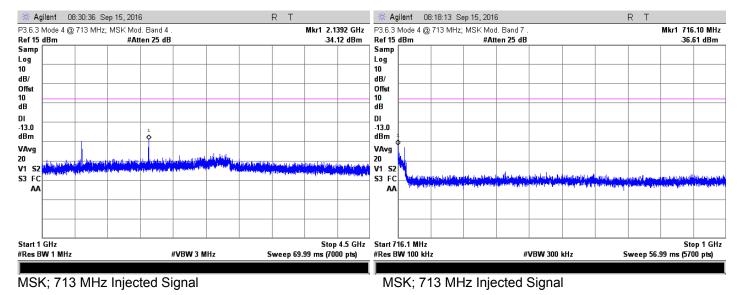

MSK; 707 MHz Injected Signal



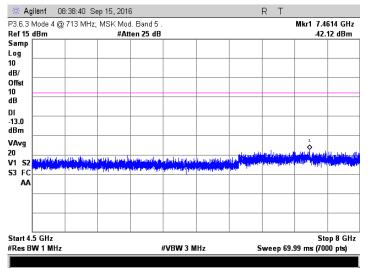
MSK; 707 MHz Injected Signal


MSK; 707 MHz Injected Signal

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW



MSK; 707 MHz Injected Signal



MSK; 713 MHz Injected Signal

MSK; 713 MHz Injected Signal

RP-8562E Rev. 0

MSK; 713 MHz Injected Signal

16.0 FIELD STRENGTH OF SPURIOUS RADIATED EMISSIONS

16.1 Applicable Standard

The EUT shall comply with section 3.8 of FCC KDB 935210 D05 and FCC Part 2.1053. This test is intended to capture any emissions that radiate directly from the case, cabinet, control circuits, etc., instead of via the antenna output port, and thus would not be captured in conducted spurious emission measurements.

Spurious emissions of zone enhancers shall be suppressed as much as possible. Any emission must be attenuated below the power (P) of the highest emission contained within the authorized band, by at least: $43+10xLog_{10}P$, or 70 dB, whichever is less stringent, where P is the total RF output power of the test tones in watts. Since $43+10xLog_{10}P$ is less stringent than 70 dB, that limit was used.

16.2 Test Procedures

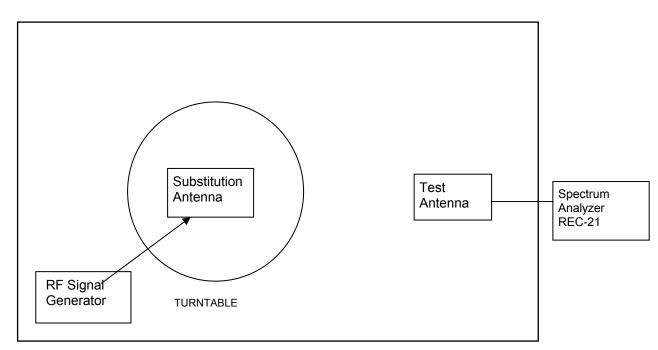
Radiated emission measurements in the restricted bands were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists. Radiated emissions measurements were performed in the anechoic chamber at a test distance of 3 meters. The entire frequency range from 30 to 7500 MHz was slowly scanned and the emissions in the restricted frequency bands were recorded. Measurements were performed using the peak detector function.

The spectrum analyzer was adjusted for the following settings:

1) Resolution Bandwidth = 100 kHz for spurious emissions below 1 GHz, and 1 MHz for spurious emissions above 1GHz.

2) Video Bandwidth = 300 kHz for spurious emissions below 1 GHz, and 3 MHz for spurious emissions above 1 GHz.

3) Sweep Speed slow enough to maintain measurement calibration.


4) Detector Mode = Positive Peak.

The transmitter to be tested was placed on the turntable in the standard test site, or an FCC listed site compliant with ANSI C63.4. The transmitter is transmitting into a non-radiating load that is placed on the

turntable (except for the fundamental reading which had an antenna). Since the transmitter has an integral antenna, the tests are to be run with the unit operating into the integral antenna. Measurements were made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier. The transmitter was keyed during the tests.

For each spurious frequency, the test antenna was raised and lowered from 1 m to 4m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Then the turntable was rotated 360° to determine the maximum reading. This procedure was repeated to obtain the highest possible reading. This maximum reading was recorded.

Each measurement was repeated for each spurious frequency with the test antenna polarized vertically.

Figure 1. Drawing of Radiated Emissions Setup

ANSI C63.4 Listed Test Site

Notes:

- Test Antenna height varied from 1 to 4 meters
- Distance from antenna to tested system is 3 meters
- Not to Scale

Frequency MHz	Test Antenna	Substitution Antenna	Receiver	Signal Generator
30 - 200	ANT-03	ANT-04	REC-21	SIG-28
200 - 1000	ANT-06	ANT-07	REC-21	SIG-28
1000-18,000	ANT-13	ANT-36	REC-21	SIG-28
18,000-23,000	ANT-48	N/A	REC-21	SIG-28

There were no detected signals above 18 GHz, so no substitution antenna was used above 18 GHz.

The transmitter was removed and replaced with a broadband substitution antenna. The substitution antenna is calibrated so that the gain relative to a dipole is known. The center of the substitution antenna was approximately at the same location as the center of the transmitter.

The substitution antenna was fed at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized, and with the signal generator tuned to a particular spurious frequency, the test antenna was raised and lowered to obtain a maximum reading at the spectrum analyzer. The level of the signal generator output was adjusted until the previously recorded maximum reading for this set of conditions was obtained. The measurements were repeated with both antennas horizontally and vertically polarized for each spurious frequency.

The power in dBm into a reference ideal half-wave dipole antenna was calculated by reducing the readings obtained in steps k) and l) by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:

Pd(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dB)

where:

Pd is the dipole equivalent power and

Pg is the generator output power into the substitution antenna.

The *Pd* levels record in step m) are the absolute levels of radiated spurious emissions in dBm.

Since by mathematical definition, P(dBm) - (43+10xLOG P(W)) = -13 dBm, the limit for spurious emissions was set to -13 dBm equivalent radiated power.

16.2.1 Spurious Radiated Emissions Test Results

Model	DSP85-L7/AW	Specification	FCC KDB 935210
Serial Number	C6WH16931	Test Date	September 28, 2016
Test Distance	3 Meters	Notes	Transmit Mode

Model	DSP85-L7/AW	Specification	RSS-131 Section 6.4
Serial Number	C6WH61931	Test Date	September 28, 2016
Test Distance	3 Meters	Notes	Transmit Mode

					Margin
Freq.	Dect	Ant.	EUT	Limit	Under
MHz		Pol.	dBm	dBm	Limit dB
99.8	Р	Н	-39.9	-13.0	26.9
199.9	Р	Н	-37.5	-13.0	24.5
300.0	Р	Н	-41.8	-13.0	28.8
400.0	Р	Н	-40.2	-13.0	27.2
425.0	Р	Н	-42.5	-13.0	29.5
626.3	Р	Н	-43.9	-13.0	30.9
641.3	Р	Н	-32.7	-13.0	19.7
726.3	Р	H	-37.2	-13.0	24.2
776.3	Р	H	-40.8	-13.0	27.8
801.3	Р	H	-43.9	-13.0	30.9
826.3	Р	Н	-36.0	-13.0	23.0
876.3	Р	Н	-37.1	-13.0	24.1
926.3	Р	Н	-40.3	-13.0	27.3
1600.0	Р	Н	-44.9	-13.0	31.9
3200.0	Р	Н	-47.5	-13.0	34.5

Test Report for the Westell, Incorporated, Booster Amplifier, Model DSP85-L7/AW

					Margin
Freq.	Dect	Ant.	EUT	Limit	Under
MHz		Pol.	dBm	dBm	Limit dB
3520.0	Р	Н	-45.0	-13.0	32.0
3520.0	Р	Н	-43.3	-13.0	30.3
6482.5	Р	Н	-44.6	-13.0	31.6
99.8	Р	V	-39.9	-13.0	26.9
125.2	Р	V	-44.7	-13.0	31.7
174.6	Р	V	-44.1	-13.0	31.1
199.9	Р	V	-37.2	-13.0	24.2
300.0	Р	V	-42.6	-13.0	29.6
400.0	Р	V	-40.6	-13.0	27.6
475.0	Р	V	-43.1	-13.0	30.1
576.3	Р	V	-41.5	-13.0	28.5
641.3	Р	V	-32.3	-13.0	19.3
676.3	Р	V	-43.8	-13.0	30.8
725.0	Р	V	-41.3	-13.0	28.3
726.3	Р	V	-39.6	-13.0	26.6
776.3	Р	V	-43.5	-13.0	30.5
801.3	Р	V	-43.6	-13.0	30.6
826.3	Р	V	-40.1	-13.0	27.1
826.3	Р	V	-39.2	-13.0	26.2
876.3	Р	V	-38.9	-13.0	25.9
926.3	Р	V	-39.4	-13.0	26.4
961.3	Р	V	-39.1	-13.0	26.1
976.3	Р	V	-44.4	-13.0	31.4
1107.5	Р	V	-42.0	-13.0	29.0
1140.0	Р	V	-44.8	-13.0	31.8
1600.0	Р	V	-46.6	-13.0	33.6
3680.0	Р	V	-45.6	-13.0	32.6
5375.0	Р	V	-43.3	-13.0	30.3
5932.5	P	V	-45.5	-13.0	32.5
6487.5	P	V	-42.4	-13.0	29.4
6860.0	P	V	-39.8	-13.0	26.8
6915.0	P	V	-43.4	-13.0	30.4
Judament	-	$\frac{1}{10}$			

Judgment: Passed by 19.3 dB.

17.0 RF EXPOSURE

Frequency MHz	MPE Distance cm	EUT Output Power dBm	Antenna Gain dBi	ERP Watts	Field Strength V/m	Power Density mW/cm ²	FCC limit mW/cm ²
710.8	183	29.8	14	23.99	14.66	0.057	1.0
731	30	29.7	3	1.86	24.91	0.165	1.0
1	2	3	4	5	6	7	8

Public Exposure data to Radio Frequency Energy Levels per FCC 1.1307 (b)(1).

Notes on Columns:

- 1. Frequency of highest power.
- 2. Minimum distance between the user and the antenna as specified by user manual.
- 3. Power output from EUT; See section 14.3 of this test report.
- 4. Antenna gain supplied by the client for combination of cable loss and antenna gain.
- 5. Effective radiated Power; Used for calculationg field strength
- 6. Field strenght at MPE distance. (needed for power density calculation)
- 7. Power density is calculated from field strength measurement and antenna gain.
- 8. Reference CFR 1.1310, Table 1: Limits for Maximum Permissible Exposure (MPE), Section (B): Limits for General Population/Uncontrolled Exposure.

18.0 MEASUREMENT INSTRUMENTATION UNCERTAINTY

Measurement	Uncertainty
Radiated Emissions, E-field, 3 meters, 30 to 200 MHz	3.3 dB
Radiated Emissions, E-field, 3 meters, 200 to 1000 MHz	4.9 dB
Radiated Emissions, E-field, 3 meters, 1 to 18 GHz	4.8 dB
Bandwidth using marker delta method	1% of frequency span
Conducted power	0.8 dB
Amplitude measurement 1-8000 MHz;	1.5 dB

The uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2 in accordance with CISPR 16-4-2.