June 16, 2001

Elite Electronic Engineering, Inc. 1516 Center Circle Downers Grove, IL 60515

Attn: Richard King

Dear Richard:

Enclosed you will find a certification application for a Bidirectional Amplifier, Model No. 510, FCC ID: NVRCSI510-03. Certification is requested under FCC Parts 2 & 24. This application is being filed by Retlif Testing Laboratories on behalf of Cellular Specialties The applicable filing fee and certification agreement have been mailed to your attention.

I trust that you will find this application to be complete; however, should you have any questions or require any additional information, please feel free to contact us.

Very truly yours,

RETLIF TESTING LABORATORIES

Scott Wentworth Manager Enc. (as stated)

CERTIFICATION APPLICATION

Applicant/Manufacturer: Cellular Specialties

670 North Commercial Street

Manchester, NH 03101

Equipment under Test (EUT): The EUT is a Bidirectional Amplifier used to amplify cellular

signals in the PCS Band.

Model: 510pcs

FCC ID Number: FCC ID: NVRC SI510-03

Applicable Test Standard: FCC Part 2

FCC Part 24, Subpart E

Device Classification: Mobile

EUT Frequency Range: Uplink: 1850MHz to 1865MHz

Downlink: 1930MHz to 1945MHz

EUT Gain: Uplink: 62dB

Downlink: 62dB

Measured Power Output Uplink: +32dBm
@ 1dB Compression Point: Downlink: +31dBm

Protocols used with this device: TDMA, CDMA & GSM

Power Output Rating Based

on Intermodulation Data

(For Certification Grant): Dow

Uplink: 200mW

Downlink: 200mW

RF Exposure + Antenna Installation: See Attached Installation/Users Manual and MPE Evaluation

Power Ratings Per Channel: See Section 1

Measurements Required by FCC: See Report Section 2 (Summary of Test Program)

and the following Test Report Data Attachments:

-RF Power Output

-Intermodulation Characteristics

-Occupied Bandwidth

-Spurious Emissions at Antenna Terminals -Field Strength of Spurious Radiation

-Frequency Stability

Test Report No. R-3767N FCC ID: NVRCSI510-03

SECTION 1

ACTUAL POWER RATINGS PER CHANNEL:

# Channels	Uplink (dBm)	Downlink (dBm)
1	23.0	23.0
2	19.0	19.0
3	16.7	16.7
4	15.0	15.0
5	13.7	13.7
6	12.7	12.7
7	11.8	11.8
8	11.0	11.0
9	10.3	10.3
10	9.7	9.7
11	9.2	9.2
12	8.7	8.7
13	8.2	8.2
14	7.8	7.8
15	7.4	7.4
16	7.0	7.0
17	6.6	6.6
18	6.3	6.3
19	6.0	6.0
20	5.7	5.7

Test Report No. R-3767N FCC ID: NVRCSI510-03

SECTION 2 SUMMARY OF TEST PROGRAM

POWER OUTPUT

Measurement Procedure:

The uplink and downlink of the test sample were alternately connected through external attenuators to a spectrum analyzer. Each link had an unmodulated signal sent to the input. The level of the input signal was adjusted to achieve maximum output power of the amplifier.

Testing was performed at 3 frequencies (low, mid and high) within each passband (uplink and downlink). The levels of the input signals and maximized output power levels were recorded and are shown below.

UPLINK (Power Input @ 1dB Gain Compression Point):

Frequency (MHz)	Input (dBm)	Output (dBm)
1850	-31.4	29.8
1857.5	-30.4	31.3
1865	-27.6	32.4

DOWNLINK (Power Input @ 1dB Gain Compression Point):

Frequency (MHz)	Input (dBm)	Output (dBm)
1930	-30.3	30.9
1937.5	-31.3	30.3
1945	-31.2	29.9

For complete test data, see electronic Test Report Attachment, RF Power Output Data.

INTERMODULATION CHARACTERISTICS

Measurement Procedure:

Three CW signals were injected, in turn, to the uplink and downlink via a three way power combiner.

Two signals were close together and at the low end of the passband, one signal was close to the high

end of the passband. The output of each signal generator was adjusted so that the three output

fundamental frequencies were equal in magnitude. At the input power levels used all intermodulation

products were at -13dBm or below. The requested power rating of the device for the certification

grant is derived by summing the levels of the three input signals for each the uplink and downlink.

For complete test data, including actual X/Y plots of intermodulation signals, see electronic Test

Report Attachment, Intermodulation Characteristics Data.

OCCUPIED BANDWIDTH

Measurement Procedure:

The signal generator output was connected to the spectrum analyzer. A CDMA modulation signal

was then applied to the carrier. Waveforms were then noted on an X-Y plot. Next, the signal

generator was connected to the EUT and the output of the EUT was connected to the spectrum

analyzer. The output waveforms after amplification were then compared to the emission mask

requirements for CDMA signals (46dB down at plus and minus 1 channel spacing 1.25MHz). This

procedure was repeated for TDMA modulation utilizing the emission mask requirement of 46dB

down at plus and minus 1 channel spacing (30kHz) and for GSM modulation utilizing the emission

mask requirement of 46dB down at plus and minus 1 channel spacing (200kHz). Testing was

performed at one frequency in the middle of each passband (uplink and downlink).

For complete test data, see electronic Test Report Attachment, Occupied Bandwidth Data.

An explanation of the data is as follows: There are two signals superimposed on each plot, one signal

is the waveform before modulation, the other is the modulated carrier. In each case the center of the

grid shows a narrowband signal projecting out from the center of the modulation envelope. This signal

is actually the stored unmodulated signal.

ANTENNA CONDUCTED EMISSIONS

Measurement Procedure:

The signal generator output was connected in turn to the uplink and downlink input ports of the EUT.

The input power level was at the level which was ascertained during the Power Output test.

spectrum analyzer was connected to the output of the EUT. The input test frequency used was one

frequency in the middle of each passband (uplink and downlink). The level of any spurious emission

was recorded. Testing was performed in the frequency range of 30MHz to 20GHz. The spurious

emissions limit is -13dBm as specified in FCC Part 24.

For complete test data, including harmonic and spurious emissions measured at antenna terminal, see

electronic Test Report Attachment, Antenna Conducted Data.

EFFECTIVE RADIATED POWER OF SPURIOUS RADIATION

Measurement Procedure:

The test sample was placed on a 80cm high wooden test stand which was located 3 meters from the test

antenna on an FCC listed test site. A signal generator was connected to the uplink input of the

amplifier. The signal generator output was set to provide the input power level necessary to achieve

maximum output power of the amplifier at one frequency within the middle of each passband (uplink

and downlink). The effective radiated power of each out of band spurious emission was measured using

the substitution method specified in TIA/EIA-603. The frequency range of the test was 30MHz -

20GHz. The limit for out of band emissions is -13dbm as specified in Part 24.

For complete test data, see electronic Test Report Attachment, Radiated Emissions Data.

FREQUENCY STABILITY MEASUREMENTS

Measurement Procedure (Frequency vs. Voltage):

The RF output of the signal generator was connected to the input (uplink and downlink) of the test

sample, and the output was connected to a spectrum analyzer. The input signal level was varied.

Measurements were taken with the EUT supplied with signals at levels -15, -30, and -60 dB from the

maximum input power.

For complete test data, see electronic Test Report Attachment, Frequency Stability Data.

SECTION 3EQUIPMENT LISTS

			RF Power Out	put		
EN	Type	Manufacturer	Description	Model No.	Cal Date	Due Date
3008	Signal Generator	Gigatronics	50 MHz - 18 GHz	900/0.05-18	10/11/00	10/11/01
4961	Attenuator	Narda	DC - 18 GHz	757C-30dB	10/2/00	10/2/01
4963	Attenuator	Hewlett Packard	DC - 18 GHz	8491A	10/19/00	10/19/01
713	EMI Test Receiver	Rohde & Schwarz	20 Hz - 26.5 GHz	ESI26	5/9/01	5/9/02
			Occupied Bandy	width		
EN	Type	Manufacturer	Description	Model No.	Cal Date	Due Date
4895	Spectrum Analyzer	Hewlett Packard	9kHz - 22GHz	8593EM	1/31/01	1/31/02
N/A	Signal Generator	Agilent Technologies	TDMA/CDMA/GSM	E4431B	8/24/00	8/24/01
		Spurious E	missions at the A	ntenna Terminals		
EN	Type	Manufacturer	Description	Model No.	Cal Date	Due Date
4895	Spectrum Analyzer	Hewlett Packard	9kHz - 22GHz	8593EM	1/31/01	1/31/02
4961	Attenuator	Narda	DC - 18 GHz	757C-30dB	10/2/00	10/2/01
5001	Sweep Oscillator	Hewlett Packard	.01 - 20.4 GHz	8350B	2/23/01	2/23/02
		Sm	urious Radiated E	Emissions		
EN	Type	Manufacturer	Description 1	Model No.	Cal Date	Due Date
3116	Pre-Amplifier	Miteq	0.1 GHz - 18 GHz	AFS42-35	11/7/00	11/7/01
3117	Power Supply	B&K Precision	0-30 Vdc, 3.0 A	1630	2/23/01	2/23/02
3119	Pre-Amplifier	Mini-Circu its	100kHz - 1GHz	ZFL-1000	7/11/00	7/11/01
3258	Double Ridge Guide	EMCO	1 - 18 GHz	3115	5/6/01	5/6/02
4202	Biconilog	EMCO	26 MHz - 2 GHz	3142	7/10/00	7/10/01
4895	Spectrum Analyzer	Hewlett Packard	9kHz - 22GHz	8593EM	1/31/01	1/31/02
713	EMI Test Receiver	Rohde & Schwarz	20 Hz - 26.5 GHz	ESI26	5/9/01	5/9/02
5001	Sweep Oscillator	Hewlett Packard	.01 - 20.4 GHz	8350B	2/23/01	2/23/02
			Frequency Stab	oility		
EN	Type	Manufacturer	Description	Model No.	Cal Date	Due Date
4895	Spectrum Analyzer	Hewlett Packard	9kHz - 22GHz	8593EM	1/31/01	1/31/02
4961	Attenuator	Narda	DC - 18 GHz	757C-30dB	10/2/00	10/2/01

.01 - 20.4 GHz

8350B

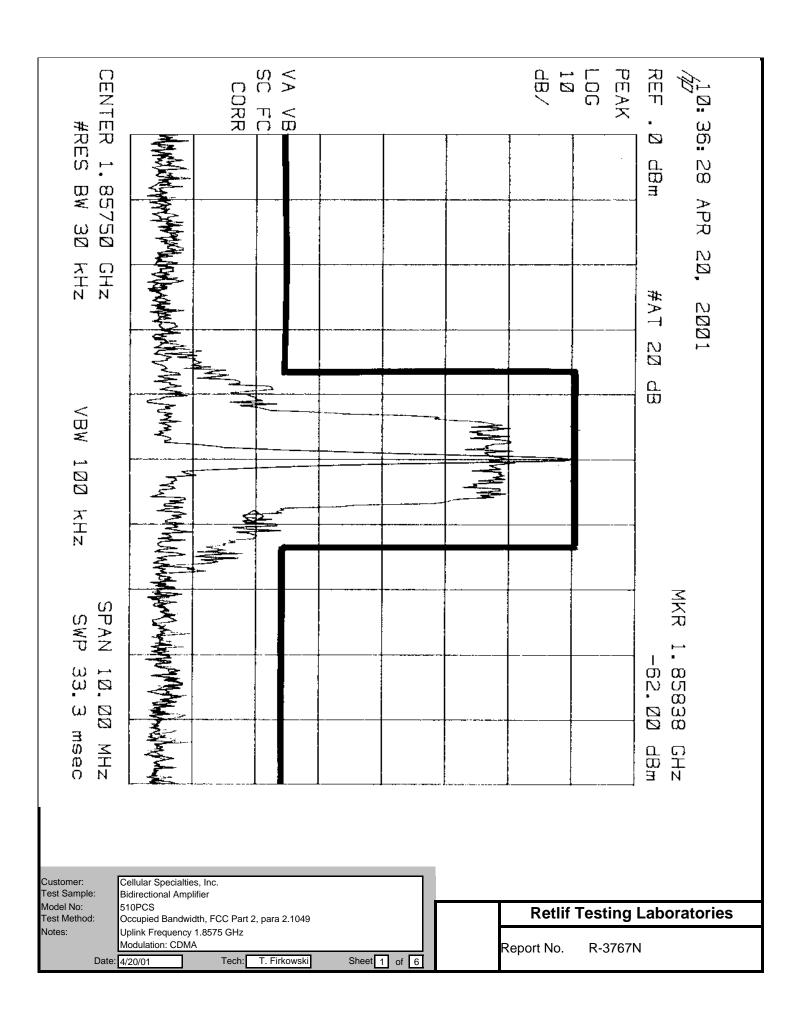
5001

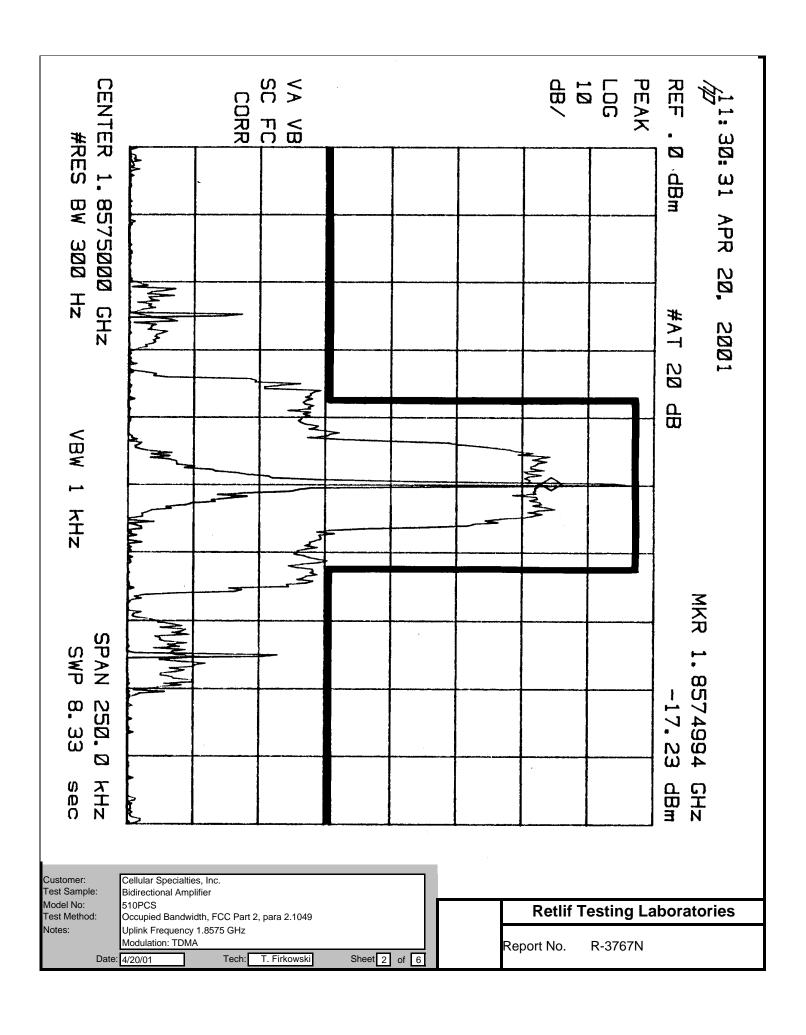
Sweep Oscillator

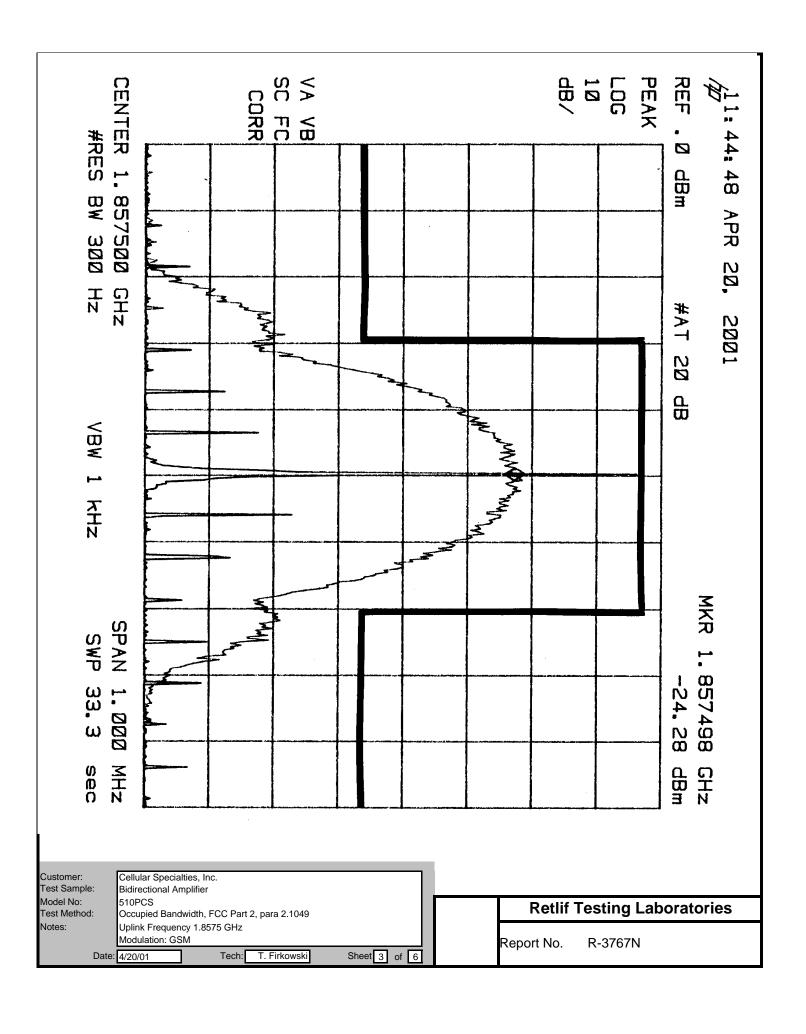
Hewlett Packard

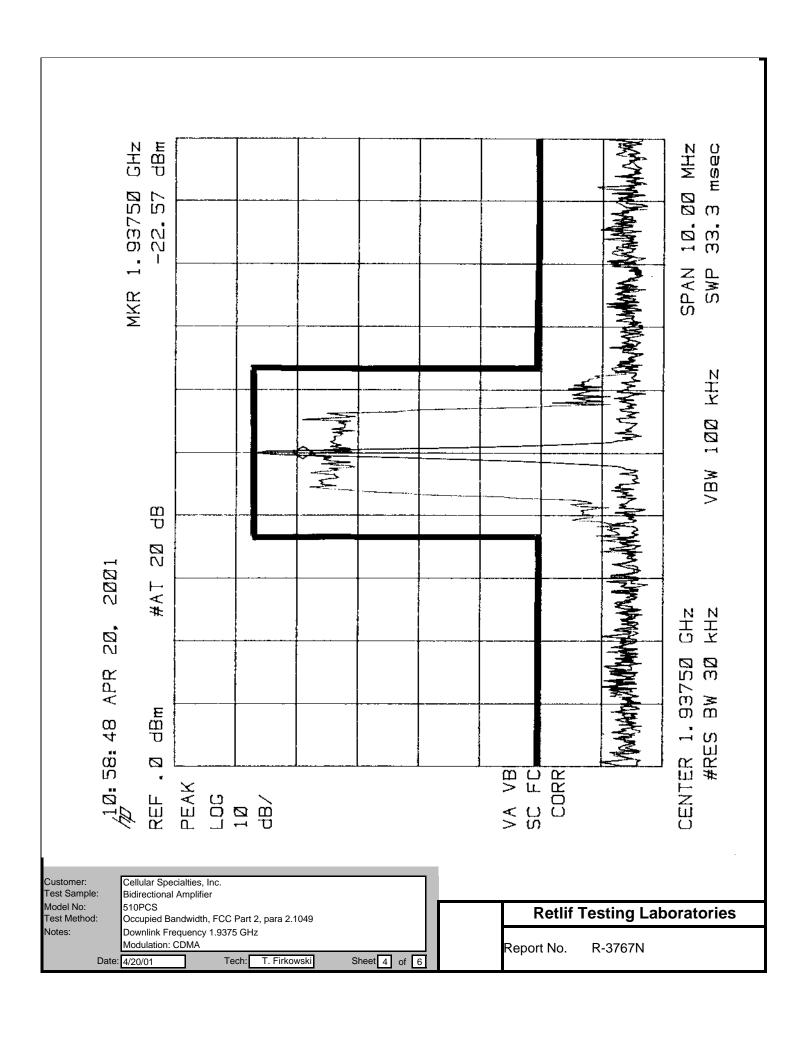
Test Report No. R-3767N FCC ID: NVRCSI510-03

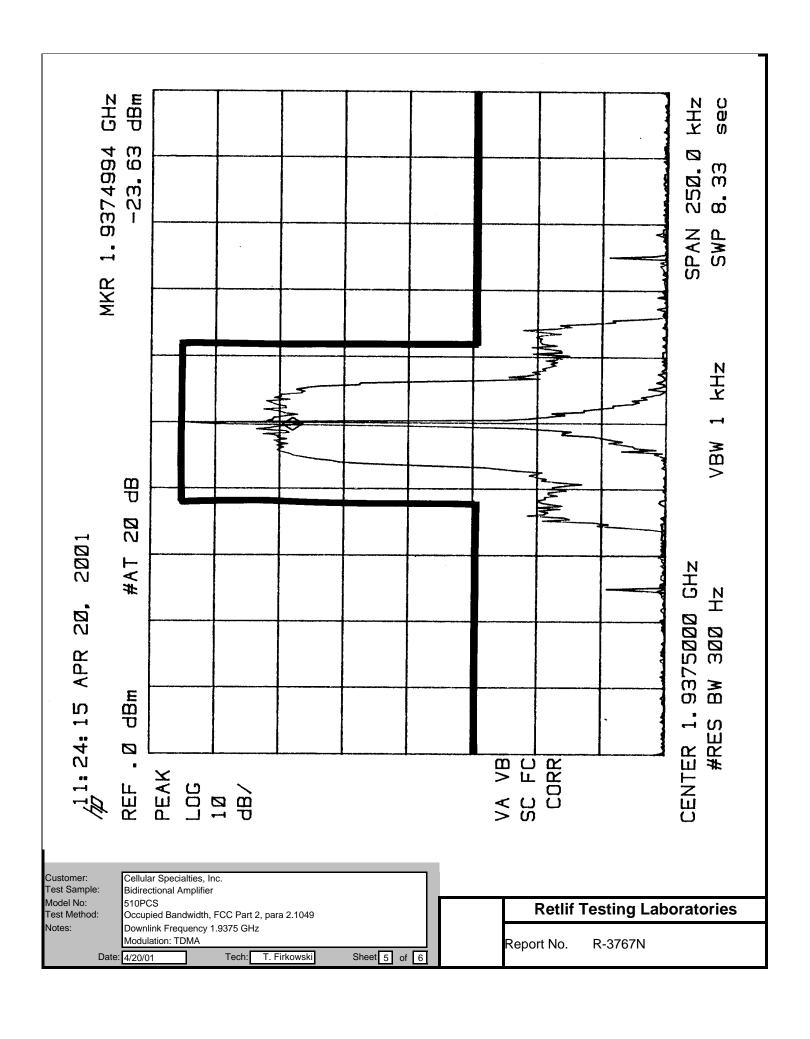
2/23/01

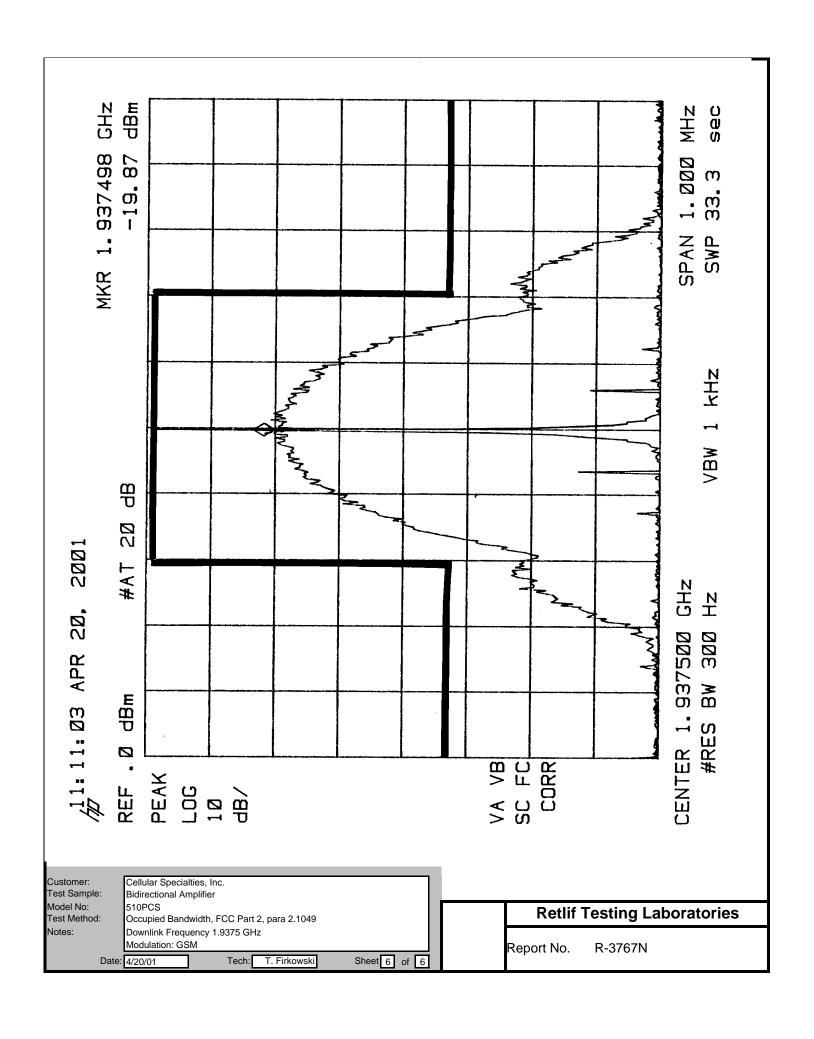

2/23/02

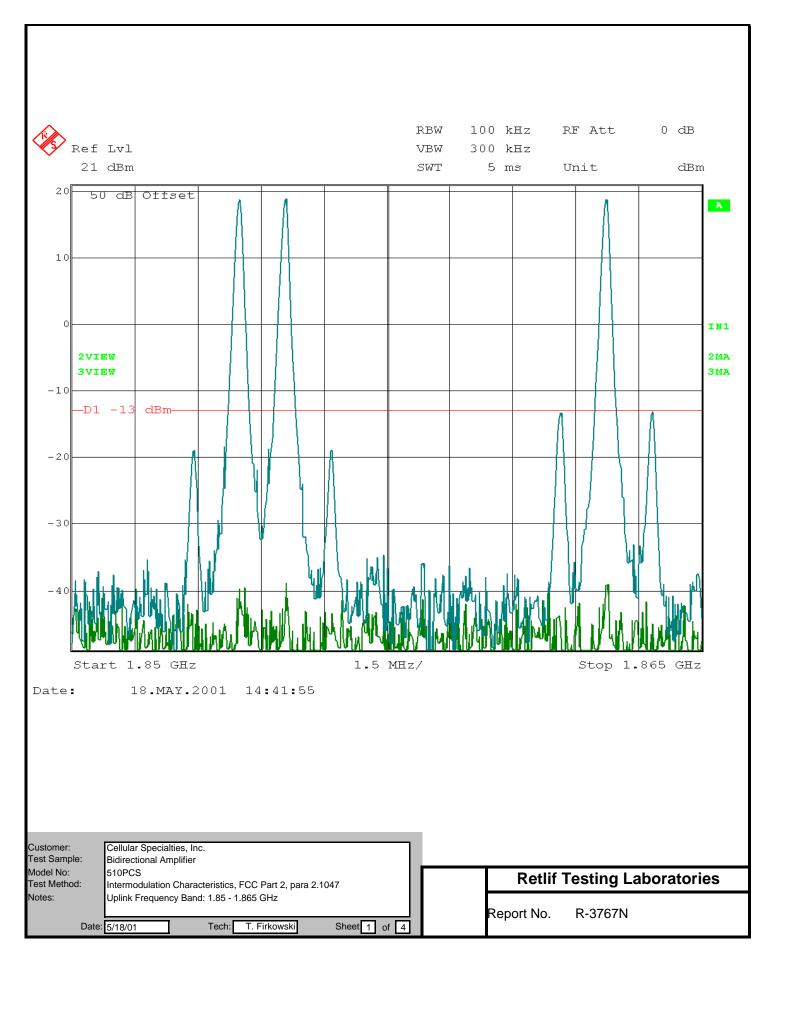

SECTION 3

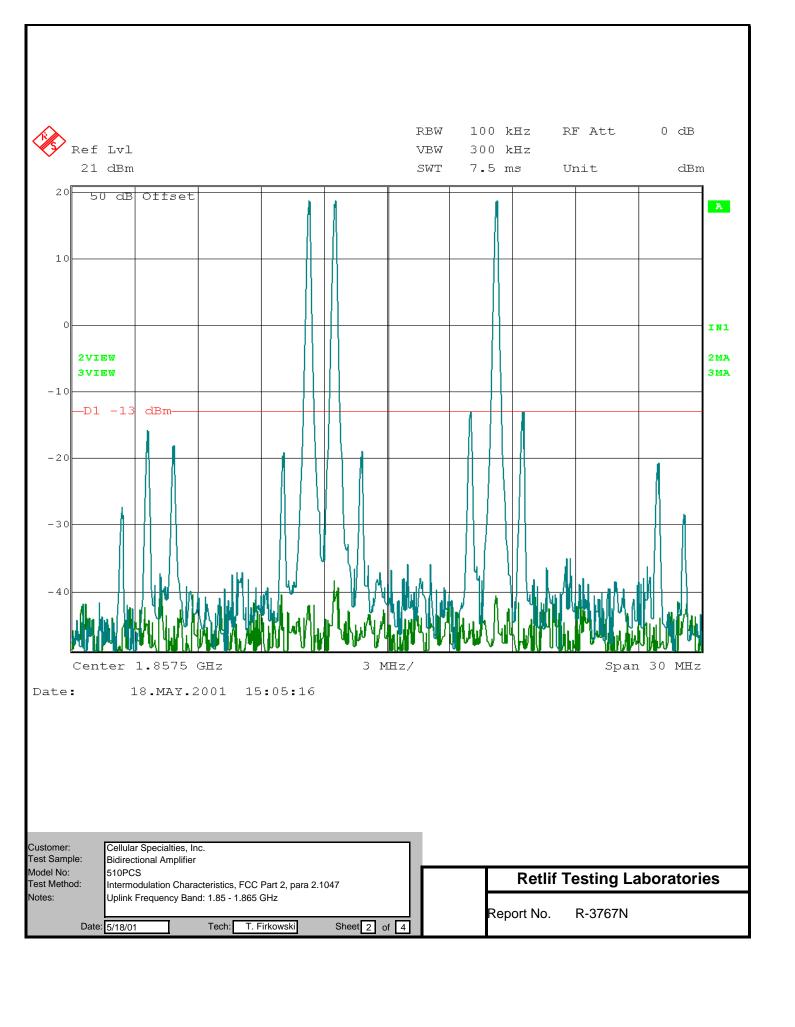

(Continued)

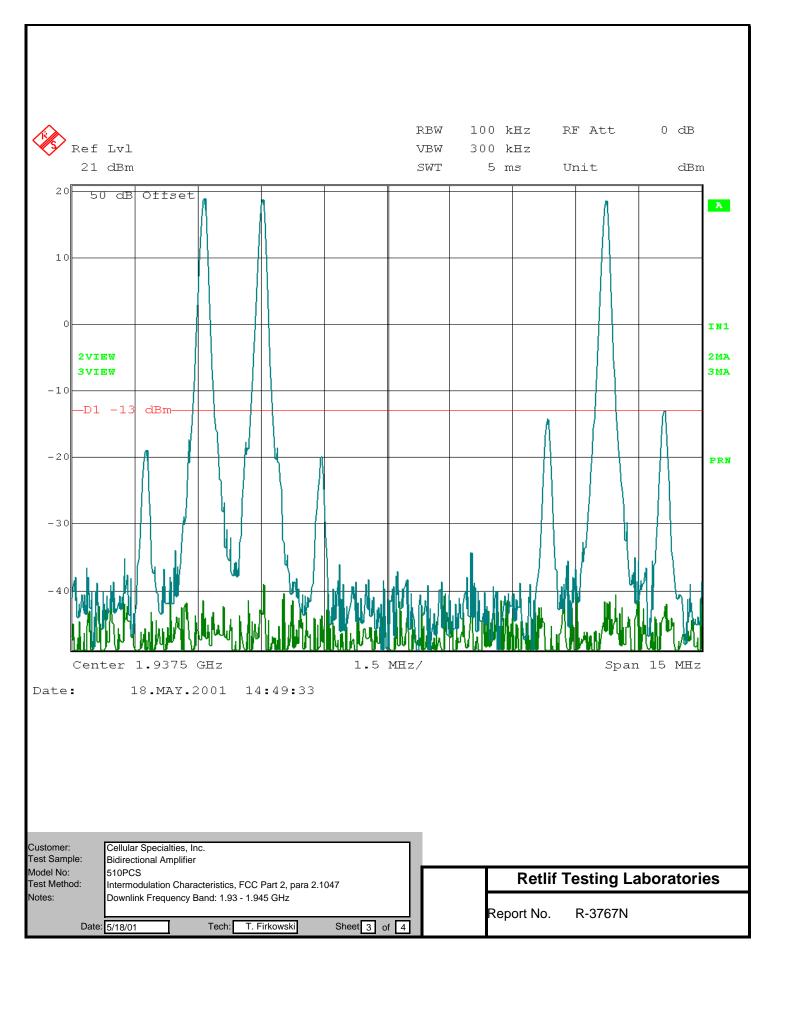

Intermodulation Characteristics

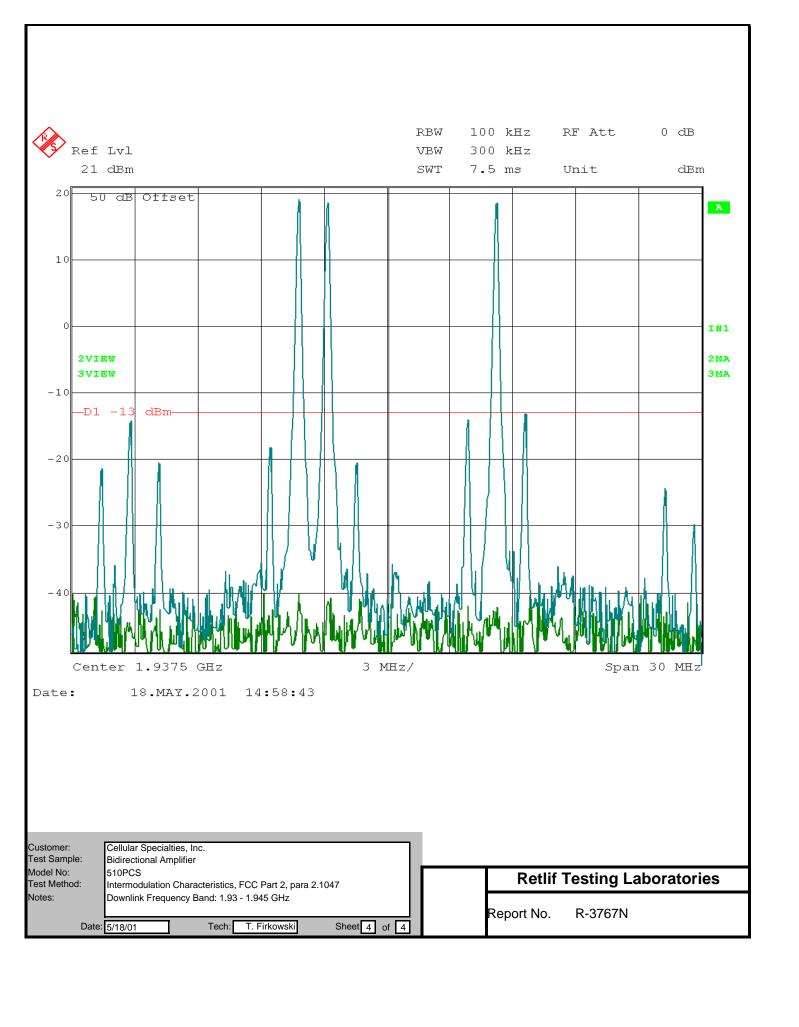

EN	Type	Manufacturer	Description	Model No.	Cal Date	Due Date
3008	Signal Generator	Gigatronics	50 MHz - 18 GHz	900/0.05-18	10/11/00	10/11/01
385	Sweep Oscillator	Hewlett Packard	1.0 - 18.0 GHz	8620C	1/8/01	1/8/02
385B	Signal Generator	Hewlett Packard	.01 - 2.4 GHz	86222B	1/8/01	1/8/02
4963	Attenuator	Hewlett Packard	DC - 18 GHz	8491A	10/19/00	10/19/01
5001	Os cil ato r P lug -In	Hewlett Packard	.01 - 20 GHz	83592A	2/23/01	2/23/02
713	EMI Test Receiver	Rohde & Schwarz	20 Hz - 26.5 GHz	ESI26	5/9/01	5/9/02










		:]	RETLII	F TEST	ING LA	BORA	TORIES	=			
				EMISSIC	NS DATA	A SHEET					
Test Method	:	Spurious Rad	liated Emissior	ns (ERP) 30 M	Hz to 20 GHz						
Customer:		Cellular Spec	ialties, Inc.			Job No:	R-3767N				
Test Sample	:	Bidirectional A	Amplifier								
Model No:		510PCS				Serial No:	PA5100001				
Test Specific	cation:	FCC Part 2.10	053/24.238			-					
Operating M	ode:	Amplifying inp	out signal			Paragraph:	n/a				
Technician:		T. Firkowski				Date:	5/1/01				
Notes:		Uplink Freque	ency Range: 1.	85 - 1.865 GH	z Tested	at 1.8575 GI	Hz				
		Downlink Fred	quency Range	: 1.93 - 1.9450	GHz Tested	at 1.9375 GH	z	Peak Detecto	or		
Test Frequency	Antenna Position	Turntable Position	Meter Reading	Signal Gen Level	Reference Ant Gain				Corrected Reading	Spurious Limit	
MHz	(H/V) - Height	Degrees	dBm	dBm	dBI				dBm	dBm	
30.00	-	-	-	-	-		+ +		- -	-13.00	
I	-	-	-	-	-				-	I	
10000.00	-	-	-	-	-				-	-13.00	
							+				
							1				
							1				
	EUT spurious	emissions we	re not observe	d within 30 dB	of the limit thr	oughout the	given frequency sp	ectrum.			
Data Obic	11011									D 07071	
Data Shee	i i Ul I									R-3767N	

		į	RETLI	F TEST	ING LA	BORA	TORIE	S ≡			
				TABUL	AR DATA	SHEET					
Test Method:		RF Power Output									
Customer:		Cellular Spec	ialties, Inc.			Job No:	R-3767N				
Test Sample	:	Bidirectional	Amplifier			-					
		540000				1	DA5400004				
Model No:		510PCS				Serial No:	PA5100001				
Test Specific	cation:	FCC Part 2				Paragraph:	2.1046				
Operating Mo	ode:	Amplifying input signal									
Technician:		T. Firkowski				Date:	4/17/01				
Notes:		Uplink Freque	ency: 1.85 - 1.	865 GHz		_					
		Downlink Frequency: 1.93 - 1.945GHz									
Test	Power In @	Power	Gain								
Frequency	1dB Compression	Output									
GHz	dBm	dBm	dB								
(Uplink)											
1.8500	-31.36	29.80	61.16								
1.8575	-30.38	31.31	61.69								
1.8650	-27.64	32.43	60.07								
(Downlink)											
1.9300	-30.27	30.98	61.25								
1.9375	-31.25	30.25	61.50	1							
1.9450	-31.24	29.94	61.18	1							
	<u> </u>	 		+			-			 	
		 								1	
							1			1	
		<u> </u>					1				
		1									
]										
	_										
D (0'										L	
Data Shee	t 1 of 1									R-3767N	

RETLIF TESTING LABORATORIES

EMISSIONS DATA SHEET

Test Method: Spurious Emissions at the Antenna Terminals 30 MHz to 20 GHz

Customer: Cellular Specialties, Inc. Job No: R-3767N

Test Sample: Bidirectional Amplifier

Model No: 510PCS Serial No: PA5100001

Test Specification: FCC Part 2

Paragraph: 2.1051

Operating Mode: Amplifying input signal

Technician: T. Firkowski Date: 4/18/01

Notes: Uplink Frequency 1.85 - 1.865 GHz

Downlink Frequency 1.93 - 1.945 GHz

		Downlink Fred	ownlink Frequency 1.93 - 1.945 GHz							
Uplink	Test	Harmonic	Reading	Limit	Downlink	Test	Harmonic	Reading	Limit	
Input Signal	Frequency	Frequencies			Input Signal	Frequency	Frequencies			
dBm	GHz	GHz	dBm	dBm	dBm	GHz	GHz	dBm	dBm	
-30.38	1.8575	1.8575	31.3		-31.25	1.9375	1.9375	30.3		
I	I	3.7150	<-47.0	-13.0	I	I	3.8750	<-47.0	-13.0	
1	I	5.5725	<-47.0	1	I	1	5.8125	<-47.0	I	
1		7.4300	<-39.0	I	I	I	7.7500	<-39.0	I	
1		9.2875	<-39.0	1	I	1	9.6875	<-39.0	1	
I	I	11.1450	<-39.0	1	I	1	11.6250	<-39.0	1	
I	I	13.0025	<-37.0	1	I	1	13.5625	<-37.0	1	
I	I	14.8600	<-37.0	I	I	I	15.5000	<-37.0	I	
I	I	16.7175	<-36.0	I	I	I	17.4375	<-36.0	I	
-30.38	1.8575	18.5750	<-36.0	-13.0	-31.25	1.9375	19.3750	<-36.0	-13.0	

Data Sheet 1 of 1 R-3767N

		=	RETLI	F TEST	ING LA	ABORA	ATORIE	S =				
				EMISSIC	ONS DAT	A SHEET	Γ					
Test Method:		Frequency S	Stability									
Customer:	Customer: Cellular Specialties, Inc.				Job No:	R-3767N						
Test Sample:		Bidirectional	Amplifier									
Model No:		510PCS				Serial No:	PA5100001					
Test Specific	ation:	FCC Part 2				4						
·						Paragraph: 2	2.1055					
Operating Mo	ode:	Amplifying in	Amplifying input signal									
Technician:		T. Firkowski				Date:	4/18/01					
Notes:		Uplink Frequ	encv 1.85 - 1.8	65 GHz								
			Uplink Frequency 1.85 - 1.865 GHz Downlink Frequency 1.93 - 1.945 GHz									
Test	Input	Output	Measured									
Frequency	Power	Power	Frequency									
GHz	dBm	dBm	GHz									
(Uplink)												
1.8575	-30.38	31.87	1.8575									
	-45.38	21.23	1.8574									
	-60.38	6.34	1.8574									
	-90.38	-23.17	1.8573									
(Downlink)												
1.9375	-31.25	30.25	1.9375									
	-46.25	17.75	1.9374									
	-61.25 -91.25	2.57 -24.88	1.9375 1.9374									
	31.20	24.00	1.5574									
							_					
Data Sheet	: 1 of 1									R-3767N		