November 29, 1999

Federal Communications Commission Equipment Approval Services PO Box 358315 Pittsburgh, PA 15251-5315

Dear Sir/Madam:

Enclosed you will find a certification application for a Bidirectional Amplifier, Model No. 310, FCC ID: NVRCSI310-03. Certification is requested under FCC Parts 2 & 90. This application is being filed by Retlif Testing Laboratories on behalf of Cellular Specialties, Inc. The applicable filing fee has been mailed with a hard copy of the FCC Remittance Form 159.

I trust that you will find this application to be complete; however, should you have any questions or require any additional information, please feel free to contact us.

Very truly yours,

RETLIF TESTING LABORATORIES

Terra G. Tarango Publications

Enc. (as stated)

CERTIFICATION APPLICATION

Applicant/Manufacturer:	Cellular Specialties, Inc. 670 North Commercial Street Manchester, NH 03101
Equipment under Test (EUT):	The EUT is an In-Building Bidirectional Amplifier.
FCC ID Number:	FCC ID: NVRCSI310-03
Applicable Test Standard:	FCC Parts 2 & 90 SMR Operations and 90.219 Use of Signal Boosters
EUT Frequency Range: Uplin	k:806 MHz to 821 MHz Downlink: 851 MHz to 866 MHz
EUT Gain:	Uplink:58dB Downlink: 57dB
Measured Power Output @ 1dB Compression Point:	Uplink:+27dBm = 501mW Downlink: +26dBm = 398mW
Protocols used with this device: TDM	A and CDMA
Power Output Rating Using Intermodulation Data (For Certification Grant):	Uplink:378mW Downlink: 300mW
RF Exposure + Antenna Installation:	See Attached Installation/Users Manual and MPE Evaluation
Power Ratings Per Channel:	See Report Section 1
Measurements Required by FCC:	See Report Section 2 (Summary of Test Program) and the following Test Report Data Attachments:
-Frequency S	-RF Power Output -Intermodulation Characteristics -Occupied Bandwidth -Spurious Emissions at Antenna Terminals -Field Strength of Spurious Radiation tability

SECTION 1

ACTUAL POWER RATINGS PER CHANNEL:

# Channels	<u>Uplink (dBm)</u>	Downlink (dBm)
1	25.0	25.0
2	21.0	21.0
3	18.7	18.7
4	17.0	17.0
5	15.7	15.7
6	14.7	14.7
7	13.8	13.8
8	13.0	13.0
9	12.3	12.3
10	11.7	11.7
11	11.2	11.2
12	10.7	10.7
13	10.2	10.2
14	9.8	9.8
15	9.4	9.4
16	9.0	9.0
17	8.6	8.6
18	8.3	8.3
19	8.0	8.0
20	7.7	7.7

SECTION 2 SUMMARY OF TEST PROGRAM

POWER OUTPUT

Measurement Procedure:

The uplink and downlink of the test sample were alternately connected through external attenuators to a spectrum analyzer. Each link had an unmodulated signal sent to the input, resulting in maximum output power.

Frequency (MHz)	Input (dBm)	Output (dBm)
806	-31	27.0
813.5	-31	25.7
821	-31	25.9

DOWNLINK (Power Input @ 1dB Gain Compression Point):

Frequency (MHz)	Input (dBm)	Output (dBm)
851	-31	24.6
858.5	-31	25.9
866	-31	25.2

For complete test data, see electronic Test Report Attachment, **RF Power Output Data**.

INTERMODULATION CHARACTERISTICS

Measurement Procedure:

Three signals were injected, in turn, to the uplink and downlink via a three way power combiner. Two signals were close together and at the low end of the pass band, one signal was close to the high end of the pass band. The output of each signal generator was adjusted so that the intermodulation products (spurs) of the output signals were at least 20dB below the fundamental frequencies and the three output fundamental frequencies were equal in magnitude.

For complete test data, including actual X/Y plots of intermodulation signals, see electronic Test Report Attachment, **Intermodulation Characteristics Data**.

OCCUPIED BANDWIDTH

Measurement Procedure:

The signal generator output was connected to the spectrum analyzer with a power level which was ascertained during the Power Output test. A 16kHz sine wave FM modulation signal was applied to the carrier. This waveform was then noted on an X-Y plot. Next, the signal generator was connected to the EUT and the output of the EUT was connected to the spectrum analyzer. This output waveform was then compared to the input waveform to show that there was no change in the applied signal after amplification. The above procedure was repeated using a 16kHz square wave FM modulation.

For complete test data, see electronic Test Report Attachment, Occupied Bandwidth Data.

ANTENNA CONDUCTED EMISSIONS

Measurement Procedure:

The signal generator output was connected, in turn, to the uplink and downlink ports of the EUT. The EUT was connected to the spectrum analyzer. A swept signal, whose frequency range was the center frequency + and - 22.5MHz, was applied to the EUT with a power level which was ascertained during the Power Output test. The output waveform was noted on an X-Y plot. Per the above setup, a swept signal, whose frequency range was the center frequency + and - 225MHz was applied to the EUT with the same power level as above. The output waveform was noted on an X-Y plot.

For complete test data, including harmonic and spurious emissions measured at antenna terminal, see electronic Test Report Attachment, **Antenna Conducted Data**.

FIELD STRENGTH OF SPURIOUS RADIATION

Measurement Procedure:

The test sample was placed on an 80cm high wooden test stand which was located three meters from the test antenna on an FCC listed test site. The frequency range scanned was from 30 MHz to 9 GHz. After determining the source of highest emissions, emission levels were recorded.

For complete test data, see electronic Test Report Attachment, Radiated Emissions Data.

FREQUENCY STABILITY MEASUREMENTS

Measurement Procedure (Frequency vs. Voltage):

The RF output of the signal generator was connected to the input (uplink and downlink) of the test sample, and the output was connected to a spectrum analyzer. The input signal level was varied. Measurements were taken with the EUT supplied with signals at levels -15, -30, and -60 dB from the maximum input power.

For complete test data, see electronic Test Report Attachment, Frequency Stability Data.

Test Report No. R-3414N1 FCC ID: NVRCSI310-03

SECTION 3 EQUIPMENT LISTS

RF Power Output

<u>EN</u>	Type	Manufacturer	Frequency Range Model 1	No. <u>Cal. D</u>	ate D	Due Date
4894 4895 530A	30 dB Attenuator Tenulin Spectrum Analyzer AM/FM Signal Gen.	Hewlett Packard	8322 9kHz - 22GHz 10kHz - 1.2GHz	10/07/9910/07// 8593EM02/11/9 2023		3/8/00

Intermodulation Characteristics

<u>EN</u>	<u>Type</u>	Manufacturer	Frequency Range Model 1	No. <u>Cal. Da</u>	te <u>Due Da</u>	te
3008	Signal Generator	Gigatronics	50 MHz - 18 GHz	900/0.05-18	10/8/99	10/8/00
3009	Microwave Signal	Hewlett Packard	700 MHz - 2.1 GHz	614a	11/9/98	11/9/99
3130	20 dB Attenuator Narda	DC - 18	GHz 768-20	12/18/9	812/18/99	
4895	Spectrum Analyzer	Hewlett Packard	9kHz - 22GHz	8593EM2/11/99	2/11/00	
530A	AM/FM Signal Generator	Marconi Instru.	10 kHz - 1.2 GHz2023	3/8/99	3/8/00	

Occupied Bandwidth

<u>EN</u>	Type	Manufacturer	Frequency Range Model 1	<u>No.</u> <u>Cal. Da</u>	<u>te</u>	Due Date	2
4895	Spectrum Analyzer	Hewlett Packard	9kHz - 22GHz	8593EM2/11/99		2/11/00	
4961B	Attenuator	Narda	DC-18GHz	757C-30dB	9/2/99		9/2/00
530A	AM/FM Signal Gen.	Marconi Instru.	10kHz - 1.2GHz	2023	3/8/99		3/8/00

Antenna Conducted

<u>EN</u>	<u>Type</u>	Manufacturer	Frequency Range Model 1	<u>No.</u> <u>Cal. Da</u>	ate Due Da	te
3008 3139 4895	Signal Generator 10dB Atten. (50 ohm) Spectrum Analyzer	Gigatronics Narda Hewlett Packard	50 MHz - 18 GHz DC - 5GHz 9kHz - 22GHz	900/0.05-18 768-10 8593EM2/11/99	10/8/99 4/9/99 9 2/11/00	10/8/00 4/9/00

Spurious Radiated Emissions

<u>EN</u>	Type	Manufacturer	Frequency Range Model N	No. <u>Cal. Dat</u>	<u>e</u> <u>Due Da</u>	<u>te</u>
3118	Broadband Pre-Amplifier	Electro-Metrics	10 KHz - 1 GHz	BPA-1000	7/16/99	7/16/00
3139	10 DB Atten. (50 ohm)	Narda	DC - 5 GHz	768-10	4/9/99	4/9/00
3258	Double Ridge Guide	EMCO	1 - 18 GHz	3115	4/7/99	4/7/00
4029	Open Area Test Site	Retlif	3 / 10 Meters	RNH	7/15/99	8/15/99
4202	Biconilog	EMCO	26 MHz - 2 GHz	3142	6/16/99	6/16/00
4895	Spectrum Analyzer	Hewlett Packard	9kHz - 22GHz	8593EM2/11/99	2/11/00	
530A	AM/FM Signal Generator	Marconi Instru.	10 kHz - 1.2 GHz2023	3/8/99	3/8/00	

Frequency Stability

<u>EN</u>	Type	Manufacturer	Frequency Range Model N	No. <u>Cal. Dat</u>	<u>Due Dat</u>	<u>e</u>
4894	30 dB Attenuator Tenulin	eDC-1GHz	8322	10/07/9910/07/0)	
4895	Spectrum Analyzer	Hewlett Packard	9kHz - 22GHz	8593EM02/11/99	901/11/00	
530A	AM/FM Signal Gen.	Marconi Instru.	10kHz - 1.2GHz	2023	3/8/99	3/8/00