Report on the FCC and IC Testing of the dormakaba EAD GmbH Model: 9230-K7 In accordance with FCC 47 CFR Part 15C and ISED Canada RSS-210 and ISED Canada RSS-GEN

Prepared for: dormakaba EAD GmbH Albertistr. 3 78056 Villingen-Schwenningen Germany

FCC ID: NVI-DKAM9230K7 IC: 11038A-DKAM9230K7

COMMERCIAL-IN-CONFIDENCE

Date: 2020-09-21 Document Number: TR-69547-89022-05 | Issue: 03

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Matthias Stumpe	2020-09-22	SIGN-ID 402855
Authorised Signatory	Alex Fink	2020-09-22	Sind SIGN-ID 402861

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15C and ISED Canada RSS-210, ISED Canada RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Testing	Matthias Stumpe	2020-09-22	SIGN-ID 402855
Laboratory Accreditation DAkkS Reg. No. D-PL-113	Laboratory recognition 21-11-02 Registration No. BNetzA-CAB-	ISED Ca 16/21-15 3050A-2	anada test site registration
DAkkS Reg. No. D-PL-113	21-11-03		

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15C, ISED RSS-210, Issue 10 (12-2019) and ISED Canada RSS-GEN:2016, Issue 5 (2019-03).

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2020 TÜV SÜD Product Service.

Our BNetzA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our BNetzA Accreditation. Results of tests not covered by our BNetzA Accreditation Schedule are marked NBA (Not BNetzA Accredited).

Trade Register Munich HRB 85742 VAT ID No. DE129484267 Information pursuant to Section 2(1) DL-InfoV (Germany) at www.tuev-sued.com/imprint Managing Directors: Dr. Peter Havel (CEO) Dr. Jens Butenandt Patrick van Welij Phone: +49 (0) 9421 55 22-0 Fax: +49 (0) 9421 55 22-99 www.tuev-sued.de TÜV SÜD Product Service GmbH

Äußere Frühlingstraße 45 94315 Straubing Germany

TÜV SÜD Product Service

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2	Introduction	2
1.3	Brief Summary of Results	3
1.4	Basic information of EUT	4
1.5	EUT Modification Record	4
1.6	Test Location	6
2	Test Setup	7
2.1	Radiated Emission in Fully or Semi Anechoic Room	7
2.2	Radiated Emission at Alternative Test Site	9
3	Test Details	11
3.1	AC Power Line Conducted Emissions	11
3.2	Occupied Bandwidth	20
3.3	Field Strength of any Emission	23
3.4	Frequency Tolerance Under Temperature and Voltage Variations	
3.5	Exposure of Humans to RF Fields	31
4	Measurement Uncertainty	36
Annex A:	Test Setup Photos	4 pages
Annex B:	External and Internal Photos	5 pages

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	2020-08-11
2	Model number corrected	2020-08-27
3	Model changed from "dormakaba access manager 92 30 Serie K7 MRD" to "9230-K7". EUT Marking Plate added to test report.	2020-09-21

Applicant	dormakaba EAD GmbH
Manufacturer	dormakaba EAD GmbH
Model Number(s)	9230-K7
Serial Number(s)	
Hardware Version(s)	Prototype
Software Version(s)	Prototype
Number of Samples Tested	2
Test Specification/Issue/Date	FCC 47 CFR Part 15C, ISED Canada RSS-210, Issue 10 (12-2019) and ISED Canada RSS-GEN:2016, Issue 5 (2019-03)
Test Plan/Issue/Date	
Order Number Date	203029 2020-05-20
Date of Receipt of EUT	2020-05-22
Start of Test	2020-06-24
Finish of Test	2020-07-22
Name of Engineer(s)	Martin Steindl
Related Document(s)	ANSI C63.10 (2013)

Table 1

1.2 Introduction

Product Service

1.3 Brief Summary

of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15C and ISED Canada RSS-210 and ISED Canada RSS-GEN is shown below.

Section	Specification Clause	Test Description F		Comments/Base Standard			
Configuratio	Configuration and Mode: Continuously reading RFID card						
3.1	15.207, N/A and 8.8	AC Power Line Conducted Emissions	Pass	ANSI C63.10 (2013)			
3.2	15.215 (c); and 6.7	Occupied Bandwidth	Pass	ANSI C63.10 (2013)			
3.3	15.225 (a)(b)(c)(d); B.6; 6.13	Field Strength of any Emission	Pass	ANSI C63.10 (2013)			
3.4	15.225 (e); B.6;	Frequency Tolerance Under Temperature Variations	Pass	ANSI C63.10 (2013)			
3.5	; and 3.2	Exposure of Humans to RF Fields	Pass	IC RSS-102, Issue 5, section 2.5 KDB 447498 D01 General RF Exposure Guidance v06, chapter 4.3.1			

Table 2

1.4 Basic information of EUT

The device is used as an access control center in an access control system.

The access control system is controlled by a system software. Access rights are assigned in the system software and the connected devices are configured. The access rights are saved in the device.

Additional devices are connected to the device. The connected registration units / readers read data from media. The device checks the authorization of the media.

The device supports mobile access. With Mobile Access, smartphones with the dormakaba mobile access app become media.

If a media is authorized, the device grants access.

The door states are recognized and evaluated via the digital inputs of the device.

1.5 EUT Modification Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	As supplied by the customer, S/N: N/A	Not Applicable	Not Applicable

Table 3

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	As supplied by the customer, S/N: 04079231 (antenna port replaced with resistor)	Not Applicable	Not Applicable

Table 4

1.6 EUT Marking Plate

1.7 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing Test Laboratory.

Test Name	Name of Engineer(s)
Configuration and Mode: Continuously reading RFID c	ard
AC Power Line Conducted Emissions	Martin Steindl, M. Stumpe
Occupied Bandwidth	Martin Steindl
Field Strength of any Emission	Martin Steindl
Frequency Tolerance Under Temperature Variations	Martin Steindl
Exposure of Humans to RF Fields	Martin Steindl

Table 5

Office Address:

Äußere Frühlingstraße 45 94315 Straubing Germany

2 Test Setup

2.1 Radiated Emission in Fully or Semi Anechoic Room

Fully or semi anechoic room

Radiated emission in fully or semi anechoic room is measured in the frequency range from 30 MHz to the maximum frequency as specified in CFR 47 Part 15 section 15.33.

Measurements are made in both the horizontal and vertical planes of polarization using a spectrum analyzer with the detector function set to peak and resolution as well as video bandwidth set to 100 kHz (below 1 GHz) or 1 MHz (above 1 GHz).

Testing up to 1 GHz is performed with a linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna"). For testing above 1 GHz horn antennas are used.

All tests below 8.2 GHz are performed at a test distance D of 3 meters. For higher frequencies the test distance may be reduced (e.g. to 1 meter) due to the sensitivity of the measuring instrument(s) and the test results are calculated according to CFR 47 Part 15 section 15.31(f)(1) using an extrapolation factor of 20 dB/decade. If required, preamplifiers are used for the whole frequency range. Special care is taken to avoid overload, using appropriate attenuators and filters, if necessary.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

During testing the EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

For final testing below 1 GHz a semi anechoic room complying with the NSA requirements of ANSI C63.4 for alternative test sites is used (see 2.2). If prescans are recorded in fully anechoic room they are indicated appropriately.

According to section 13 of KDB558074 the requirement for radiated emissions on the band edges was performed with a reduced bandwidth of 100 kHz instead of 1 MHz.

Radiated emission in the frequency range 9 kHz to 30 MHz is measured using an active loop antenna. First the whole spectrum of emission caused by the equipment is recorded at a distance of 3 meters in a fully or semi anechoic room with the detector of the spectrum analyzer or EMI receiver set to peak. This configuration is also used for recording the spectrum of intentional radiators.

Hand-held or body-worn devices are rotated through three orthogonal axes to determine which attitude and configuration produces the highest emission relative to the limit and therefore shall be used for final testing.

EUT is rotated all around to find the maximum levels of emissions. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

If worst case emission of the EUT cannot be recorded with EUT in standard position and loop antenna in vertical polarization the EUT (or the radiating part of the EUT) is rotated by 90 degrees instead of changing the loop antenna to horizontal polarization. This procedure is selected to minimize the influence of the environment (e.g. effects caused by the floor especially with longer distances).

Final measurement is performed at a test distance D of 30 meters using an open field test site. In case the regulation requires testing at other distances, the result is extrapolated by either making measurements at an additional distance D of 10 meters to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). In cases of very low emissions measurements are performed at shorter distances and results are extrapolated to the required distance. The provisions of CFR 47 Part 15 sections 15.31(d) and (f)(2) apply. According to CFR 47 Part 15 section 15.209(d) final measurement is performed with detector function set to quasipeak except for the frequency bands 9 to 90 kHz and 110 to 490 kHz where, for non-pulsed operation, average detector is employed.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

2.2 Radiated Emission at Alternative Test Site

Alternate test site (semi anechoic room)

Radiated emission in the frequency range 30 MHz to 1 GHz is measured within a semi-anechoic room with groundplane complying with the NSA requirements of ANSI C63.4 for alternative test sites. A linear polarized logarithmic periodic antenna combined with a 4:1 broadband dipole ("Trilog broadband antenna") is used. The measurement bandwidth of the test receiver is set to 120 kHz with quasi-peak detector selected.

If the radiated emission limits are expressed in terms of the average value of the emission there also is a peak limit corresponding to 20 dB above the maximum permitted average limit. Additionally, if pulsed operation is employed, the average field strength is determined by averaging over one complete pulse train, including blanking intervals, as specified in CFR 47 Part 15 section 15.35(c). If the pulse train exceeds 0.1 second that 0.1 second interval during which the value of the emission is at its maximum is selected for calculation. The pulse train correction is added to the peak value of the emission to get the average value.

Hand-held or body-worn devices are tested in the position producing the highest emission relative to the limit as verified by prescans in fully anechoic room.

If no prescan in a fully anechoic room is used first a peak scan is performed in four positions to get the whole spectrum of emission caused by EUT with the measuring antenna raised and lowered from 1 to 4 m to find table position, antenna height and antenna polarization for the maximum emission levels. Data reduction is applied to these results to select those levels having less margin than 10 dB to or exceeding the limit using subranges and limited number of maximums. Further maximization is following.

With detector of the test receiver set to quasi-peak final measurements are performed immediately after frequency zoom (for drifting disturbances) and maximum adjustment.

Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

In cases where prescans in a fully anechoic room are taken (e. g. if EUT is operating for a short time only or battery is dircharged quickly) final measurements with quasi-peak detector are performed manually at frequencies indicated by prescan with EUT rotating all around and receiving antenna raising and lowering within 1 meter to 4 meters to find the maximum levels of emission. Equipment and cables are placed and moved within the range of position likely to find their maximum emissions.

For measuring emissions of intentional radiators and receivers a test distance D of 3 meters is selected. Testing of unintentional radiators is performed at a distance of 10 meters. If limits specified for 3 meters shall be used for measurements performed at 10 meters distance the limits are calculated according to CFR 47 Part 15 section 15.31(d) and (f)(1) using an inverse linear-distance extrapolation factor of 20 dB/decade.

3 Test Details

3.1 AC Power Line Conducted Emissions

3.1.1 Specification Reference

FCC 47 CFR Part 15C and ISED Canada RSS-GEN, Clause 15.207 and 8.8

3.1.2 Equipment Under Test and Modification State

9230-K7, S/N: N/A - Modification State 0 9230-K7, S/N: 04079231 - Modification State 0

3.1.3 Date of Test

2020-06-23 and 2020-07-22

3.1.4 Test Method

The EUT was placed on a non-conductive table 0.8m above a reference ground plane and 0.4m away from a vertical coupling plane. All power was connected to the EUT through an Artificial Mains Network (AMN). Conducted disturbance voltage measurements on mains lines were made at the output of the AMN. The AMN was placed 0.8m from the boundary of the EUT and bonded to the reference ground plane.

3.1.5 Environmental Conditions

Ambient Temperature	22.0 °C
Relative Humidity	33.0 %

3.1.6 Test Results

Results for Configuration and Mode: normal operation mode - continuously reading RFID card.

Power supplied by PoE Injector "POE36U-1AT-R" manufactured by PHIHONG.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Line Under Test: AC Mains – L

Final Results :

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Filter	Corr.
MHz	dBµV	dBµV	dBµV	dB	ms	kHz			dB
0.214000		33.52	53.05	19.53	1000.0	9.000	L1	OFF	10.0
0.214000	43.24		63.05	19.81	1000.0	9.000	L1	OFF	10.0
0.278000		37.22	50.88	13.66	1000.0	9.000	L1	OFF	10.0
0.278000	43.18		60.88	17.70	1000.0	9.000	L1	OFF	10.0
0.550000		29.49	46.00	16.51	1000.0	9.000	L1	OFF	10.0
0.554000	40.49		56.00	15.51	1000.0	9.000	L1	OFF	10.0
0.834000	35.43		56.00	20.57	1000.0	9.000	L1	OFF	10.1
1.526000		23.15	46.00	22.85	1000.0	9.000	L1	OFF	10.1
2.058000	30.61		56.00	25.39	1000.0	9.000	L1	OFF	10.1
2.906000	32.02		56.00	23.98	1000.0	9.000	L1	OFF	10.1
3.594000		17.53	46.00	28.47	1000.0	9.000	L1	OFF	10.1
4.622000		13.10	46.00	32.90	1000.0	9.000	L1	OFF	10.2
4.622000	27.36		56.00	28.64	1000.0	9.000	L1	OFF	10.2
10.266000	31.33		60.00	28.67	1000.0	9.000	L1	OFF	10.2
10.270000		21.76	50.00	28.24	1000.0	9.000	L1	OFF	10.2
11.038000		20.29	50.00	29.71	1000.0	9.000	L1	OFF	10.2
11.038000	29.77		60.00	30.23	1000.0	9.000	L1	OFF	10.2
11.810000	33.16		60.00	26.84	1000.0	9.000	L1	OFF	10.2
11.810000		23.42	50.00	26.58	1000.0	9.000	L1	OFF	10.2
12.066000	34.04		60.00	25.96	1000.0	9.000	L1	OFF	10.2
12.066000		25.28	50.00	24.72	1000.0	9.000	L1	OFF	10.2
12.322000	35.04		60.00	24.96	1000.0	9.000	L1	OFF	10.2
12.322000		23.38	50.00	26.62	1000.0	9.000	L1	OFF	10.2
12.578000	36.87		60.00	23.13	1000.0	9.000	L1	OFF	10.2
12.578000		26.74	50.00	23.26	1000.0	9.000	L1	OFF	10.2
12.834000	37.16		60.00	22.84	1000.0	9.000	L1	OFF	10.2
12.834000		29.24	50.00	20.76	1000.0	9.000	L1	OFF	10.2
13.090000	37.18		60.00	22.82	1000.0	9.000	L1	OFF	10.2

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Filter	Corr.
MHz	dBµV	dBµV	dBµV	dB	ms	kHz			dB
13.090000		29.86	50.00	20.14	1000.0	9.000	L1	OFF	10.2
13.350000	37.67		60.00	22.33	1000.0	9.000	L1	OFF	10.2
13.350000		29.77	50.00	20.23	1000.0	9.000	L1	OFF	10.2
13.562000		60.28	50.00	-10.28	1000.0	9.000	L1	OFF	10.2
13.562000	62.08		60.00	-2.08	1000.0	9.000	L1	OFF	10.2
13.606000		28.23	50.00	21.77	1000.0	9.000	L1	OFF	10.2
13.606000	33.85		60.00	26.15	1000.0	9.000	L1	OFF	10.2
18.482000		17.46	50.00	32.54	1000.0	9.000	L1	OFF	10.3

Line Under Test: AC Mains - N

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Filter	Corr.
MHz	dBµV	dBµV	dBµV	dB	ms	kHz			dB
0.210000		41.27	53.21	11.94	1000.0	9.000	Ν	OFF	10.0
0.210000	45.33		63.21	17.88	1000.0	9.000	Ν	OFF	10.0
0.278000		38.31	50.88	12.57	1000.0	9.000	Ν	OFF	10.0
0.278000	44.40		60.88	16.48	1000.0	9.000	Ν	OFF	10.0
0.550000	43.19		56.00	12.81	1000.0	9.000	Ν	OFF	10.0
0.554000		35.13	46.00	10.87	1000.0	9.000	Ν	OFF	10.0
0.830000	40.01		56.00	15.99	1000.0	9.000	Ν	OFF	10.1
0.830000		30.44	46.00	15.56	1000.0	9.000	Ν	OFF	10.1
1.254000	35.95		56.00	20.05	1000.0	9.000	Ν	OFF	10.1
1.254000		22.24	46.00	23.76	1000.0	9.000	Ν	OFF	10.1
3.586000		26.49	46.00	19.51	1000.0	9.000	Ν	OFF	10.1
4.610000	33.25		56.00	22.75	1000.0	9.000	Ν	OFF	10.2
4.610000		29.11	46.00	16.89	1000.0	9.000	Ν	OFF	10.2
10.238000	43.16		60.00	16.84	1000.0	9.000	Ν	OFF	10.2
10.238000		36.10	50.00	13.90	1000.0	9.000	Ν	OFF	10.2
11.006000		35.57	50.00	14.43	1000.0	9.000	Ν	OFF	10.2
11.774000	46.63		60.00	13.37	1000.0	9.000	Ν	OFF	10.2
11.774000		35.40	50.00	14.60	1000.0	9.000	Ν	OFF	10.2
12.030000		30.90	50.00	19.10	1000.0	9.000	Ν	OFF	10.2
12.030000	43.22		60.00	16.78	1000.0	9.000	Ν	OFF	10.2
12.286000		29.88	50.00	20.12	1000.0	9.000	Ν	OFF	10.2
12.290000	33.55		60.00	26.45	1000.0	9.000	Ν	OFF	10.2
12.542000		35.02	50.00	14.98	1000.0	9.000	Ν	OFF	10.2
12.542000	48.88		60.00	11.12	1000.0	9.000	Ν	OFF	10.2
12.798000	47.38		60.00	12.62	1000.0	9.000	N	OFF	10.2
12.798000		33.43	50.00	16.57	1000.0	9.000	N	OFF	10.2
13 054000		31.80	50 00	18 20	1000.0	9 000	N	OFF	10.2

Final Results:

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Filter	Corr.
MHz	dBµV	dBµV	dBµV	dB	ms	kHz			dB
13.054000	44.00		60.00	16.00	1000.0	9.000	Ν	OFF	10.2
13.310000	45.55		60.00	14.45	1000.0	9.000	Ν	OFF	10.2
13.310000		32.16	50.00	17.84	1000.0	9.000	Ν	OFF	10.2
13.482000	37.98		60.00	22.02	1000.0	9.000	Ν	OFF	10.2
13.558000		60.65	50.00	-10.65	1000.0	9.000	Ν	OFF	10.2
13.558000	63.06		60.00	-3.06	1000.0	9.000	Ν	OFF	10.2
13.566000		50.73	50.00	-0.73	1000.0	9.000	N	OFF	10.2
18.430000		18.17	50.00	31.83	1000.0	9.000	N	OFF	10.3

Line Under Test: AC Mains - L (antenna port replaced with resistor)

Final Results:

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Filter	Corr.
MHz	dBµV	dBµV	dBµV	dB	ms	kHz			dB
4.778000		33.00	46.00	13.00	1000.0	9.000	L1	ON	10.3
13.802000		23.13	50.00	26.87	1000.0	9.000	L1	ON	10.3
14.598000		27.95	50.00	22.05	1000.0	9.000	L1	ON	10.3
14.862000		27.62	50.00	22.38	1000.0	9.000	L1	ON	10.3
15.130000		23.47	50.00	26.53	1000.0	9.000	L1	ON	10.3

Line Under Test: AC Mains - N (antenna port replaced with resistor)

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Filter	Corr.
MHz	dBµV	dBµV	dBµV	dB	ms	kHz			dB
0.218000		45.21	52.90	7.69	1000.0	9.000	N	ON	10.0
0.290000		41.62	50.52	8.91	1000.0	9.000	N	ON	10.0
0.582000		36.44	46.00	9.56	1000.0	9.000	N	ON	10.0
4.766000		36.66	46.00	9.34	1000.0	9.000	N	ON	10.3
13.766000		39.96	50.00	10.04	1000.0	9.000	N	ON	10.3
14.562000		38.65	50.00	11.35	1000.0	9.000	N	ON	10.3
14.826000		40.65	50.00	9.35	1000.0	9.000	N	ON	10.3
15.090000		37.94	50.00	12.06	1000.0	9.000	N	ON	10.3

Final Results:

FCC 47 CFR Part 15, Limit Clause 15.207 and ISED Canada RSS-GEN, Limit Clause 8.8

Frequency of Emission (MHz)	Conducted Limit (dBµV)				
	Quasi-Peak	Average			
0.15 to 0.5	66 to 56*	56 to 46*			
0.5 to 5	56	46			
5 to 30	60	50			

Table 6

*Decreases with the logarithm of the frequency.

3.1.7 Test Location and Test Equipment Used

This test was carried out in Shielded room - cabin no. 4.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due
EMI test receiver	Rohde & Schwarz	ESU8	19904	12	2021-01-31
Artificial mains network	Rohde & Schwarz	ENV216	39910	12	2021-02-29
EMC measurement software	Rohde & Schwarz	EMC32 Emission K9 - V9.26.01	20090		
Shielded room	Euroshield	Cabin no. 4	19314		

Table 7

TU - Traceability Unscheduled O/P Mon – Output Monitored using calibrated equipment N/A - Not Applicable

3.2 Occupied Bandwidth

3.2.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.215 (c), ISED RSS-GEN, Issue 9, Section 6.7

3.2.2 Equipment Under Test and Modification State

9230-K7, S/N: N/A - Modification State 0

3.2.3 Date of Test

2020-06-24

3.2.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.9.1.

3.2.5 Environmental Conditions

Ambient Temperature23.0 °CRelative Humidity36.0 %

3.2.6 Test Results

Frequency (MHz)	20 dB Bandwidth (kHz)	99% Occupied Bandwidth (kHz)	F _{LOWER} (MHz)	F _{UPPER} (MHz)
13.56	277.8	464.21	13.4221	13.6999

Table 8

09:20:42 14.06.2020

05:17:11 14.06.1010

FCC 47 CFR Part 15, Limit Clause 15.215 (c)

The 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

ISED RSS 210 and ISED RSS GEN, Limit Clause

Not specified

3.2.7 Test Location and Test Equipment Used

This test was carried out in Non shielded room.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due
Spectrum Analyzer	Rohde & Schwarz	ESW44	39387	12	2021-03-31

Table 9

TU - Traceability Unscheduled O/P Mon – Output Monitored using calibrated equipment N/A - Not Applicable

3.3 Field Strength of any Emission

3.3.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.225 (a)(b)(c)(d); and ISED RSS-210; Clause B.1 to B.9 and ISED RSS-GEN, clause 6.4 and 6.5.

3.3.2 Equipment Under Test and Modification State

9230-K7, S/N: N/A - Modification State 0

3.3.3 Date of Test

2020-06-24

3.3.4 Test Method

See section 2.1 of this test report for details.

3.3.5 Environmental Conditions

Ambient Temperature	22.0 °C
Relative Humidity	32.0 %

3.3.6 Test Results

Continuously reading RFID card

Final Results:

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
				-	Time					
MHz	dBµV/m	dBµV/m	dBµV/m	dB	ms	kHz	ст		deg	dB/m
13.560000	79.68		124.00	44.32	1000.0	9.000	100.0	V	-99.0	18.8

Frequency	Detector	Dista	ance	Reading	Correction	Extrapolation	Pulse Train	Final	Limit	Margin
		d1	d	Value	Factor	Factor	Correction	Value		
(MHz)		(m)	(m)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
13,56000	Quasi-Peak	3	30	60,9	18,8	-40,0		39,7	84,0	44,3

Table 10 - Emissions Results – 9 kHz to 30 MHz

Final Value (dBµV/m)	=	Reading Value (dBµV) + Cable Correction Factor (dB)
		 + Antenna Correction Factor (dB/m)
		+ Pulse Train Correction (dB)

				Filldi Ke	suits.				
Frequency	QuasiPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
				Time					
MHz	dBµV/m	dBµV/m	dB	ms	kHz	ст		deg	dB/m
40.680000	30.69	40.00	9.31	1000.0	120.000	100.0	V	-30.0	19.9
67.800000	29.02	40.00	10.98	1000.0	120.000	396.0	Н	189.0	14.6
83.250000	31.20	40.00	8.80	1000.0	120.000	105.0	V	9.0	16.5
86.010000	28.54	40.00	11.46	1000.0	120.000	113.0	V	-180.0	16.7
135.390000	24.80	43.50	18.70	1000.0	120.000	135.0	V	240.0	16.9
149.970000	26.23	43.50	17.27	1000.0	120.000	128.0	V	62.0	16.0
249.990000	40.09	46.02	5.93	1000.0	120.000	111.0	V	180.0	17.7
349.980000	37.60	46.02	8.42	1000.0	120.000	102.0	Н	133.0	20.5
449.970000	37.40	46.02	8.62	1000.0	120.000	128.0	V	37.0	22.7

1000.0

1000.0

120.000

120.000

Final Results:

649.980000

894.960000

33.12

34.68

46.02

46.02

12.90

11.34

V

V

9.0

-136.0

26.1

28.8

153.0

112.0

FCC 47 CFR Part 15, Limit Clause 15.225 (a)(b)(c)(d)

(a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 m.

(b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 m.

(c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 m.

(d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 to 0.490	2400/F (kHz)	300
0.490 to 1.705	24000/F (kHz)	30
1705 to 30	30	30
30 to 88	100**	3
88 to 216	150**	3
216 to 960	200**	3
Above 960	500	5

FCC 47 CFR Part 15, Limit Clause 15.209

Table 10 - FCC Radiated Emission Limit

ISED RSS-210, Limit Clause B.6

The field strength of any emission shall not exceed the following limits:

(a) 15.848 mW/m (84 dBµV/m) at 30 m, within the band 13.553 - 13.567 MHz.

(b) 334 $\mu V/m$ (50.5 dB $\mu V/m)$ at 30 m, withing the bands 13.410 - 13.553 MHz and 13.567 - 13.710 MHz.

(c) 106 $\mu V/m$ (40.5 dB $\mu V/m$) at 30 m, within the bands 13.110 - 13.410 MHz and 13.710 - 14.010 MHz.

(d) RSS-GEN general field strength limits for frequencies outside the band 13.110 – 14.010 MHz.

ISED RSS-GEN, Limit Clause

Frequency	Electric Field Strength $(\mu V/m)$	Magnetic Field Strength (H- Field) (µA/m)	Measurement Distance (m)
9 - 490 kHz	2,400/F (F in kHz)	2,400/377F (F in kHz)	300
490 - 1,705 kHz	24,000/F (F in kHz)	24,000/377F (F in kHz)	30
1,705 kHz - 30 MHz	30	N/A	30

Table 11 - ISED Radiated Emission Limit - Less than 30 MHz

Frequency (MHz)	Field Strength (μV/m at 3 m)
30 - 88	100
88 - 216	150
216 - 960	200
> 960	500

Table 12 - ISED Radiated Emission Limit - 30 MHz to 1 GHz

3.3.7 Test Location and Test Equipment Used

Radiated Tests were carried out in FAR No.11

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due
EMI test receiver	Rohde & Schwarz	ESW44	39897	12	2021-03-31
Loop antenna	Schwarzbeck	FMZB 1519 B	44334	36	2023-01-31
ULTRALOG Antenna	Rohde & Schwarz	HL562E	39969	36	2022-11-30
EMC measurement software	Rohde & Schwarz	EMC32 Emission K11 - V10.50.10	42986		
Semi Anechoic Room	Frankonia	Cabin No. 11	42961	36	2022-08-31

Table 13

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment N/A - Not Applicable

3.4 Frequency Tolerance Under Temperature and Voltage Variations

3.4.1 Specification Reference

FCC 47 CFR Part 15C, ISED RSS-210 and ISED RSS-GEN, Clause 15.225 (e), B.1 to B.9 and 6.11.

3.4.2 Equipment Under Test and Modification State

9230-K7 S/N: N/A - Modification State 0

3.4.3 Date of Test

2020-06-25

3.4.4 Test Method

3.4.5 Environmental Conditions

Ambient Temperature23.0 °CRelative Humidity33.0 %

3.4.6 Test Results

Temperature	Voltage	Measured Frequency (MHz)	Frequency Deviation (Hz)	Frequency Error (ppm)
-20.0 °C	120 V AC	13.56010710	52.1	3.84
-10.0 °C	120 V AC	13.56011290	57.9	4.27
0.0 °C	120 V AC	13.56009260	37.6	2.77
+10.0 °C	120 V AC	13.56005790	2.9	0.21
+20.0 °C	120 V AC	13.56005500	0.0	0.00
+30.0 °C	120 V AC	13.55995950	-95.5	-7.04
+40.0 °C	120 V AC	13.55991320	-141.8	-10.46
+50.0 °C	120 V AC	13.55987550	-179.5	-13.24

Table 14 - Frequency Tolerance Under Temperature Variation

Temperature	Voltage	Measured Frequency (MHz)	Frequency Deviation (Hz)	Frequency Error (ppm)
+20.0 °C	102 V AC	13.56005500	0.0	0.00
+20.0 °C	120 V AC	13.56005500	0.0	0.00
+20.0 °C	138 V AC	13.56005500	0.0	0.00

Table 15 - Frequency Tolerance Under Voltage Variation

FCC 47 CFR Part 15, Limit Clause 15.225 (e)

The frequency tolerance of the carrier signal shall be maintained within \pm 0.01 % of the operating frequency.

ISED RSS-210, Limit Clause B.6

Carrier frequency stability shall be maintained to ±0.01% (±100 ppm)

3.4.7 Test Location and Test Equipment Used

This test was carried out in Non shielded room.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Due
Spectrum Analyzer	Rohde & Schwarz	FSV40	20219	12	2021-01-31
Climatic test chamber	Feutron	KPK200-2	19868	36	2021-08-31

Table 16

TU - Traceability Unscheduled O/P Mon – Output Monitored using calibrated equipment N/A - Not Applicable

3.5 Exposure of Humans to RF Fields

3.5.1 Specification Reference

IC RSS-GEN Issue 5, section 3.2 and IC RSS-102, Issue 5, section 2.5 KDB 447498 D01 General RF Exposure Guidance v06, chapter 4.3.1

3.5.2 Equipment Under Test and Modification State

9230-K7, S/N: N/A - Modification State 0

3.5.3 Date of Test

2020-03-20

3.5.4 **Test Results**

acc. to KDB 447498 D01:

Maximum Radiated Power (EIRP) Pmax:

Compliance Boundary d: Frequency f:

0.497 mW (see section 3.3 for measurement) 5 mm 13.56 MHz

Calculation according to Section 4.3.1

- 1. $\frac{1}{2}\left[1 + \log\left(\frac{100}{100}\right)\right] * \left[\left((Power allowed at numeric threshold for 50 mm in step a)\right) + \right]$ $(50mm - 50mm) * \left(\frac{100}{150}\right)$
- 2. $\frac{1}{2}[1+0] * \left[(Power allowed at numeric threshold for 50 mm in step a) + 0 * \left(\frac{100}{150} \right) \right]$
- 3. $\frac{1}{2}$ [Power allowed at numeric threshold for 50 mm in step a]

4.
$$\frac{2 \max power}{1} * \sqrt{f} \le 3.0$$

4. $\frac{\max power}{\min distance} * \sqrt{f} \le 3.0$ 5. $\max power \le \frac{3.0 * \min distance}{\sqrt{f}}$ 6. $\max power \le \frac{3.0 * 50 mm}{\sqrt{0.1GHz}} = 474 mW$

- 7. $\frac{1}{2} * 474 \ mW = 237 \ mW \rightarrow$ maximal allowed Power
- 8. $0.497 \text{ mW} < 237 \text{ mW} \rightarrow \text{criteria fulfilled}$

IC RSS-GEN Issue 5, section 3.2 and IC RSS-102, Issue 5, section 2.5

Exposure of Humans to RF Fields	Applicable	Declared by applicant	Measured	Exemption
The antenna is				
The conducted output power (CP in watts) is measured at the antenna connector: $CP =$				
The effective isotropic radiated power (EIRP in watts) is calculated using				
$\Box \qquad \text{the numerical antenna gain:} \qquad G =$				
$EIRP = G \cdot CP \Longrightarrow EIRP =$				
$\Box \qquad \text{the field strength}^1 \text{ in V/m:} \qquad FS = \dots V/m$				
$EIRP = \frac{(FS \cdot D)^2}{30} \Longrightarrow EIRP = mW$				
with:				
Distance between the antennas in m: $D = mm$				
I not detachable				
A field strength measurement is used to determine the effective isotropic radiated power (EIRP in watts) given by:				
$EIRP = \frac{(FS \cdot D)^2}{30} \Longrightarrow EIRP = 0.497 \text{ mW}$				
with:				
Field strength in V/m: $FS = 79.68 \text{ dB}\mu\text{V/m}$ $= 40.7 \text{ mV/m} = 0.0407 \text{ V/m}$			\boxtimes	
Distance between the two antennas in m: $D = 3 \text{ m}$			\boxtimes	
Selection of output power				
The output power TP is the higher of the conducted or effective isotropic radiated power (e.i.r.p.):				
TP = 0.497 mW				

COMMERCIAL-IN-CONFIDENCE

¹ The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses. If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.

Exposure of Humans to R	Applicable	Declared by applicant	Measured	Exemption	
Separation distance between the user and the tr	ransmitting device is			-	
\boxtimes less than or equal to 20 cm	greater than 20 cm		\square		
Transmitting device is					
in the vicinity of the human head	body-worn				

SAR evaluation	on											
SAR evaluation of equal to 2 output power separation of For controlle exemption I 5. For limber limits for rout operating from the SAR evaluation is For medical at 1 mW. The higher of the from the SAR evaluation for the same the SAR evaluation is for medical at 1 mW. The higher of the from the SAR evaluation for the same	tion is nd the 20 cm, er level distance ed use imits fo worn de utine ev equence interpo or test s n distar s requil implar ne outp e condu	require antenn except (adjust e define devices or routin evices valuatio cy of the olation separat nce of 5 red. nts devi ut powe	d if the a and/o when the ed for ed in the s where e evalu where the o a device shall be ion dist o mm ca ces, the er of a r e.i.r.p	separa or radia the dev tune-up e table e the 8 uation i the 10 e table e is be e applie an be a e exen medica	ation di ating el vice opo p tolera b volera p tolera volera w/kg f in the ta gram v are mu tween to are mu tween to are mu tween to as that applied applied anotion I al impla ermine	stance ement erates ance) fo for 1 gr able are alue ap ultiplied two free he app in 5 mr to dete imit for ants de wheth	betwee of the c at or be or the s am of t e multip oplies, f loy a fa quencie licable n, the e ermine	en the device i device i device i pecified issue a blied by the exe actor of es locat separa exempti if a rou e evalua defined	user ar is less t e applie d pplies, v a facto mption 2.5. If ted in the tion ion limit tine ation is l as the s exem	than cable the or of the ts for set		
Frequency		Ex	emptior	n limits (mW) ² a	t separa	tion dist	ance of				
(MHZ)	≤5 mm	10 mm	15 mm	20 mm	25 mm	30 mm	35 mm	40 mm	45 mm	≥50 mm		
450	52	70	88	106	123	141	159	177	195	213		
835	17	30	42	55	67	80	92	105	117	130		
1900	7	10	18	34	60	99	153	225	316	431		
2450	4	7	15	30	52	83	123	173	235	309		
3500	2	6	16	32	55	86	124	170	225	290		
5800	1	6	15	27	41	56	71	85	97	106		
Carrier fre	equency	:	f	= 1	3.56 MH	lz						
Distance:			d	= 5	mm						\square	
Transmitt	er outpu	it power:	TP	= 0	.497 mV	V						
Limit:			TP _{limi}	it = 5	2 mW							\boxtimes

² The excemption limit in the table are based on measurements and simulations on half-wave dipole antennas at separaton distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from a linear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from a third order polynomial fit.

4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Radio Testing									
Test Name	kp	Expanded Uncertainty	Note						
Occupied Bandwidth	2.0	±1.14 %	2						
RF-Frequency error	1.96	±1 · 10-7	7						
RF-Power, conducted carrier	2	±0.079 dB	2						
RF-Power uncertainty for given BER	1.96	+0.94 dB / -1.05	7						
RF power, conducted, spurious emissions	1.96	+1.4 dB / -1.6 dB	7						
RF power, radiated									
25 MHz – 4 GHz	1.96	+3.6 dB / -5.2 dB	8						
1 GHz – 18 GHz	1.96	+3.8 dB / -5.6 dB	8						
18 GHz – 26.5 GHz	1.96	+3.4 dB / -4.5 dB	8						
40 GHz – 170 GHz	1.96	+4.2 dB / -7.1 dB	8						
Spectral Power Density, conducted	2.0	±0.53 dB	2						
Maximum frequency deviation									
300 Hz – 6 kHz	2	±2,89 %	2						
6 kHz – 25 kHz	2	±0.2 dB	2						
Maximum frequency deviation for FM	2	±2,89 %	2						
Adjacent channel power 25 MHz – 1 GHz	2	±2.31 %	2						
Temperature	2	±0.39 K	4						
(Relative) Humidity	2	±2.28 %	2						
DC- and low frequency AC voltage									
DC voltage	2	±0.01 %	2						
AC voltage up to 1 kHz	2	±1.2 %	2						
Time	2	±0.6 %	2						

Table 17

Radio Interference Emission Testing			
Test Name	kp	Expanded Uncertainty	Note
Conducted Voltage Emission			
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB	1
150 kHz to 30 MHz (50Ω/50µH AMN)	2	± 3.4 dB	1
100 kHz to 200 MHz (50Ω/5µH AMN)	2	± 3.6 dB	1
Discontinuous Conducted Emission			
9 kHz to 150 kHz (50Ω/50μH AMN)	2	± 3.8 dB	1
150 kHz to 30 MHz (50Ω/50µH AMN)	2	± 3.4 dB	1
Conducted Current Emission			
9 kHz to 200 MHz	2	± 3.5 dB	1
Magnetic Fieldstrength			
9 kHz to 30 MHz (with loop antenna)	2	± 3.9 dB	1
9 kHz to 30 MHz (large-loop antenna 2 m)	2	± 3.5 dB	1
Radiated Emission			
Test distance 1 m (ALSE)			
9 kHz to 150 kHz	2	± 4.6 dB	1
150 kHz to 30 MHz	2	± 4.1 dB	1
30 MHz to 200 MHz	2	± 5.2 dB	1
200 MHz to 2 GHz	2	± 4.4 dB	1
2 GHz to 3 GHz	2	± 4.6 dB	1
Test distance 3 m			
30 MHz to 300 MHz	2	± 4.9 dB	1
300 MHz to 1 GHz	2	± 5.0 dB	1
1 GHz to 6 GHz	2	± 4.6 dB	1
Test distance 10 m			
30 MHz to 300 MHz	2	± 4.9 dB	1
300 MHz to 1 GHz	2	± 4.9 dB	1
Radio Interference Power			
30 MHz to 300 MHz	2	± 3.5 dB	1
Harmonic Current Emissions			4
Voltage Changes, Voltage Fluctuations and Flicker			4

Table 18

Immunity Testing				
Test Name	kp	Expanded Uncertainty	Note	
Electrostatic Discharges			4	
Radiated RF-Field				
Pre-calibrated field level	2	+32.2 / -24.3 %	5	
Dynamic feedback field level	2.05	+21.2 / -17.5 %	3	
Electrical Fast Transients (EFT) / Bursts			4	
Surges			4	
Conducted Disturbances, induced by RF-Fields				
via CDN	2	+15.1 / -13.1 %	6	
via EM clamp	2	+42.6 / -29.9 %	6	
via current clamp	2	+43.9 / -30.5 %	6	
Power Frequency Magnetic Field	2	+20.7 / -17.1 %	2	
Pulse Magnetic Field			4	
Voltage Dips, Short Interruptions and Voltage Variations			4	
Oscillatory Waves		а	4	
Conducted Low Frequency Disturbances				
Voltage setting	2	± 0.9 %	2	
Frequency setting	2	± 0.1 %	2	
Electrical Transient Transmission in Road Vehicles			4	

Table 19

Note 1:

The expanded uncertainty reported according to CISPR 16-4-2:2003-11 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45% Note 2:

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1, 2002-08) is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45%

Note 3:

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1, 2002-08) is based on a standard uncertainty multiplied by a coverage factor of kp = 2.05, providing a level of confidence of p = 95.45%

Note 4:

It has been demonstrated that the used test equipment meets the specified requirements in the standard with at least a 95% confidence.

Note 5:

The expanded uncertainty reported according to IEC 61000-4-3 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45%Note 6:

The expanded uncertainty reported according to IEC 61000-4-6 is based on a standard uncertainty multiplied by a coverage factor of kp = 2, providing a level of confidence of p = 95.45%Note 7:

The expanded uncertainty reported according ETSI TR 100 028 V1.4.1 (all parts) to is based on a standard uncertainty multiplied by a coverage factor of kp = 1.96, providing a level of confidence of p = 95.45%

Note 8:

The expanded uncertainty reported according to ETSI TR 102 273 V1.2.1 (all parts) is based on a standard uncertainty multiplied by a coverage factor of kp = 1.96, providing a level of confidence of p = 95.45%