

PCTEST ENGINEERING LABORATORY, INC.

6660 – B Dobbin Road • Columbia, MD 21045 • USA

Telephone 410.290.6652 / Fax 410.290.6654

<http://www.pctestlab.com> (email: randy@pctestlab.com)**CERTIFICATE OF COMPLIANCE****MANUFACTURER NAME & ADDRESS:**

SPORTS SENSORS, INC.
P.O. Box 46198
Cincinnati, OH 45246-0198

DATE & LOCATION OF TESTING:

Date(s) of Tests: April 3, 2006
Test Report S/N: 0603140177
Test Site: PCTEST Lab, Columbia, MD

FCC ID:

NVE365

APPLICANT:

SPORTS SENSORS, INC.

SUMMARY:

Model No.: PBRROF365
Equipment EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE
Frequency Range: 5.725 – 5.875 MHz
FCC Classification: Part 15 Low Power Communication Device Transmitter (DXX)
FCC Rule Part(s): § 15.249 Subpart C – Intentional Radiator; ANSI C-63.4-2003

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C-63.4-2003.

I authorize and attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Randy Ortanez
President

TABLE OF CONTENTS

ATTESTATION STATEMENTS.....	1
FCC PART 15.249 MEASUREMENT REPORT COVER PAGE.....	2
1.0 INTRODUCTION	3
1.1 EVALUATION PROCEDURE.....	3
1.2 SCOPE	3
1.3 PCTEST TEST LOCATION	3
2.0 PRODUCT INFORMATION	4
2.1 EQUIPMENT DESCRIPTION	4
2.2 EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	4
3.0 DESCRIPTION OF TEST.....	5
3.1 CONDUCTED EMISSIONS	5
3.2 RADIATED EMISSIONS.....	6
4.0 ANTENNA REQUIREMENTS.....	7
5.0 OCCUPIED BANDWIDTH	8
5.1 §2.989(C) OCCUPIED BANDWIDTH.....	8
6.0 SAMPLE CALCULATIONS.....	9
7.0 UNCERTAINTY OF MEASUREMENT.....	10-11
8.0 TEST EQUIPMENT CALIBRATION DATA.....	12
9.0 CONCLUSION	13
EXHIBIT A – TEST RESULTS	14-16
EXHIBIT B – BLOCK DIAGRAM/SCHEMATICS	17
EXHIBIT C – OPERATIONAL DESCRIPTION.....	18
EXHIBIT D – TEST SETUP PHOTOGRAPHS	19
EXHIBIT E – EUT EXTERNAL/ INTERNAL PHOTOGRAPHS.....	20
EXHIBIT F – USER’S MANUAL	21

Attestation Statements

PCTEST LAB TEST REPORT 15.249		FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365	Page 1 of 21

MEASUREMENT REPORT

FCC Part 15.249 Measurement Report Cover Page

A. General Information

APPLICANT	SPORTS SENSORS, INC.			
APPLICANT ADDRESS	P.O. Box 46198 Cincinnati, OH 45246-0198			
TEST SITE	PCTEST ENGINEERING LABORATORY, INC.			
TEST SITE ADDRESS	6660-B Dobbin Road, Columbia, MD 21045 USA			
FCC RULE PART(S)	§ 15.249 Subpart C – Intentional Radiator			
MODEL NAME	PBRROF365			
FCC ID	NVE365			
Test Device Serial No.:	N/A	<input type="checkbox"/> Production	<input checked="" type="checkbox"/> Pre-Production	<input type="checkbox"/> Engineering
FCC CLASSIFICATION	Part 15 Low Power Communication Device Transmitter (DXX)			
DATE(S) OF TEST	April 3, 2006			
TESTS REPORT S/N:	0603140177			

A.1 Test Facility / NVLAP Accreditation

Measurements were performed at PCTEST Engineering Lab in Columbia, MD 21045, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (IC 2451).
- PCTEST Lab is accredited by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP) in EMC, Telecommunication, and FCC for satisfactory compliance with criteria established in Title 15, Part 285 Code of Federal Regulations. (NVLAP Lab code: 100431-0).
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules.
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.

PCTEST LAB TEST REPORT 15.249		FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365	Page 2 of 21

1.0 INTRODUCTION

1.1 Evaluation Procedure

The measurement procedure described in the American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ANSI C63.4-2003) and FCC Public Notice dated July 12, 1995 entitled "Guidance on Measurement for Direct Sequence Spread Spectrum System" were used in the measurement of the PAINTBALL RADARchron® RATE-OF-FIRE.

1.2 Scope

Measurement & determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.3 PCTEST Test Location

The map at the right shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity are, the Baltimore-Washington Internt'l (BWI) airport, the city of Baltimore and the Washington, DC area. (see Figure 1.2-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on October 19, 2002.

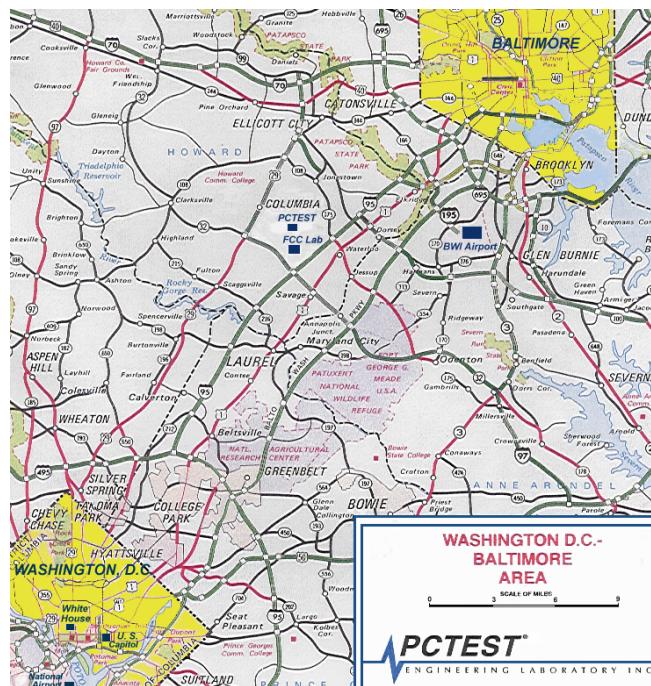


Figure 1.3-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

PCTEST LAB TEST REPORT 15.249		FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365	Page 3 of 21

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the PAINTBALL RADARchron® RATE-OF-FIRE FCC ID: NVE360.

- **Tx Frequency Range:** 5.725 ~ 5.875 GHz
- **Tx Operating Frequency:** 5.8 GHz
- **Modulation:** Phase
- **Dimensions:** 3 3/4" w; 5 1/2" lg; 1 15/16" th
- **Weight:** 11 oz.
- **Display Type:** 3 Segment LCD
- **Speed Units:** Feet per second (fps)
- **Speed Range:** 150 fps to 450 fps
- **Speed Accuracy:** Nominally within 1%
- **Rate of Fire (ROF) Units:** Balls per second (bps)
- **RPF Range:** 1 bps to over 30 bps
- **ROF Accuracy:** Nominally within one-tenth of a bps
- **Batteries:** Three AA batteries, (not included)
- **Operating Temperature:** 40-110 degrees F
- **Storage Temperature:** 32-120 degrees F

2.2 EMI Suppression Device(s) / Modifications

EMI suppression device(s) added and/or modifications made during testing.

- none

PCTEST LAB TEST REPORT 15.249		FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365	Page 4 of 21

3.0 DESCRIPTION OF TEST

3.1 Conducted Emissions

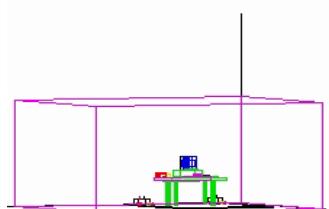


Figure 3.1-1. Shielded Enclosure Line-Conducted Test Facility

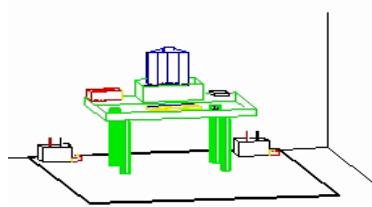


Figure 3.1-2. Line Conducted Emission Test Set-Up

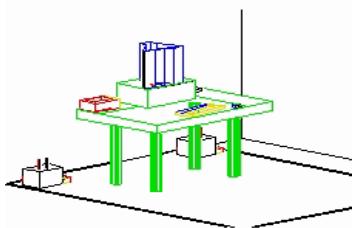


Figure 3.1-3. Wooden Table & Bonded LISNs

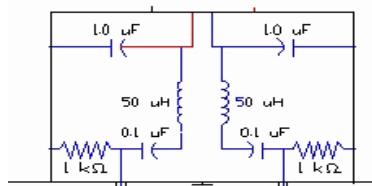


Figure 3.1-4. LISN Schematic Diagram

The line-conducted facility is located inside a 16'x20'x10' shielded enclosure, manufactured by Ray Proof Series 81 (see Figure 3.1-1). The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 1.5m away from the sidewall of the shielded room (see Figure 3.1-2). Solar Electronics and EMCO Model 3725/2 (10kHz-30MHz) 50Ω/50μH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room (See Figure 3.1-3). The EUT is powered from the Solar LISN and the support equipment is powered from the EMCO LISN. Power to the LISNs are filtered by a high-current high-insertion loss Ray Proof power line filter (100dB 14Hz-10GHz). The purpose of the filter is to attenuate ambient signal interference and this filter is also bonded to the shielded enclosure. All electrical cables are shielded by braided tinned copper zipper tubing with an inner diameter of $\frac{1}{2}$ ". If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the Solar LISN. The LISN schematic diagram is shown (See Figure 3.1-4). All interconnecting cables more than 1 meter were shortened to a 1-meter length by non-inductive bundling (serpentine fashion). Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 150kHz to 30Mhz with a 20msec. sweep time. The frequencies producing the maximum level were re-examined using an EMI/Field Intensity Meter and Quasi-Peak adapter. The detector function was set to CISPR quasi-peak and average mode. The bandwidth of the receiver was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission. Each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H patter to the EUT and/or support equipment, and powering the monitor from the floor mounted outlet box and the computer aux AC outlet, if applicable; whichever determined the worst-case emission. Photographs of the worst-case emission can be seen in Exhibit M. Each EME reported was calibrated using the HP8640B signal generator.

PCTEST LAB TEST REPORT 15.249		FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365	Page 5 of 21

3.2 Radiated Emissions

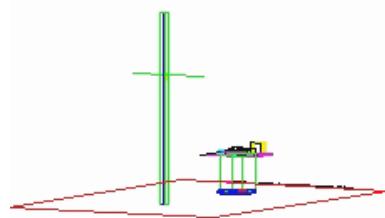


Figure 3.2-1. Meter Test Site

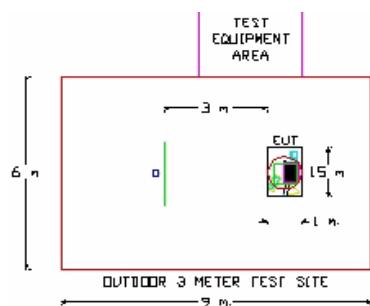


Figure 3.2-2. Dimensions of Outdoor Test Site

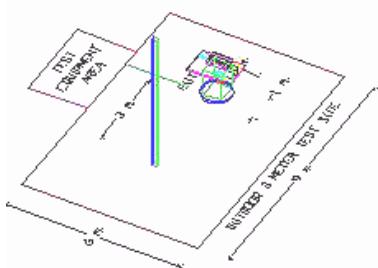


Figure 3.2-3. Turntable and System Setup

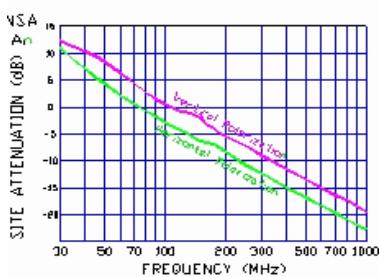


Figure 3.2-4. Normalized Site Attenuation Curves (H&V)

Preliminary measurements were made indoors at 1 meter using broadband antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna was noted for each frequency found. The spectrum was scanned from 30 to 200 MHz using bi-conical antenna and from 200 to 1000 MHz using log-spiral antenna. Above 1 GHz, linearly polarized double ridge horn antennas were used.

Final measurements were made outdoors at 3-meter test range using Roberts™ Dipole antennas or horn antenna (see Figure 3.2-1). The test equipment was placed on a wooden and plastic bench situated on a 1.5 x 2 meter area adjacent to the measurement area (see Figure 3.2-2). Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was re-examined and investigated using EMI/Field Intensity Meter and Quasi-Peak Adapter. The detector function was set to CISPR quasi-peak mode and the bandwidth of the receiver was set to 100kHz or 1 MHz depending on the frequency or type of signal. Above 1GHz the detector function was set to CISPR average mode (RBW = 1MHz, VBW = 10Hz).

The half-wave dipole antenna was tuned to the frequency found during preliminary radiated measurements. The EUT, support equipment and interconnecting cables were re-configured to the set-up producing the maximum emission for the frequency and were placed on top of a 0.8-meter high non-metallic 1 x 1.5 meter table (see Figure 3.2-3). The EUT, support equipment, and interconnecting cables were re-arranged and manipulated to maximize each EME emission. The turntable containing the system was rotated; the antenna height was varied 1 to 4 meters and stopped at the azimuth or height producing the maximum emission. Each emission was maximized by: varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and/or support equipment, and powering the monitor from the floor mounted outlet box and the computer aux AC outlet, if applicable; and changing the polarity of the antenna, whichever determined the worst-case emission. Photographs of the worst-case emission can be seen in Exhibit E-G. Each EME reported was calibrated using the HP8640B signal generator. The Theoretical Normalized Site Attenuation Curves for both horizontal and vertical polarization are shown in Figure 3.2-4.

PCTEST LAB TEST REPORT 15.249		FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365	Page 6 of 21

4.0 ANTENNA REQUIREMENTS

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the applicant can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with this requirement.

Conclusion:

The Sports Sensors PAINTBALL RADARchron® RATE-OF-FIRE unit complies with the requirement of §15.203 with a microloop antenna integrated onto the circuit board of the transmitter.

PCTEST LAB TEST REPORT 15.249		FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365	Page 7 of 21

5.0 OCCUPIED BANDWIDTH

5.1 §2.989(c) Occupied Bandwidth

Ball spreads from 20mph to 100mph were simulated and the peak frequency deviations were recorded and plotted from a spectrum analyzer placed on maximum hold.

PCTEST LAB TEST REPORT 15.249		FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365	Page 8 of 21

6.0 SAMPLE CALCULATIONS

6.1 Conducted Emission Measurement Sample Calculation:

@ 20.3 MHz

Class B limit	= 250 μ V = 47.96 dB μ V
Reading	= -67.8 dBm (calibrated level)
Convert to dB μ V	= -67.8 + 107 = 39.2 dB μ V
$10^{(39.2/20)}$	= 91.2 μ V

Margin	= 39.2 - 47.96 = -8.76
	= 8.8 dB below limit

6.2 Radiated Emission Measurement Sample Calculation:

@ 66.7 MHz

Class B limit	= 100 μ V/m = 40.0 dB μ V/m
Reading	= -76.0 dBm (calibrated level)
Convert to dB μ V	= -76.0 + 107 = 31.0 dB μ V
Antenna Factor + Cable Loss	= 5.8 dB/m
Total	= 36.8 dB μ V/m

Margin	= 36.8 - 40.0 = -3.2
	= 3.2 dB below limit

$$\text{dB}\mu\text{V} = 20 \log_{10} (\mu\text{V}/\text{m})$$

$$\text{dB}\mu\text{V} = \text{dBm} + 107$$

PCTEST LAB TEST REPORT 15.249	FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365

7.0 UNCERTAINTY OF MEASUREMENT

7.1 Line Conducted Measurement Uncertainty Calculations

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994).

Table 7.1-1. Line Conducted Measurement Uncertainty Calculations

Contribution (Line Conducted)	Probability Distribution	Uncertainty (\pm dB)	
		9kHz-150kHz	150-30MHz
Receiver specification	Rectangular	1.5	1.5
LISN coupling specification	Rectangular	1.5	1.5
Cable and input attenuator calibration	Normal (k=2)	0.3	0.5
Mismatch: Receiver VRC $\Gamma_1 = 0.03$ LISN VRC $\Gamma_R = 0.8$ (9kHz) 0.2 (30MHz) Uncertainty limits $20\log(1 \pm \Gamma_1 \Gamma_R)$	U-Shaped	0.2	0.35
System repeatability	Std. deviation	0.2	0.05
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	1.26	1.30
Expanded uncertainty	Normal (k=2)	2.5	2.6

Calculations for 150kHz to 30MHz: $u_c(y) = \sqrt{\sum_{i=1}^m u_i^2(y)} = \pm \sqrt{\frac{1.5^2 + 1.5^2}{3} + \left(\frac{0.5}{2}\right)^2 + 0.35^2} = \pm 1.298 \text{ dB}$

$$U = 2U_c(y) = \pm 2.6 \text{ dB}$$

PCTEST LAB TEST REPORT 15.249	FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365

7.2 Radiated Emissions Measurement Uncertainty Calculations

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994).

Table 7.2-1. Radiated Emissions Measurement Uncertainty Calculations

Contribution (Radiated Emissions)	Probability Distribution	Uncertainties (\pm dB)	
		3 m	10 m
Ambient Signals		-	-
Antenna factor calibration	Normal (k=2)	± 1.0	± 1.0
Cable loss calibration	Normal (k=2)	± 0.5	± 0.5
Receiver specification	Rectangular	± 1.5	± 1.5
Antenna directivity	Rectangular	$+ 0.5 / - 0$	$+ 0.5$
Antenna factor variation with height	Rectangular	± 2.0	± 0.5
Antenna phase centre variation	Rectangular	0.0	± 0.2
Antenna factor frequency interpolation	Rectangular	± 0.25	± 0.25
Measurement distance variation	Rectangular	± 0.6	± 0.4
Site imperfections	Rectangular	± 2.0	± 2.0
Mismatch: Receiver VRC $\Gamma_1 = 0.2$ Antenna VRC $\Gamma_R = 0.67$ (Bi) 0.3 (Lp) Uncertainty limits $20\log(1 \pm \Gamma_1 \Gamma_R)$	U-Shaped	$+ 1.1$ $- 1.25$	± 0.5
System repeatability	Std. Deviation	± 0.5	± 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	$+ 2.19 / - 2.21$	$+ 1.74 / - 1.72$
Expanded uncertainty	Normal (k=2)	$+ 4.38 / - 4.42$	$+ 3.48 / - 3.44$

Calculations for 3m-biconical antenna. Coverage factor of k=2 will ensure that the level of confidence will be approximately 95%, therefore:

$$U = 2u_C(y) = 2 \times \pm 2.19 = \pm 4.38 \text{ dB}$$

PCTEST LAB TEST REPORT 15.249	FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365

8.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

TYPE	MODEL	CAL. DUE DATE	CAL. INTERVAL	SERIAL No.
Microwave Spectrum Analyzer	HP 8566 (100Hz-22GHz)	12/05/06	Annual	3638A08713
Microwave Spectrum Analyzer	HP 8566 (100Hz-22GHz)	04/17/07	Annual	2542A11898
Spectrum Analyzer/Tracking Generator	HP 8591A (9kHz-1.8GHz)	06/02/06	Annual	3144A02458
Spectrum Analyzer	HP 8591A (9kHz-1.8GHz)	10/15/06	Annual	3108A02053
Spectrum Analyzer	HP 8594A (9kHz-2.9GHz)	11/02/05	Annual	3051A00187
Signal Generator	HP 8650B (500Hz-1GHz)	06/02/06	Annual	2232A19558
Signal Generator	HP 8640B (500Hz-1GHz)	06/02/06	Annual	1851A09816
Signal Generator	Rohde & Schwarz (0.1-1GHz)	09/22/06	Annual	894215/012
Ailtech/Eaton Receiver	NM 37/57A-SL (30MHz-1GHz)	04/12/07	Annual	0792-03271
Ailtech/Eaton Receiver	NM 37/57A (30MHz-1GHz)	03/11/07	Annual	0805-03334
Ailtech/Eaton Receiver	NM 17/27A (0.1-32MHz)	09/17/06	Annual	0608-03241
Quasi-Peak Adapter	HP 85650A	08/09/06	Annual	2043A00301
Ailtech/Eaton Adapter	CCA-7 CISPR/ANSI QP Adapter	03/11/07	Annual	0194-04082
RG58 Coax Test Cable	No.167			n/a
Harmonic/Flicker Test System	HP 6841A (IEC 555-2/3)			3531A00115
Broadband Amplifier (2)	HP 8447D			1145A00470, 1937A03348
Broadband Amplifier	HP 8447F			2443A03784
Transient Limiter	HP 11947A (9kHz-200MHz)			2820A00300
Horn Antenna (2)	EMCO Model 3115 (1-18GHz)			9704-5182, 9205-3874
Horn Antenna	EMCO Model 3116 (18-40GHz)			9203-2178
Biconical Antenna (3)	Eaton 94455-1			1295, 1332, 1277
Log-Spiral Antenna (2)	Ailtech/Eaton 93490-1			0227, 1104
Log-Spiral Antenna	Singer 93490-1			147
Roberts Dipoles	Compliance Design (1 set) A100			5118
Ailtech Dipoles	DM-105A (1set)			33448-111
EMCO LISN (3)	3816/2, 3816/2, 3725/2			1077, 1079, 2099
50-ohm Terminator	n/a			n/a
Microwave Preamp 40dB Gain	HP 83017A (0.5-26.5GHz)			3123A00181
Microwave Cables	MicroCoax (1.0-26.5GHz)			n/a
Ailtech/Eaton Receiver	NM37/57A-SL			0792-03271
Spectrum Analyzer	HP 8591A			3034A01395
Modulation Analyzer	HP 8901A			2432A03467
NTSC Pattern Generator	Leader 408			0377433
Noise Figure Meter	HP 8970B, Ailtech 7510			3106A02189, TE31700
Noise Generator	Ailtech 7010			1473
Microwave Survey Meter	Holaday Model 1501 (2.45GHz)			80931
Digital Thermometer	Extech Instruments 421305			426966
Attenuator	HP 8495A (0-70dB) DC-4GHz			
Bi-Directional Coax Coupler	Narda 3020A (50-1000MHz)			
Shielded Screen Room	RF Lindgren Model 26-2/2-0			6710 (PCT270)
Shielded Semi-Anechoic Chamber	Ray Proof Model S81			R2437 (PCT278)
Environmental Chamber	Associated Systems 1025			PCT285
OATS	n/a	12/31/2006	Tri-annual	

Table 8-1. Annual Test Equipment Calibration Schedule

PCTEST LAB TEST REPORT 15.249	FCC CERTIFICATION REPORT			Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365	Page 12 of 21

9.0 CONCLUSION

The data collected relate only the item(s) tested and show that the Sports Sensors PAINTBALL RADARchron® RATE-OF-FIRE is in compliance with Part 15C of the FCC Rules.

PCTEST LAB TEST REPORT 15.249		FCC CERTIFICATION REPORT			Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	FCC ID:		
0603140177	April 3, 2006	PAINTBALL RADARchron® RATE-OF-FIRE	NVE365		Page 13 of 21

EXHIBIT A – Test Results

Frequency Measurements (Fundamental & Harmonics)

Operating Frequency: 5.8 GHz

Distance of Measurements: 3 meters

FREQ. (MHz)	LEVEL (dBuV)	AFCL (dB)	POL (H/V)	Height (m)	F/S (dBuV/m)	DET. (PEAK/AVG)	MARGIN (dB)
5.80	44.80	41.6	HH	1.4	86.4	PEAK	-7.6
*11.6	3.50	47.0	HH	1.3	50.5	PEAK	-3.5
17.58	-7.50	55.3	HH	1.2	47.8	PEAK	-6.2
23.44	-11.80	57.9	HH	1.1	46.1	PEAK	-7.9

Table A-1. Harmonic Measurements

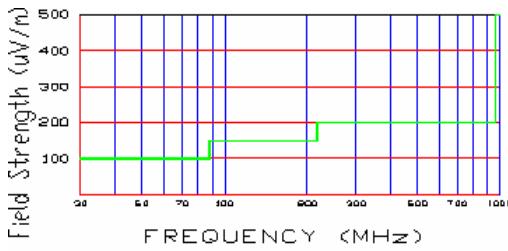


Figure A-1. Radiated limits at 3 meters.

NOTES:

1. All harmonics in the restricted bands specified in §15.205 are below the limit shown in Table G-1. (Note: * = Restricted Band measured frequency)
2. All harmonics/spurs are at least 20 dB below the highest emission in the authorized band using RBW = 100kHz
3. Average Measurements > 1GHz using RBW = 1 MHz VBW = 10 Hz
4. The peak emissions above 1 GHz are not more than 20 dB above the average limit.
5. The antenna is manipulated through typical positions, polarity and length during the tests.
6. The EUT is supplied with nominal AC voltage or/and a new/fully-recharged battery.
7. The spectrum is measured from 9kHz to the 10th harmonic and the worst-case emissions are reported.
8. < - 135 dBm are below the analyzer floor level.
9. Above 1 GHz, the limit is 500 μ V/m (54dB μ /m) at 3 meters radiated.

PCTEST LAB TEST REPORT 15.249	PCTEST Complete Wireless Lab. www.pctest.com	FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365	Page 14 of 21

EXHIBIT A – Test Results (Cont.)

Radiated Data

FREQ (MHz)	Level (dBm)	AFCL (dB/m)	POL (H/V)	Height (m)	Azimuth (° angle)	F/S (uV/M)	Margin (dB)
39.6	-89.90	1.10	V	2.8	30	23.0	-12.8
79.2	-87.40	7.40	H	2.1	190	22.4	-13.0
244.0	-91.02	18.52	H	1.4	190	53.1	-11.5
275.0	-95.70	19.70	H	1.4	170	35.5	-15.0
112.0	-85.08	10.78	V	1.3	180	43.2	-10.8
400.0	-96.70	23.70	H	1.1	200	50.2	-12.0

Table A-2. Measurements at 3-meters

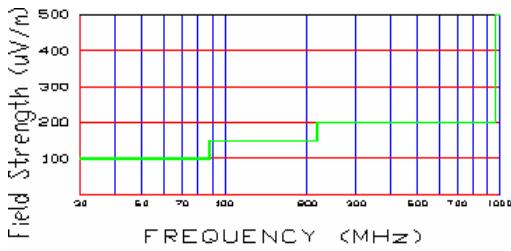
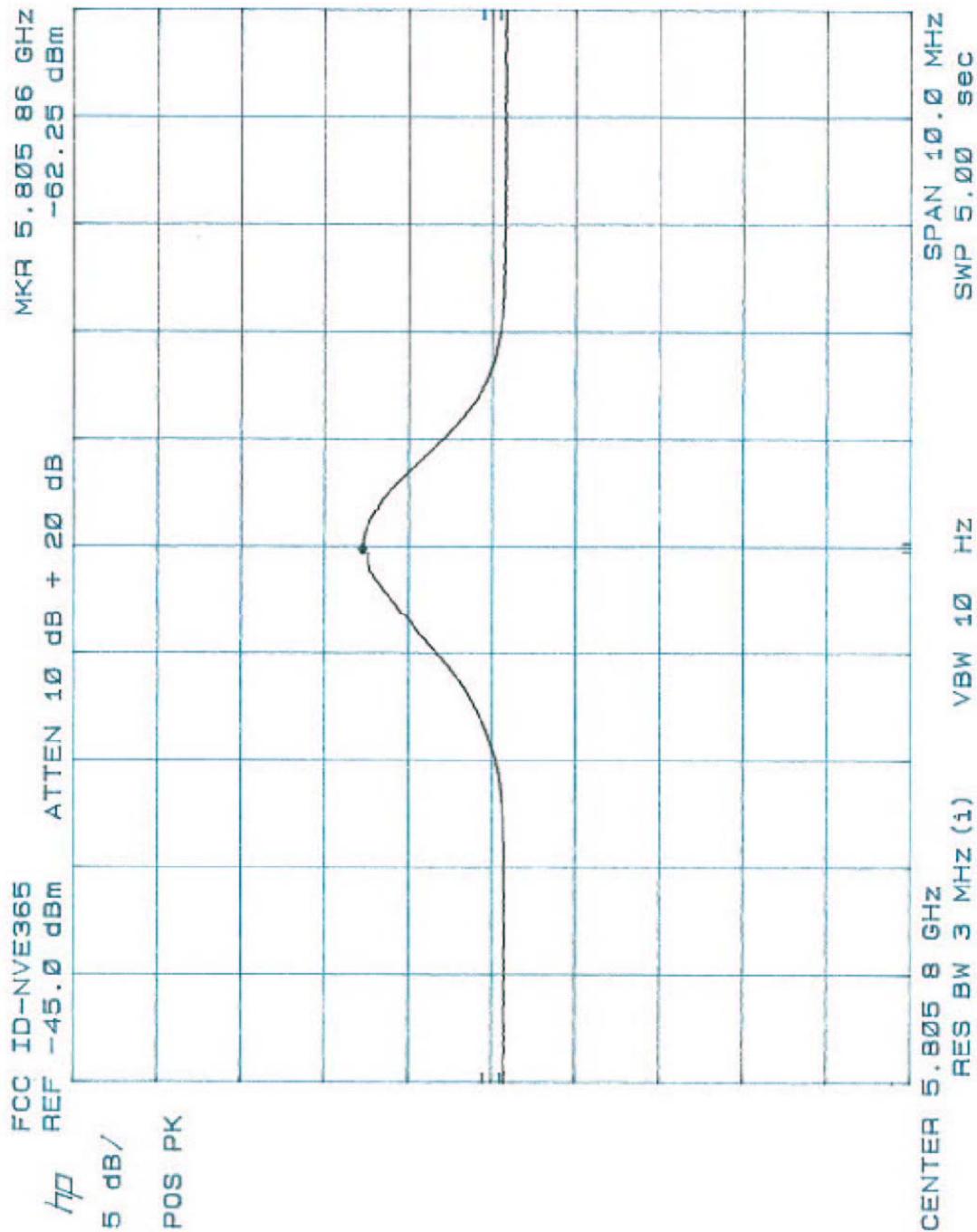


Figure A-2. Radiated limits at 3 meters.


NOTES:

1. All harmonics in the restricted bands specified in §15.205 are below the limit shown in Table G-1. (Note: * = Restricted Band measured frequency)
2. All harmonics/spurs are at least 20 dB below the highest emission in the authorized band using RBW = 100kHz
3. Average Measurements > 1GHz using RBW = 1 MHz VBW = 10 Hz
4. The peak emissions above 1 GHz are not more than 20 dB above the average limit.
5. The antenna is manipulated through typical positions, polarity and length during the tests.
6. The EUT is supplied with nominal AC voltage or/and a new/fully-recharged battery.
7. The spectrum is measured from 9kHz to the 10th harmonic and the worst-case emissions are reported.
8. < -135 dBm are below the analyzer floor level.
9. Above 1 GHz, the limit is 500 μ V/m (54dB μ /m) at 3 meters radiated.

PCTEST LAB TEST REPORT 15.249	FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365

EXHIBIT A – Test Results (Cont.)

Test Plot

PCTEST LAB TEST REPORT 15.249	FCC CERTIFICATION REPORT			Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365	Page 16 of 21

EXHIBIT B – Block Diagram/Schematics

PCTEST LAB TEST REPORT 15.249		FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365	Page 17 of 21

EXHIBIT C – Operational Description

PCTEST LAB TEST REPORT 15.249		FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365	

EXHIBIT D – Test Setup Photographs

PCTEST LAB TEST REPORT 15.249		FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365	Page 19 of 21

EXHIBIT E – EUT External/ Internal Photographs

PCTEST LAB TEST REPORT 15.249		FCC CERTIFICATION REPORT		Reviewed by: Quality Manager
Filename: 0603140177	Test Dates: April 3, 2006	EUT Type: PAINTBALL RADARchron® RATE-OF-FIRE	FCC ID: NVE365	Page 20 of 21

EXHIBIT F – User's Manual

PCTEST LAB TEST REPORT 15.249		FCC CERTIFICATION REPORT			Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	FCC ID:		
0603140177	April 3, 2006	PAINTBALL RADARchron® RATE-OF-FIRE	NVE365		Page 21 of 21