

OET 65 TEST REPORT

Product Name	Tablet PC
Model	R8
FCC ID	NV8-R8
Client	Estone Technology Inc

TA Technology (Shanghai) Co., Ltd.

Report No. RXC1209-0833SAR01R3

Page 2 of 106

GENERAL SUMMARY

Product Name	Tablet PC	Model	R8	
FCC ID	NV8-R8	Report No.	RXC1209-0833SAR01R3	
Client	Estone Technology Inc			
Manufacturer	Shenzhenshi ChuangZhiCheng Tec	hnology Co., Lto	Manufacturing Center	
Standard(s)	 IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. SUPPLEMENT C Edition 01-01 to OET BULLETIN 65 Edition 97-01 June 2001 including DA 02-1438, published June 2002: Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields Additional Information for Evaluation Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio frequency Emissions. KDB 248227 D01 SAR meas for 802 11 a b g v01r02: SAR Measurement Procedures for 802.11a/b/g Transmitters. KDB941225 D01 SAR test for 3G devices v02: SAR Measurement Procedures CDMA 20001x RTT, 1x Ev-Do, WCDMA, HSDPA/HSPA KDB 447498 D01 Mobile Portable RF Exposure v04: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies Tracking number : 443069 			
Conclusion Comment	General Judgment: Pass (Stamp) Date of issue: December 21 st ,2012			
Approved by The T	ます Revised by ctor SAR Man	Per	formed by Kar SAR Engineer	

Report No. RXC1209-0833SAR01R3

TABLE OF CONTENT

5
5
5
6
6
7
8
8
9
9
. 10
. 10
. 11
. 11
. 11
. 12
. 12
. 14
. 14
. 14
. 16
. 17
. 17
. 18
. 19
. 19
. 21
. 22
. 22
. 22
. 22
. 22
. 23
. 23
. 23
. 23
. 24
. 25
. 26

Report No. RXC1209-0833SAR01R3	Page 4 of 106	
7.1. Conducted Power Results		
7.2. SAR Test Results		
7.2.1. CDMA Cellular (CDMA/EVDO)		
7.2.2. CDMA PCS (CDMA/EVDO)		
7.2.3. Simultaneous Transmission Conditions		
8. 700MHz to 3GHz Measurement Uncertainty		
9. Main Test Instruments		
ANNEX A: Test Layout		
ANNEX B: System Check Results		
ANNEX C: Graph Results		
ANNEX D: Probe Calibration Certificate		
ANNEX E: D835V2 Dipole Calibration Certificate		
ANNEX F: D1900V2 Dipole Calibration Certificate		
ANNEX G: D2450V2 Dipole Calibration Certificate		
ANNEX H: DAE4 Calibration Certificate		
ANNEX I: The EUT Appearances and Test Configuration		

1. General Information

1.1. Notes of the Test Report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS), and accreditation number: L2264.

If the electrical report is inconsistent with the printed one, it should be subject to the latter.

1.2. Testing Laboratory

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Yang Weizhong
Telephone:	+86-021-50791141/2/3
Telephone: Fax:	+86-021-50791141/2/3 +86-021-50791141/2/3-8000
•	

1.3. Applicant Information

Company:	Estone Technology Inc
Address:	3324 secor road #8, Toledo, OH 43606
City:	Toledo
Postal Code:	1
Country:	America

1.4. Manufacturer Information

Company:	Shenzhenshi ChuangZhiCheng Technology Co., Ltd Manufacturing Center
Address:	3F, Block A2, A3, Beida Funder Hi-tech park, Songbai Road, ShiyanStreet, Baoan District, Shenzhen
City:	Shenzhen
Postal Code:	518000
Country:	P.R.China

1.5. Information of EUT

General Information

Device Type:	Portable Device			
Exposure Category:	Uncontrolled Environ	Uncontrolled Environment / General Population		
State of Sample:	Prototype Unit			
Product Name:	Tablet PC			
MEID:	CZC1260024620020			
Hardware Version:	VerD			
Software Version:	R802R007			
Antenna Type:	Internal Antenna			
Device Operating Configurations				
Operating Mode(s):	CDMA Cellular; (tested) CDMA PCS; (tested) WIFI(802.11b/g/n HT20/n HT40); (tested) Bluetooth; (untested)			
Test Modulation:	(CDMA) QPSK			
	Mode	Tx (MHz)	Rx (MHz)	
Operating Frequency Range(s):	CDMA Cellular	824.7 ~ 848.31	869.7 ~ 893.31	
	CDMA PCS	1851.25 ~ 1908.75	1931.25 ~ 1988.75	
Power Class:	CDMA Cellular: tested with power control all up bits CDMA PCS: tested with power control all up bits			
Test Channel: (Low - Middle - High)	1013 - 384 - 777 25 - 600 - 1175 1-6-11	()	(tested) sted)	

Equipment Under Test (EUT) is a Tablet PC. The detail about EUT is in chapter 1.5 in this report. The device has an internal antenna for CDMA Tx/Rx and The second antenna for BT Tx/Rx. and The third antenna for wifi Tx/Rx. SAR is tested for CDMA Cellular, CDMA PCS and WIFI.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer.

1.6. The Maximum ${\sf SAR}_{1g}$ Values

Body Worn Configuration

Mode	Channel	Position	Separation distance	SAR _{1g} (W/kg)
CDMA Cellular	Low/1013	Test Position 4	0mm	0.771
CDMA PCS	Low/25	Test Position 3	0mm	1.220
802.11g	High/11	Test Position 2	0mm	0.042

Extrapolated SAR Values of the highest measured SAR

Mode	Test	Channel	Measurement Result Conducted SAR _{1g}		Tune-up procedures	SAR _{1g} Limit 1.6 W/kg
Mode	Position	Channel			MAX	Extrapolated
			Power(dBm)	(W/kg)	Power(dBm)	Result (W/kg)
CDMA Cellular	Test Position 4	Low/1013	24.38	0.771	25	0.889
CDMA PCS	Test Position 3	Low/25	24.13	1.220	25	1.491

1.7. Test Date

The test is performed from November 17, 2012 to November 20, 2012.

2. SAR Measurements System Configuration

2.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY5 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

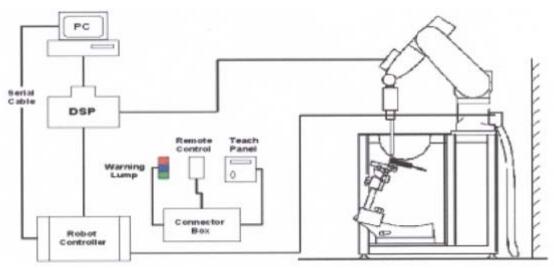


Figure 1 SAR Lab Test Measurement Set-up

2.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

2.2.1. ES3DV3 Probe Specification

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	1
Calibration	ISO/IEC 17025 calibration service available	
Frequency	10 MHz to 4 GHz Linearity: ± 0.2 dB (30 MHz to 4 GHz)	Figure 2. ES3DV3 E-field Probe
Directivity	\pm 0.2 dB in HSL (rotation around probe axis \pm 0.3 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	5 μW/g to > 100 mW/g Linearity: ± 0.2dB	
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm	
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones	

Report No. RXC1209-0833SAR01R3

2.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta \mathbf{T}}{\Delta \mathbf{t}}$$

Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

2.3. Other Test Equipment

2.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard.

It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the inference of the clamp on the test results could thus be lowered.

Figure 4 Device Holder

Report No. RXC1209-0833SAR01R3

2.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness2±0.1 mmFilling VolumeApprox. 20 litersDimensions810 x 1000 x 500 mm (H x L x W)AailableSpecial

Figure 5 Generic Twin Phantom

2.4. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid

Report No. RXC1209-0833SAR01R3

spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 5x5x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

• Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 5x5x7 measurement points with 8mm resolution amounting to 175 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

• A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 5x5x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

2.5. Data Storage and Evaluation

2.5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	•	Normi, a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	Dcpi
Device parameters:	- Frequency	f
•	- Crest factor	cf
Media parameters:	- Conductivity	

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

Report No. RXC1209-0833SAR01R3

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With	V_i = compensated signal of channel i	(i = x, y, z)
	\boldsymbol{U}_i = input signal of channel i	(i = x, y, z)
	<i>cf</i> = crest factor of exciting field	(DASY parameter)
	<i>dcp</i> _i = diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field p	orobes:	$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$	
H-field probes:		$H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2) / f$	
With	V _i	= compensated signal of channel i	(i = x, y, z)
	Norm _i	= sensor sensitivity of channel i [mV/(V/m) ²] for E-field Probes	(i = x, y, z)
ConvF		= sensitivity enhancement in solution	
	a _{ij}	= sensor sensitivity factors for H-field probes	

- *f* = carrier frequency [GHz]
- E_i = electric field strength of channel i in V/m
- H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

with **SAR** = local specific absorption rate in mW/g

- **E**_{tot} = total field strength in V/m
 - = conductivity in [mho/m] or [Siemens/m]
 - = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

3. Laboratory Environment

Table 1: The Requirements of the Ambient Conditions

Temperature	Min. = 18°C, Max. = 25 °C			
Relative humidity	Min. = 30%, Max. = 70%			
Ground system resistance	< 0.5 Ω			
Ambient noise is checked and found very low and in compliance with requirement of standards				
Reflection of surrounding objects is minimize	ed and in compliance with requirement of standards.			

4. Tissue-equivalent Liquid

4.1. Tissue-equivalent Liquid Ingredients

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The table 2 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

Table 2: Composition of the Body Tissue Equivalent Matter

MIXTURE%	FREQUENCY(Body) 835MHz
Water	52.5
Sugar	45
Salt	1.4
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=835MHz ε=55.2 σ=0.97

MIXTURE%	FREQUENCY (Body) 1900MHz	
Water	69.91	
Glycol monobutyl(DGBE)	29.96	
Salt	0.13	
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52	

MIXTURE%	FREQUENCY(Body) 2450MHz			
Water	73.2			
Glycol monobutyl (DGBE)	26.7			
Salt	0.1			
Dielectric Parameters	6-0450MUL			
Target Value	f=2450MHz ε=52.70 σ=1.95			

4.2. Tissue-equivalent Liquid Properties

Freedore	Description	Dielectric Pa	Temp		
Frequency	Description	٤ _r	σ(s/m)	Ĉ	
	Target value	55.20	0.97	22.0	
835MHz	±5% window	52.44 — 57.96	0.92 — 1.02	22.0	
(body)	Measurement value 2012-11-17	55.10	0.99	21.5	
	Target value	53.30	1.52	00.0	
1900MHz	±5% window	50.64 — 55.97	1.44 — 1.60	22.0	
(body)	Measurement value 2012-11-19	52.15	1.52	21.5	
	Target value	52.70	1.95	00.0	
2450MHz	±5% window	50.07 — 55.34	1.85 — 2.05	22.0	
(body)	Measurement value 2012-11-20	51.69	1.90	21.5	

Table 3: Dielectric Performance of Body Tissue Simulating Liquid

5. System Check

5.1. Description of System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the table 4.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (± 10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

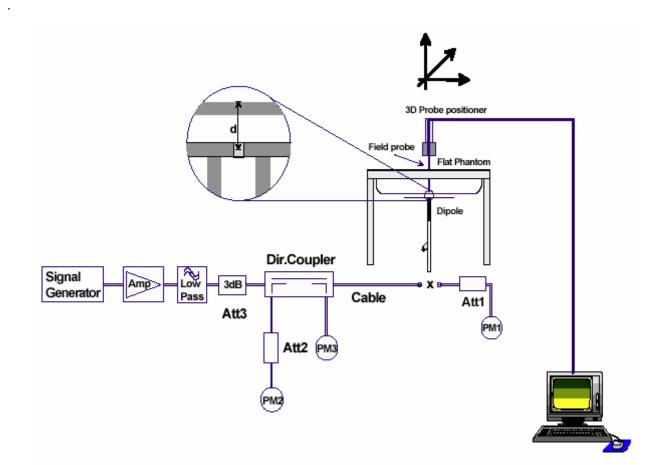


Figure 6 System Check Set-up

Report No. RXC1209-0833SAR01R3

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 450824:

Dipole D835V2 SN: 4d020							
Body Liquid							
Date of Measurement	Date of Measurement Return Loss(dB) Δ % Impedance (Ω) Δ						
8/26/2011 -25.1 / 48.7 /							
8/25/2012 -24.3 3.2 % 50.6 1.9Ω							

Dipole D1900V2 SN: 5d060							
Body Liquid							
Date of Measurement	Date of Measurement Return Loss(dB) Δ % Impedance (Ω) Δ						
8/31/2011 -21.3 / 47.3 /							
8/30/2012	-20.9	1.9%	45.9	1.4Ω			

Dipole D2450V2 SN: 786								
	Body Liquid							
Date of Measurement Return Loss(dB) Δ % Impedance (Ω) Δ								
8/29/2011 -29.0 / 50.4 /								
8/28/2012	8/28/2012 -28.1 3.1% 48.9 1.5Ω							

Page 21 of 106

5.2. System Check Results

Table 4: System Check in Body Tissue Simulating Liquid

Frequency	Test Date		ectric neters	Temp	250mW Measured SAR _{1g}	1W Normalized SAR _{1g}	1W Target SAR _{1g} (±10% deviation)
		٤r	σ(s/m)	(°C)			
835MHz	2012-11-17	55.10	0.99	21.5	2.39	9.56	9.46 (8.51~10.41)
1900MHz	2012-11-19	52.15	1.52	21.5	9.93	39.72	41.70 (37.53~45.87)
2450MHz	2012-11-20	51.69	1.90	21.5	13.20	52.80	51.70 (46.53~56.87)
Note: 1. The graph results see ANNEX B. 2. Target Values derive from the calibration certificate							

6. Operational Conditions during Test

6.1. General Description of Test Procedures

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 1013, 384 and 777 respectively in the case of CDMA Cellular, to 25, 600 and 1175 respectively in the case of CDMA PCS. The EUT is commanded to operate at maximum transmitting power.

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. Power control is set "All Up Bits" of CDMA. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

6.2. Information for the Measurement of CDMA 1x Devices

6.2.1. Output Power Verification

Test Parameter setup for maximum RF output power according to section 4.4.5 of 3GPP2

Parameter	Units	Value
l or	dBm/1.23MHz	-104
PilotE c /I or	dB	-7
TrafficE c /I or	dB	-7.4

For SAR test, the maximum power output is very important and essential; it is identical under the measurement uncertainty. It is proper to use typical Test Mode 3 (FW RC3, RVS RC3, SO55) as the worst case for SAR test.

6.2.2. SAR Measurements

SAR is measured using FTAP/RTAP and FETAP/RETAP respectively for Rev. 0 and Rev. A devices. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations. Both FTAP and FETAP are configured with a Forward Traffic Channel data rate corresponding to the 2-slot version of 307.2 kbps with the ACK Channel transmitting in all slots. AT power control should be in "All Bits Up" conditions for TAP/ETAP.

Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0. SAR for Subtype 2 Physical layer configurations is not required for Rev. A when the maximum average output of each RF channels is less than that measured in Subtype 0/1 Physical layer configurations. Otherwise, SAR is measured on the maximum output channel for Rev. A using the exposure configuration that results in the highest SAR for that RF channels in Rev. 0. Head SAR is required for Ev-Do devices

Report No. RXC1209-0833SAR01R3

that support operations next to the ear; for example, with VOIP, using Subtype 2 Physical Layer configurations according to the required handset test configurations.

6.2.3. 1x RTT Support

For Ev-Do devices that also support 1x RTT voice and/or data operations, SAR is not required for 1x RTT when the maximum average output of each channel is less than 1/4 dB higher than that measured in Subtype 0/1 Physical Layer configurations for Rev. 0. Otherwise, the 'Body SAR Measurements' procedures in the 'CDMA 2000 1x Handsets' section should be applied.

6.3. Information for the Measurement of CDMA 1x EV-DO Release A Devices

6.3.1. Output Power Verification for EV-DO

Maximum output power is verified on the High, Middle, Low channel according to procedures in section 3.1.1.3.4 of 3GPP2 C.S0033-0/TIA-866 for Rev.0 and section 4.3.4 of 3GPP2 C.S0033-A for Rev. A. For Rev. A, maximum output power for both Subtype 0/1 and Subtype 2 Physical Layer configurations should be measured.

6.3.2. SAR Measurement

SAR is measured using FTAP/RTAP and FETAP/RETAP respectively for Rev.0 and Rev. A devices. The AT is tested with a Reverse Data Channel rate of 153.6kbps IN Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations. Both FTAP and FETAP are configured with a Forward Traffic Channel data rate corresponding to the 2-slot version of 307.2kbps with the ACK Channel transmitting in all slots. AT power control should be in "All Bits Up" conditions for TAP/ETAP.

Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev.0. SAR for Subtype 2 Physical Layer configurations is not required for Rev. A when the maximum average output of each RF channels is less that measured in Subtype 0/1 Physical Layer configurations. Otherwise, SAR is measured on the maximum output channel for Rev. A using the exposure configuration that results in the highest SAR for that RF channels in Rev.0.

6.4. WIFI Test Configuration

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1.

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for WIFI mode test. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 1, 6 and 11 respectively in the case of 2450 MHz. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate. Testing at higher data rates is not required when the maximum average output power is less than 0.25dB higher than those measured at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frequency band.802.11b/g modes are tested on channels1,6,11; however, if output power reduction is necessary for channels 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels must be tested instead.

6.5. Test Position

For tablets with a display or overall diagonal dimension 30 cm >20 cm, the SAR procedures in KDB 447498 should be used.

According to KDB 447498 D01 Mobile Portable RF Exposure v04 SAR is required for both back and edge with the most conservative exposure conditions, the EUT is tested at the following 5 test positions:

- Test Position 1: The back side of the EUT towards and directed tightly to touch the bottom of the flat phantom. (ANNEX I Picture 6) 0 cm from CDMA antenna-to-user and 0 cm from BT/WiFi antenna-to-user (Please see ANNEX I Picture 5)
- Test Position 2: The top side of the EUT towards and directed tightly to touch the bottom of the flat phantom. (ANNEX I Picture 7)
 SAR is required for WiFi antenna; this is the most conservative antenna to user distance at edge mode(Please see ANNEX I Picture 5).
 SAR is not required for CDMA antenna, since it is not the most conservative exposure conditions of the edge(Please see ANNEX I Picture 5). According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions.
- Test Position 3: The bottom side of the EUT towards and directed tightly to touch the bottom of the flat phantom. (ANNEX I Picture 8)
 SAR is required for CDMA antenna, since it is the most conservative exposure conditions of

SAR is required for CDMA antenna, since it is the most conservative exposure conditions of the edge (Please see ANNEX I Picture 5)

SAR is not required for WiFi antenna; this is not the most conservative antenna - to - user distance at edge mode(Please see ANNEX I Picture 5). According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions.

 Test Position 4: The left side of the EUT towards and directed tightly to touch the bottom of the flat phantom. (ANNEX I Picture 9)

SAR is required for CDMA antenna, since it is the most conservative exposure conditions of the edge (Please see ANNEX I Picture 5)

SAR is not required for WiFi antenna; this is not the most conservative antenna - to - user distance at edge mode(Please see ANNEX I Picture 5). According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions.

 Test Position 5: The right side of the EUT towards and directed tightly to touch the bottom of the flat phantom. (ANNEX I Picture 10)

SAR is required for WiFi antenna; this is the most conservative antenna - to - user distance at edge mode(Please see ANNEX I Picture 5).

SAR is not required for CDMA antenna, since it is not the most conservative exposure conditions of the edge(Please see ANNEX I Picture 5). According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions.

7. Test Results

7.1. Conducted Power Results

Table 5: Conducted Power Measurement Results

	CDMA Cellu	lar	Co	nducted Power(dBm)	
	CDIMA Cellu	iai	Channel 1013	Channel 384	Channel 777	
	RC1	SO55	24.28	24.15	24.06	
1x RTT		SO55	24.15	24.17	24.16	
	RC3	SO32(+F-SCH)	24.21	24.16	24.07	
		SO32(+SCH)	24.18	24.14	24.08	
		9.6 kbps	24.31	24.31	24.02	
EVDO (Rev.0)	RTAP	38.4 kbps	24.37	24.23	23.99	
(1.07.0)		153.6 kbps	24.38	24.28	24.04	
		128 bits	24.28	24.21	24.01	
EVDO (Rev.A)	RETAP	2048 bits	24.26	24.19	24.04	
(1001.73)		4096 bits	24.32	24.23	24.03	
			Conducted Power(dBm)			
	CDMA PCS	>	Channel 25	Channel 600	Channel 1175	
	RC1	SO55	24.16	23.66	23.71	
1x RTT		SO55	24.14	23.68	23.67	
	RC3	SO32(+F-SCH)	24.13	23.65	23.66	
		SO32(+SCH)	24.15	23.68	23.72	
		9.6 kbps	24.07	23.44	23.69	
EVDO (Rev.0)	RTAP	38.4 kbps	24.09	23.46	23.65	
(1.00.0)		153.6 kbps	24.13	23.48	23.72	
		128 bits	23.99	23.48	23.64	
EVDO (Rev.A)	RETAP	2048 bits	24.01	23.52	23.66	
(1.00.7.1)		4096 bits	24.03	23.56	23.68	

The output power of BT antenna is as following:

	Average Conducted Power(dBm)			
Channel	Ch 0	Ch 39	Ch 78	
	2402 MHz	2441 MHz	2480 MHz	
GFSK	-8.45	-8.59	-9.94	
π/4 DQPSK	-7.45	-8.66	-7.56	
8DQPSK	-7.65	-7.65	-8.43	
/	Peak C	onducted Power	r(dBm)	
GFSK (dBm)	-7.83	-7.91	-8.41	
GFSK	-6.35	-7.34	-6.96	
π/4 DQPSK	-6.43	-6.67	-7.05	

The output power of WIFI antenna is as following:

Mode	Channel	Data rate (Mbps)	Peak Power (dBm)	AV Power (dBm)
		1	11.72	8.75
		2	11.86	8.89
	1	5.5	11.83	8.86
		11	11.87	8.90
		1	11.96	9.01
		2	11.99	9.03
802.11b	6	5.5	11.98	9.02
		11	12.03	9.07
-		1	12.58	9.63
		2	12.57	9.62
	11	5.5	12.62	9.65
		11	12.68	9.73
802.11g		6	15.78	13.02
-		9	15.77	13.00
		12	15.65	12.87
		18	14.77	12.01
	1	24	14.68	11.89
		36	13.64	10.88
		48	13.61	10.84
		54	12.79	10.03
	6	6	15.88	13.01
		9	15.86	13.04
		12	15.86	12.17
		18	15.00	12.06
		24	14.87	11.08
		36	13.91	11.05

Report No. RXC1209-0833SAR01R3

Page 28 of 106

		48	13.87	10.22
		48 54	13.04	12.42
		6	16.57	13.99
		9	16.55	13.74
		12	16.55	12.69
		12	15.70	12.87
	11	24	15.48	12.64
		36	14.51	11.65
		48	14.51	11.63
		54 MCS0	13.73	10.92
		MCS0	14.90	12.29
		MCS1	14.10	11.49
		MCS2	14.17	11.56
	1	MCS3	12.33	9.72
		MCS4	12.29	9.68
		MCS5	11.32	8.71
		MCS6	11.36	8.75
		MCS7	10.46	7.85
		MCS0	15.22	12.60
		MCS1	14.45	11.83
		MCS2	14.80	12.18
802.11n	6	MCS3	13.01	10.39
HT20	0	MCS4	12.82	10.20
		MCS5	11.77	9.15
		MCS6	11.82	9.20
		MCS7	10.80	8.18
		MCS0	15.90	13.27
		MCS1	15.03	12.39
		MCS2	15.12	12.49
	11	MCS3	13.33	10.70
		MCS4	13.25	10.62
		MCS5	12.30	9.67
		MCS6	12.17	9.54
		MCS7	11.20	8.57
802.11n		MCS0	14.61	12.02
HT40		MCS1	13.78	11.17
		MCS2	13.66	11.05
	2	MCS3	11.75	9.12
	3	MCS4	11.91	9.32
		MCS5	10.95	8.34
		MCS6	11.00	8.41
		MCS7	10.01	7.41
	6	MCS0	14.85	12.23

Report No. RXC1209-0833SAR01R3

Page 29 of 106

		MCS1	14.01	11.38
		MCS2	13.94	11.32
		MCS3	12.15	9.52
		MCS4	12.23	9.61
		MCS5	11.26	8.64
		MCS6	11.22	8.59
		MCS7	10.31	7.71
		MCS0	15.40	12.74
		MCS1	14.58	11.95
		MCS2	14.49	11.87
	9	MCS3	12.62	10.01
	9	MCS4	12.68	10.07
		MCS5	11.66	9.04
		MCS6	11.62	9.01
		MCS7	10.69	8.08

7.2. SAR Test Results

7.2.1. CDMA Cellular (CDMA/EVDO)

Table 6: SAR Values [CDMA Cellular (CDMA/EVDO)]

Limit of SAR		10 g Average 2.0 W/kg	1 g Average 1.6 W/kg	Power Drift ± 0.21 dB	Graph Results
		Measurement	Result(W/kg)	Power	Results
Different Test Position	Channel	10 g Average	1 g Average	Drift (dB)	
Test Position of EVDO Rev.0(RTAP 153.6kbps)(distance 0mm)					
Test Position 1	Middle/384	0.116	0.182	0.017	Figure 10
Test Position 2	N/A	N/A	N/A	N/A	N/A
Test Position 3	Middle/384	0.132	0.239	0.189	Figure 11
	High/777	0.337	0.618	0.048	Figure 12
Test Position 4	Middle/384	0.255	0.472	0.015	Figure 13
	Low/1013	0.413	0.771	-0.025	Figure 14
Test Position 5	N/A	N/A	N/A	N/A	N/A

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. The SAR test shall be performed at the middle frequency channel of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.

3. Upper and lower frequencies were measured at the worst case.

4. SAR is not required for top edge and right edge, for these are not the most conservative antenna - to - user distance at edge mode(Please see ANNEX I Picture 5). According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions.

5. For Ev-Do devices that also support 1x RTT voice and/or data operations, SAR is not required for 1x RTT when the maximum average output of each channel is less than ¼ dB higher than that measured in Subtype 0/1 Physical Layer configurations for Rev. 0.

6. SAR for Subtype 2 Physical Layer configurations is not required for Rev. A when the maximum average output of each RF channels is less that measured in Subtype 0/1 Physical Layer configurations.

7.2.2. CDMA PCS (CDMA/EVDO)

Table 7: SAR Values [CDMA PCS (CDMA/EVDO)]

Limit of SAR		10 g Average 2.0 W/kg	1 g Average 1.6 W/kg	Power Drift ± 0.21 dB	Graph Results
Different Test Position	Channel	Measurement	Result(W/kg)	Power	
Different fest Position	Channel	10 g Average	1 g Average	Drift (dB)	
Test Position of EVDO Rev.0(RTAP 153.6kbps) (distance 0mm)					
Test Position 1	Middle/600	0.143	0.248	0.067	Figure 15
Test Position 2	N/A	N/A	N/A	N/A	N/A
	High/1175	0.509	0.980	0.087	Figure 16
Test Position 3	Middle/600	0.543	1.040	0.033	Figure 17
	Low/25	0.640	1.220	0.083	Figure 18
	High/1175	0.463	0.917	-0.015	Figure 19
Test Position 4	Middle/600	0.463	0.932	0.005	Figure 20
	Low/25	0.621	1.190	-0.095	Figure 21
Test Position 5	N/A	N/A	N/A	N/A	N/A

Note: 1.The value with blue color is the maximum SAR Value of each test band.

- 2. The SAR test shall be performed at the middle frequency channel of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at the high and low channels is optional.
- 3. Upper and lower frequencies were measured at the worst case.

4. SAR is not required for top edge and right edge, for these are not the most conservative antenna - to - user distance at edge mode(Please see ANNEX I Picture 5). According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions.

5. For Ev-Do devices that also support 1x RTT voice and/or data operations, SAR is not required for 1x RTT when the maximum average output of each channel is less than 1/4 dB higher than that measured in Subtype 0/1 Physical Layer configurations for Rev. 0.

6. SAR for Subtype 2 Physical Layer configurations is not required for Rev. A when the maximum average output of each RF channels is less that measured in Subtype 0/1 Physical Layer configurations.

Report No. RXC1209-0833SAR01R3

Table 8: SAR Values (802.11g)

Average			Graph Results			
10 g Average						
Test position of Body (Distance 0mm)						
0.005	0.010	0.099	Figure 22			
0.019	0.042	0.109	Figure 23			
N/A	N/A	N/A	N/A			
N/A	N/A	N/A	N/A			
0.003	0.009	0.199	Figure 24			
	2.0 2.0 Measurement 10 g Average position of Body (District Control of Body (Distrit Contro))))	2.0 1.6 Measurement Result(W/kg) 10 g Average 1g Average oosition of Body (Distance 0mm) 0.005 0.010 0.019 0.042 N/A N/A	2.0 1.6 ± 0.21 Measurement Result(W/kg) Power 10 g Average 1g Average 1g Average 0.005 0.010 0.099 0.019 0.042 0.109 N/A N/A N/A N/A N/A N/A 0.003 0.009 0.199			

Note: 1. The value with blue color is the maximum SAR Value of each test band.

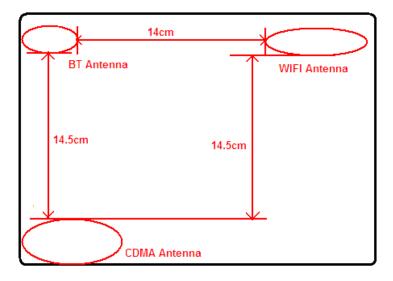
2. The SAR test shall be performed at the channel with the maximum average output power of each operating mode. If the SAR measured at this channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8W/kg), testing at other channels is optional.</p>

 SAR is not required for bottom edge and left edge, for these are not the most conservative antenna - to - user distance at edge mode(Please see ANNEX I Picture 5). According to KDB 447498 4) ii) (2) –SAR is required only the edge with the most conservative exposure conditions.

^{4.} SAR is not required for 802.11b/n channels when the maximum average output power is less than 60/f(GHz) mW.

Report No. RXC1209-0833SAR01R3

Page 33 of 106


7.2.3. Simultaneous Transmission Conditions

Air- Interface	Band (MHz)	Туре	Simultaneous Transmissions Note: Not to be tested	Voice Over internet protocol (Data)	
	800	VO	Yes	NA	
CDMA	1900	VO	WIFI and BT	NA	
CDINA	EVDO	DT	Yes	NA	
			WIFI and BT		
WIFI	2450	DT	Yes	NA	
	2450		CDMA, EVDO and BT		
Bluetooth	2400	DT	Yes	NA	
(BT)	2400	וט	CDMA, EVDO and WIFI		

VO Voice CMRS/PSTN Service only

DT Digital Transport

The location of the antennas inside EUT is shown as the following:

Stand-alone SAR

Stand-alone SAR are not required for BT, because the output power of BT transmitter is <60/f(GHz) mW.

Stand-alone SAR are required for WIFI, because the output power of WIFI transmitter is >60/f(GHz) mW.

Position	Applicable Combination
	CDMA 1x RTT+ BT
	CDMA 1x EVDO+ BT
Body-worn	CDMA 1x RTT+ WLAN
	CDMA 1x EVDO+ WLAN
	BT + WLAN

Simultaneous SAR consideration

About BT and CDMA Antenna

SAR _{1g} (W/kg) Test Position	CDMA Cellular	CDMA PCS	BT	MAX. ΣSAR_{1g}		
Test Position 1	0.182	0.248	0	0.248		
Test Position 2	N/A	N/A	0	0		
Test Position 3	0.239	1.220	0	1.220		
Test Position 4	0.771	1.190	0	1.190		
Test Position 5 N/A N/A 0 0						
Note: 1.The value with blue color is the maximum ΣSAR _{1g} Value. 2. MAX. ΣSAR _{1g} =Unlicensed SAR _{MAX} +Licensed SAR _{MAX}						

3. Stand alone SAR for BT is not required. Its SAR is considered 0 in the 1-g SAR summing process to determine simultaneous transmission SAR evaluation requirments.

BT antenna is >5cm from CDMA Antenna. (CDMA Antenna SAR_{MAX}) 1.220 +(BT Antenna SAR_{MAX})0 = 1.220 < 1.6, So the Simultaneous SAR are not required for BT and CDMA antenna.

About WiFi and CDMA Antenna

SAR _{1g} (W/kg) Test Position	CDMA Cellular	CDMA PCS	WiFi	MAX. ΣSAR_{1g}		
Test Position 1	0.182	0.248	0.010	0.258		
Test Position 2	N/A	N/A	0.042	0.042		
Test Position 3	0.239	1.220	N/A	1.220		
Test Position 4	0.771	1.190	N/A	1.190		
Test Position 5 N/A N/A 0.009 0.009						
Note: 1.The value with blue color is the maximum ΣSAR_{1g} Value. 2. MAX. ΣSAR_{1g} =Unlicensed SAR _{MAX} +Licensed SAR _{MAX}						

WiFi antenna is >5cm from CDMA Antenna. (CDMA Antenna SAR_{MAX}) 1.220 +(WiFi Antenna

Report No. RXC1209-0833SAR01R3

SAR)0 =1.220 < 1.6, So the Simultaneous SAR are not required for WiFi and CDMA antenna.

About BT and WiFi Antenna, BT antenna is >5cm from WiFi Antenna. (WiFi Antenna SAR_{MAX}) 0.042 +(BT Antenna SAR_{MAX})0 =0.042 <1.6, So the Simultaneous SAR are not required for BT and WiFi antenna.

Page 36 of 106

8. 700MHz to 3GHz Measurement Uncertainty

No.	source	Туре	Uncertainty Value (%)	Probability Distribution	k	Ci	Standard ncertainty $u'_i(\%)$	Degree of freedom V _{eff} or v _i
1	System repetivity	А	0.5	Ν	1	1	0.5	9
Measurement system								
2	-probe calibration	В	6.0	N	1	1	6.0	∞
3	-axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	œ
4	- Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	8
6	-boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	8
7	-probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	8
8	- System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	8
9	-readout Electronics	В	1.0	N	1	1	1.0	∞
10	-response time	В	0	R	$\sqrt{3}$	1	0	8
11	-integration time	В	4.32	R	$\sqrt{3}$	1	2.5	8
12	-noise	В	0	R	$\sqrt{3}$	1	0	8
13	-RF Ambient Conditions	В	3	R	$\sqrt{3}$	1	1.73	8
14	-Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	8
15	-Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	8
16	-Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	8
Test sample Related								
17	-Test Sample Positioning	А	2.9	N	1	1	2.9	71
18	-Device Holder Uncertainty	А	4.1	N	1	1	4.1	5
19	-Output Power Variation - SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	∞
Physical parameter								
20	-phantom	В	4.0	R	$\sqrt{3}$	1	2.3	∞

Report No. RXC1209-0833SAR01R3

Page 37 of 106

21	-liquid conductivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.64	1.8	8
22	-liquid conductivity (measurement uncertainty)	В	2.5	Ν	1	0.64	1.6	9
23	-liquid permittivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6	1.7	8
24	-liquid permittivity (measurement uncertainty)	В	2.5	N	1	0.6	1.5	9
Combined standard uncertainty		<i>u</i> _c =	$\sqrt{\sum_{i=1}^{24} c_i^2 u_i^2}$				11.50	
Expan 95 %)	ded uncertainty (confidence interval of	u	$u_e = 2u_c$	Ν	k=	=2	23.00	

9. Main Test Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 11, 2012	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Re	quested
03	Power meter	Agilent E4417A	GB41291714	March 11, 2012	One year
04	Power sensor	Agilent N8481H	MY50350004	September 24, 2012	One year
05	Power sensor	E9327A	US40441622	September 23, 2012	One year
06	Dual directional coupler	778D-012	50519	March 26, 2012	One year
07	Signal Generator	HP 8341B	2730A00804	September 11, 2012	One year
08	Amplifier	IXA-020	0401	No Calibration Requested	
09	BTS	E5515C	MY48360988	December 2, 2011	One year
10	E-field Probe	ES3DV3	3189	June 22, 2012	One year
11	DAE	DAE4	1317	January 23, 2012	One year
12	Validation Kit 835MHz	D835V2	4d020	August 26, 2011	Two years
13	Validation Kit 1900MHz	D1900V2	5d060	August 31, 2011	Two years
14	Validation Kit 2450MHz	D2450V2	786	August 29, 2011	Two years
15	Temperature Probe	JM222	AA1009129	March 15, 2012	One year
16	Hygrothermograph	WS-1	64591	September 27, 2012	One year

Table 9: List of Main Instruments

*****END OF REPORT BODY*****

ANNEX A: Test Layout

Picture 1: Specific Absorption Rate Test Layout

Report No. RXC1209-0833SAR01R3

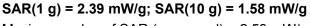
Picture 2: Liquid depth in the Flat Phantom (835 MHz, 15.2cm depth)

Picture 3: Liquid depth in the flat Phantom (1900 MHz, 15.4cm depth)

Report No. RXC1209-0833SAR01R3

Picture 4: Liquid depth in the flat Phantom (2450 MHz, 15.3cm depth)

ANNEX B: System Check Results


System Performance Check at 835 MHz Body TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Date/Time: 11/17/2012 10:01:24 AM Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.99 mho/m; ϵ_r = 55.10; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=15mm, Pin=250mW /Area Scan (41x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.54 mW/g

d=15mm, Pin=250mW /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.1 V/m; Power Drift = -0.035 dB Peak SAR (extrapolated) = 3.54 W/kg

Maximum value of SAR (measured) = 2.58 mW/g

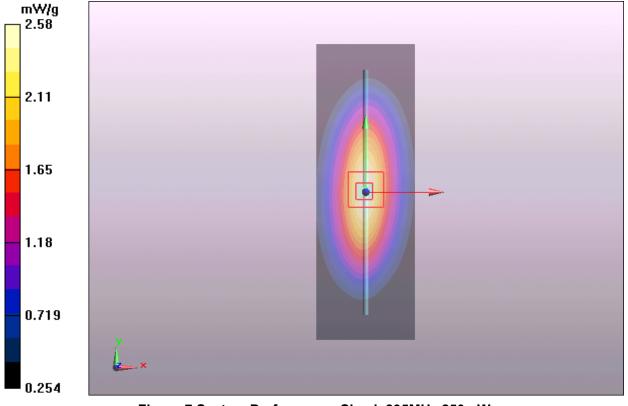
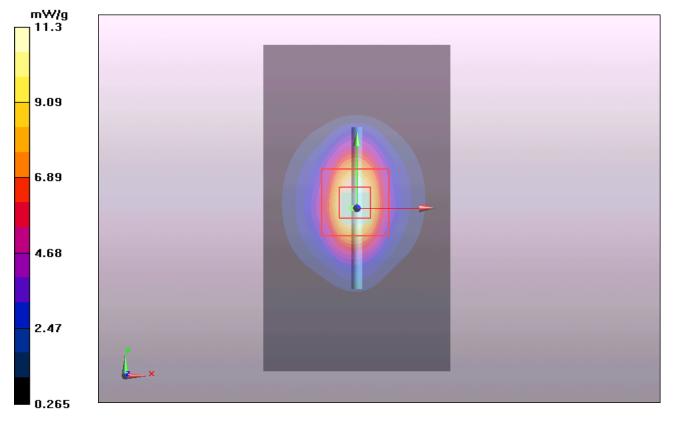


Figure 7 System Performance Check 835MHz 250mW

TA Technology (Shanghai) Co.	., Ltd.
Test Report	

System Performance Check at 1900 MHz Body TSL DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Date/Time: 11/19/2012 9:05:25 AM Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.52 mho/m; ε_r = 52.15; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 12.2 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.3 V/m; Power Drift = 0.068 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.25 mW/g

Maximum value of SAR (measured) = 11.3 mW/g

TA Technology (Shanghai) Co	<mark>., Ltd</mark> .
Test Report	

System Performance Check at 2450 MHz Body TSL DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Date/Time: 11/20/2012 1:39:25 PM Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.90 mho/m; ε_r = 51.69; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Probe: ES3DV3 - SN3189; ConvF(3.96, 3.96, 3.96); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 17.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.4 V/m; Power Drift = -0.093 dB Peak SAR (extrapolated) = 26.1 W/kg SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.27 mW/g Maximum value of SAR (measured) = 15 mW/g

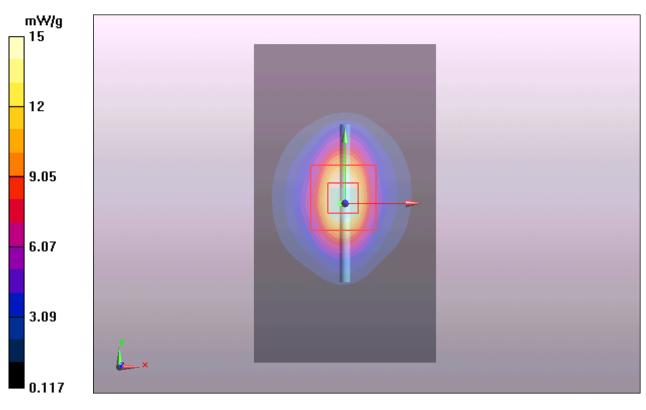


Figure 9 System Performance Check 2450MHz 250mW

ANNEX C: Graph Results

CDMA Cellular EVDO Rev.0 Test Position 1 Middle

Date/Time: 11/17/2012 11:23:06 AM Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; σ = 0.988 mho/m; ε_r = 55.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1 Middle /Area Scan (131x141x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.198 mW/g

Test Position 1 Middle /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.55 V/m; Power Drift = 0.017 dB Peak SAR (extrapolated) = 0.281 W/kg

SAR(1 g) = 0.182 mW/g; SAR(10 g) = 0.116 mW/g

Maximum value of SAR (measured) = 0.195 mW/g

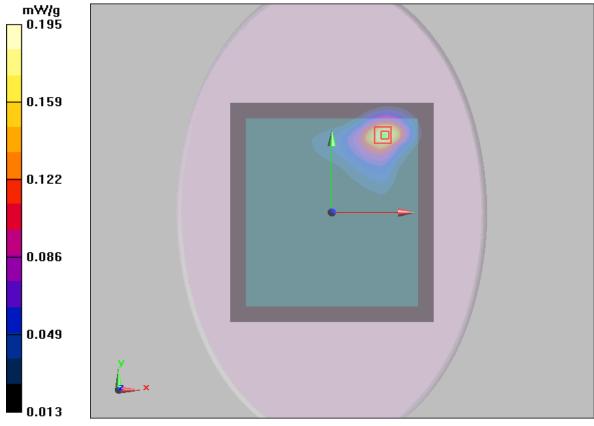


Figure 10 CDMA Cellular EVDO Rev.0 Test Position 1 Channel 384

TA Technology (Shangha	i) Co., Ltd
Test Report	

CDMA Cellular EVDO Rev.0 Test Position 3 Middle

Date/Time: 11/17/2012 12:08:38 PM Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; σ = 0.988 mho/m; ϵ_r = 55.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 3 Middle/Area Scan (61x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.269 mW/g

Test Position 3 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.88 V/m; Power Drift = 0.189 dB

Peak SAR (extrapolated) = 0.485 W/kg

SAR(1 g) = 0.239 mW/g; SAR(10 g) = 0.132 mW/g

Maximum value of SAR (measured) = 0.282 mW/g

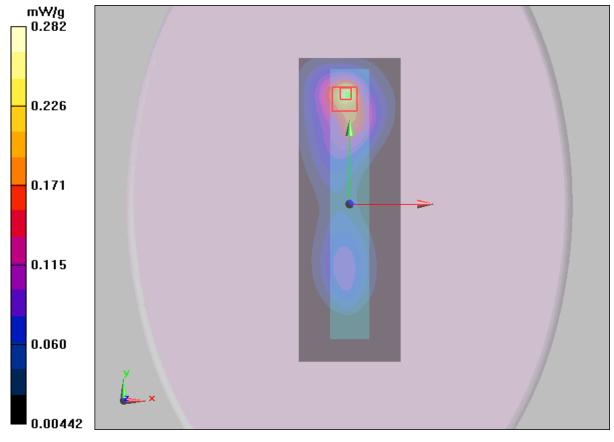


Figure 11 CDMA Cellular EVDO Rev.0 Test Position 3 Channel 384

Report No. RXC1209-0833SAR01R3

CDMA Cellular EVDO Rev.0 Test Position 4 High

Date/Time: 11/17/2012 1:00:58 PM Communication System: CDMA ; Frequency: 848.31 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 848.31 MHz; σ = 0.999 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5°C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 4 High/Area Scan (51x171x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.660 mW/g

Test Position 4 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.6 V/m; Power Drift = 0.048 dB Peak SAR (extrapolated) = 1.3 W/kg SAR(1 g) = 0.618 mW/g; SAR(10 g) = 0.337 mW/g Maximum value of SAR (measured) = 0.648 mW/g

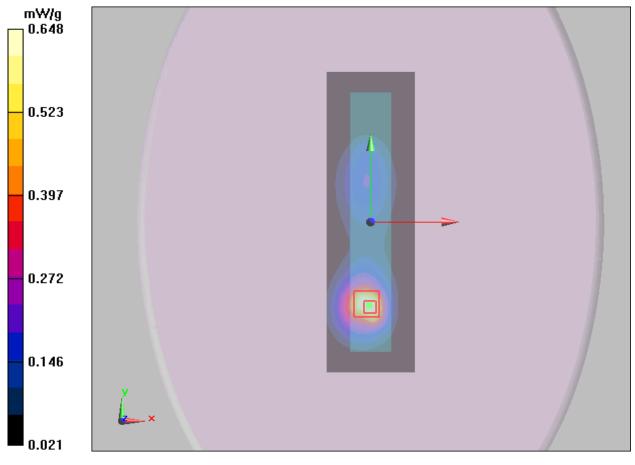


Figure 12 CDMA Cellular EVDO Rev.0 Test Position 4 Channel 777

TA Technology (Shangha	i) Co., Ltd
Test Report	

CDMA Cellular EVDO Rev.0 Test Position 4 Middle

Date/Time: 11/17/2012 12:38:18 PM Communication System: CDMA ; Frequency: 836.52 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; σ = 0.988 mho/m; ϵ_r = 55.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 4 Middle/Area Scan (51x171x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.495 mW/g

Test Position 4 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 9.5 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.472 mW/g; SAR(10 g) = 0.255 mW/g

Maximum value of SAR (measured) = 0.486 mW/g

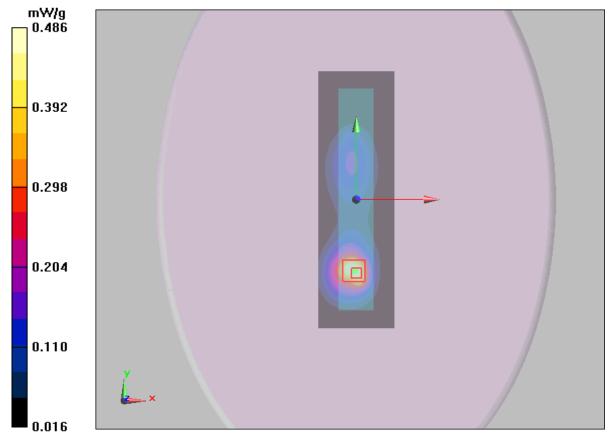
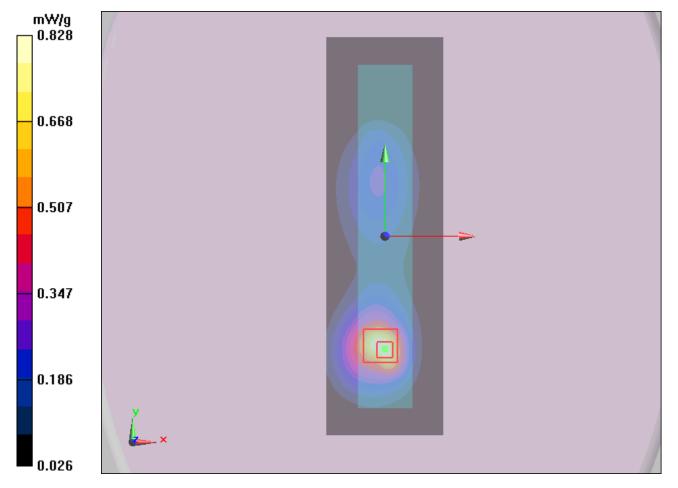


Figure 13 CDMA Cellular EVDO Rev.0 Test Position 4 Channel 384

Report No. RXC1209-0833SAR01R3


CDMA Cellular EVDO Rev.0 Test Position 4 Low

Date/Time: 11/17/2012 1:22:57 PM Communication System: CDMA ; Frequency: 824.7 MHz;Duty Cycle: 1:1 Medium parameters used: f = 825 MHz; σ = 0.977 mho/m; ϵ_r = 55.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(5.81, 5.81, 5.81); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 4 Low/Area Scan (51x171x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.804 mW/g

Test Position 4 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.5 V/m; Power Drift = -0.025 dB Peak SAR (extrapolated) = 1.65 W/kg SAR(1 g) = 0.771 mW/g; SAR(10 g) = 0.413 mW/g

Maximum value of SAR (measured) = 0.828 mW/g

Report No. RXC1209-0833SAR01R3

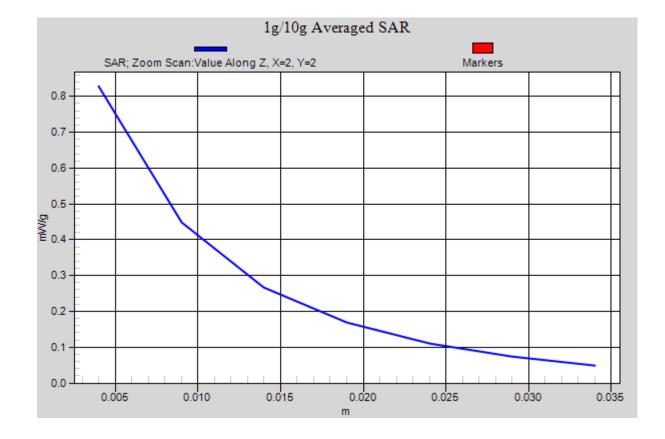


Figure 14 CDMA Cellular EVDO Rev.0 Test Position 4 Channel 1013

TA Technology (Shanghai) (Со.,	Ltd
Test Report		

CDMA PCS EVDO Rev.0 Test Position 1 Middle

Date/Time: 11/19/2012 1:39:51 PM Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1 Middle/Area Scan (131x141x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.250 mW/g

Test Position 1 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.41 V/m; Power Drift = 0.067 dB

Peak SAR (extrapolated) = 0.428 W/kg

SAR(1 g) = 0.248 mW/g; SAR(10 g) = 0.143 mW/g

Maximum value of SAR (measured) = 0.272 mW/g

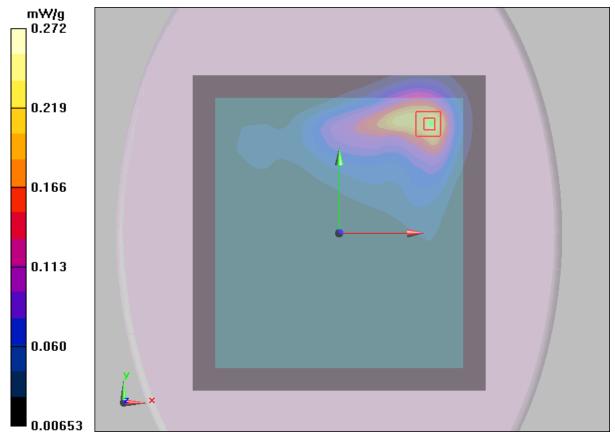


Figure 15 CDMA PCS EVDO Rev.0 Test Position 1 Channel 600

Report No. RXC1209-0833SAR01R3

CDMA PCS EVDO Rev.0 Test Position 3 High

Date/Time: 11/19/2012 12:39:04 PM Communication System: CDMA ; Frequency: 1908.75 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1909 MHz; σ = 1.53 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 3 High/Area Scan (51x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.01 mW/g

Test Position 3 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.96 V/m; Power Drift = 0.087 dB Peak SAR (extrapolated) = 2 W/kg SAR(1 g) = 0.980 mW/g; SAR(10 g) = 0.509 mW/g Maximum value of SAR (measured) = 1.1 mW/g

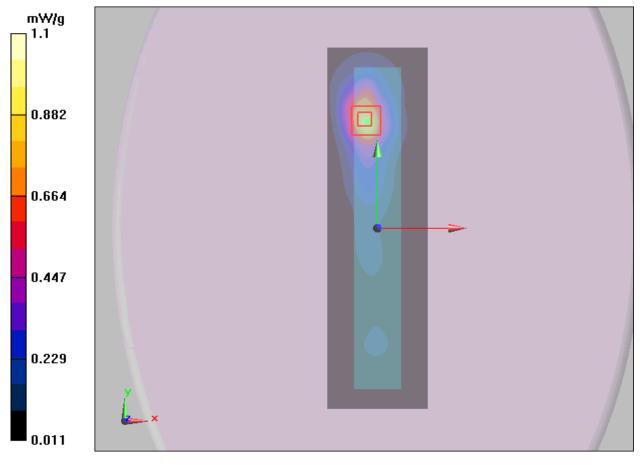


Figure 16 CDMA PCS EVDO Rev.0 Test Position 3 Channel 1175

TA Technology (Shanghai)	Co.,	Ltd
Test Report		

CDMA PCS EVDO Rev.0 Test Position 3 Middle

Date/Time: 11/19/2012 12:11:31 PM Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 3 Middle/Area Scan (51x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.08 mW/g

Test Position 3 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 8.36 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 2.01 W/kg

SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.543 mW/g

Maximum value of SAR (measured) = 1.17 mW/g

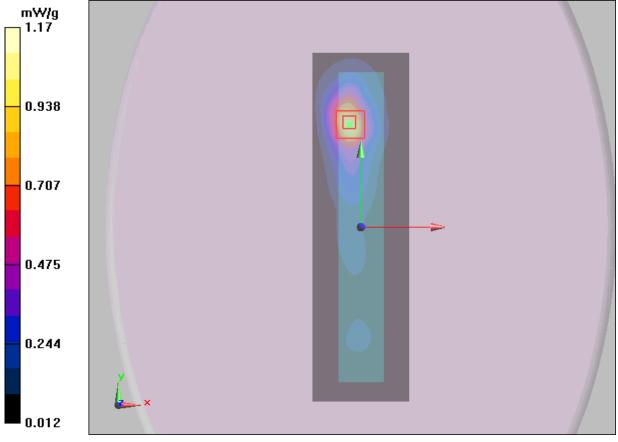
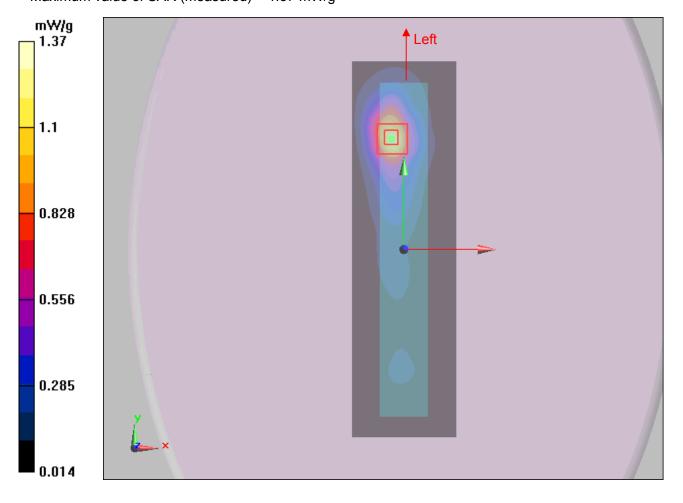


Figure 17 CDMA PCS EVDO Rev.0 Test Position 3 Channel 600


Report No. RXC1209-0833SAR01R3

CDMA PCS EVDO Rev.0 Test Position 3 Low

Date/Time: 11/19/2012 12:59:31 PM Communication System: CDMA ; Frequency: 1851.25 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1851.25 MHz; σ = 1.48 mho/m; ϵ_r = 52.5; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 3 Low/Area Scan (51x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.26 mW/g

Test Position 3 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.45 V/m; Power Drift = 0.083 dB Peak SAR (extrapolated) = 2.3 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.640 mW/g Maximum value of SAR (measured) = 1.37 mW/g

Report No. RXC1209-0833SAR01R3

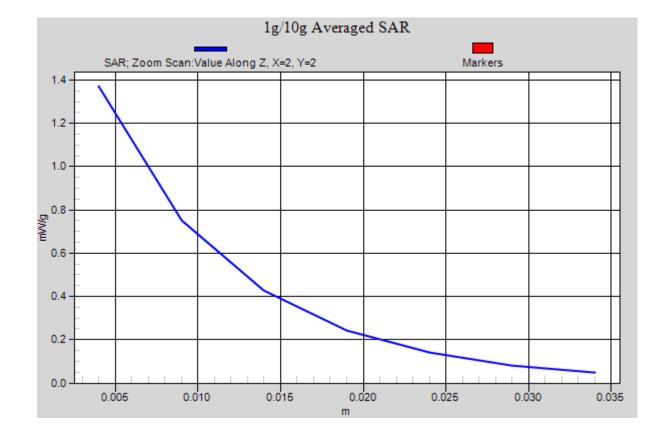


Figure 18 CDMA PCS EVDO Rev.0 Test Position 3 Channel 25

Report No. RXC1209-0833SAR01R3

CDMA PCS EVDO Rev.0 Test Position 4 High

Date/Time: 11/19/2012 10:54:25 AM Communication System: CDMA ; Frequency: 1908.75 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1909 MHz; σ = 1.53 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 4 High/Area Scan (51x171x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.946 mW/g

Test Position 4 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.5 V/m; Power Drift = -0.015 dB Peak SAR (extrapolated) = 1.63 W/kg SAR(1 g) = 0.917 mW/g; SAR(10 g) = 0.463 mW/g

Maximum value of SAR (measured) = 1.03 mW/g

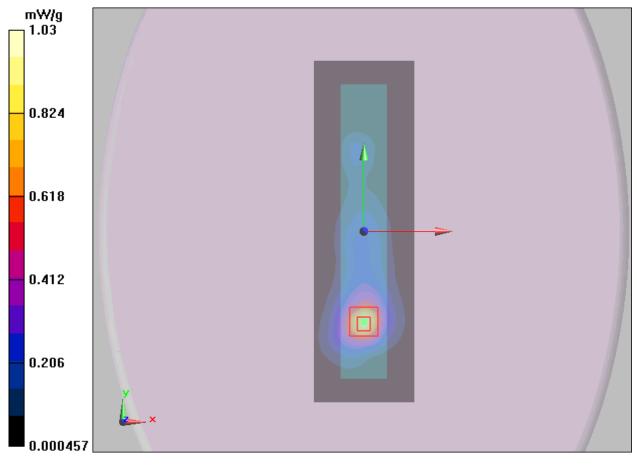


Figure 19 CDMA PCS EVDO Rev.0 Test Position 4 Channel 1175

TA Technology (Shanghai)	Co.,	Ltd
Test Report		

CDMA PCS EVDO Rev.0 Test Position 4 Middle

Date/Time: 11/19/2012 10:33:08 AM Communication System: CDMA ; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 52.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 4 Middle/Area Scan (51x171x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.997 mW/g

Test Position 4 Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 12.3 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 1.64 W/kg

```
SAR(1 g) = 0.932 mW/g; SAR(10 g) = 0.463 mW/g
```

Maximum value of SAR (measured) = 1.1 mW/g

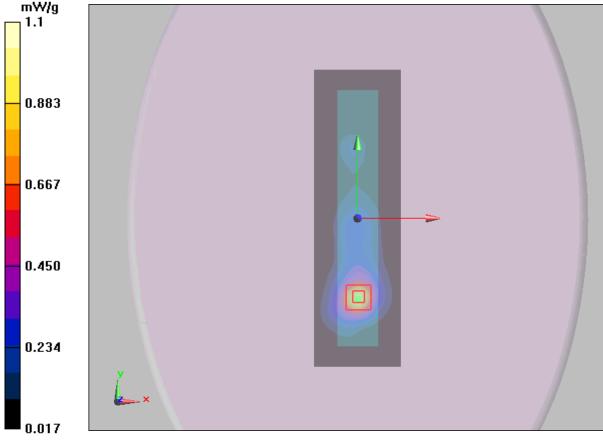


Figure 20 CDMA PCS EVDO Rev.0 Test Position 4 Channel 600

Report No. RXC1209-0833SAR01R3

CDMA PCS EVDO Rev.0 Test Position 4 Low

Date/Time: 11/19/2012 11:14:14 AM Communication System: CDMA ; Frequency: 1851.25 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1851.25 MHz; σ = 1.48 mho/m; ϵ_r = 52.5; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(4.36, 4.36, 4.36); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 4 Low/Area Scan (51x171x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.22 mW/g

Test Position 4 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.6 V/m; Power Drift = -0.095 dB Peak SAR (extrapolated) = 1.99 W/kg SAR(1 g) = 1.19 mW/g; SAR(10 g) = 0.621 mW/g Maximum value of SAR (measured) = 1.39 mW/g

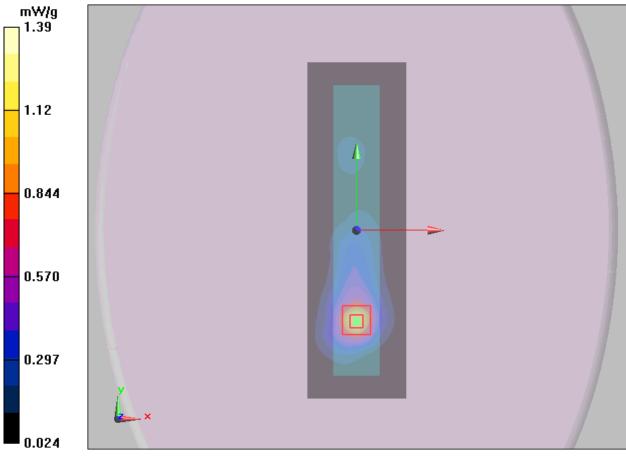


Figure 21 CDMA PCS EVDO Rev.0 Test Position 4 Channel 25

Report No. RXC1209-0833SAR01R3

802.11g Test Position 1 High

Date/Time: 11/20/2012 4:22:28 PM Communication System: 802.11g; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; σ = 1.92 mho/m; ϵ_r = 51.7; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(3.96, 3.96, 3.96); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 1 High/Area Scan (131x141x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.033 mW/g

Test Position 1 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.099 dB Peak SAR (extrapolated) = 0.035 W/kg SAR(1 g) = 0.010 mW/g; SAR(10 g) = 0.005 mW/g Maximum value of SAR (measured) = 0.014 mW/g

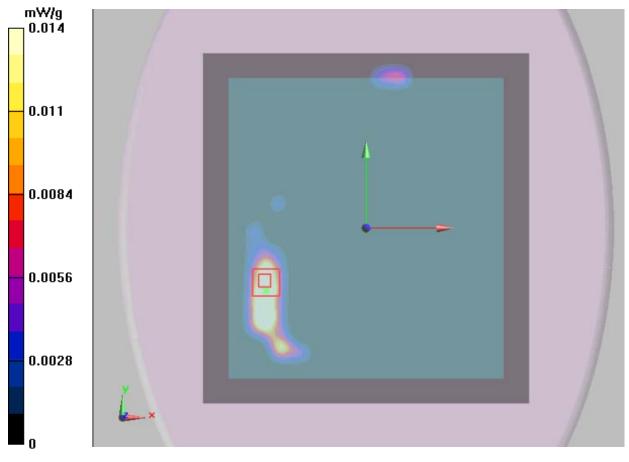
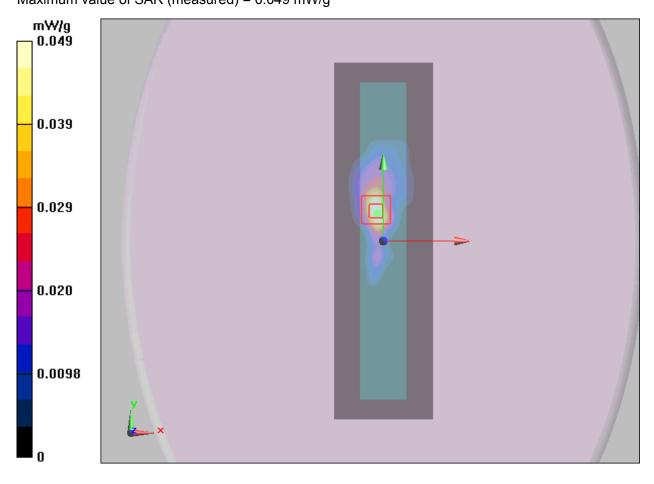


Figure 22 802.11g Test Position 1 Channel 11


Report No. RXC1209-0833SAR01R3

802.11g Test Position 2 High

Date/Time: 11/20/2012 3:00:18 PM Communication System: 802.11g; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; σ = 1.92 mho/m; ϵ_r = 51.7; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(3.96, 3.96, 3.96); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 2 High /Area Scan (51x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.055 mW/g

Test Position 2 High /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.45 V/m; Power Drift = 0.109 dB Peak SAR (extrapolated) = 0.091 W/kg SAR(1 g) = 0.042 mW/g; SAR(10 g) = 0.019 mW/g Maximum value of SAR (measured) = 0.049 mW/g

Report No. RXC1209-0833SAR01R3

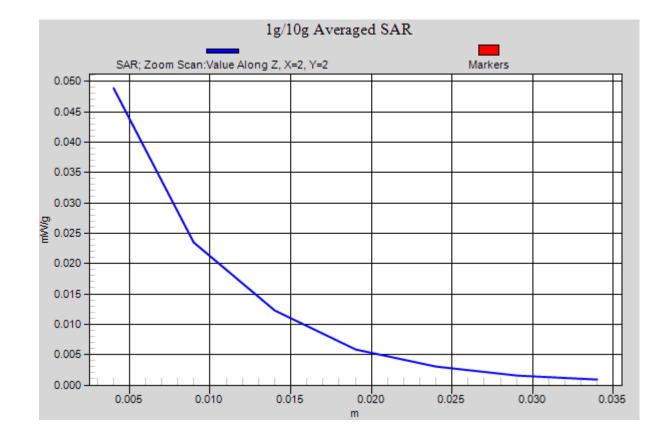
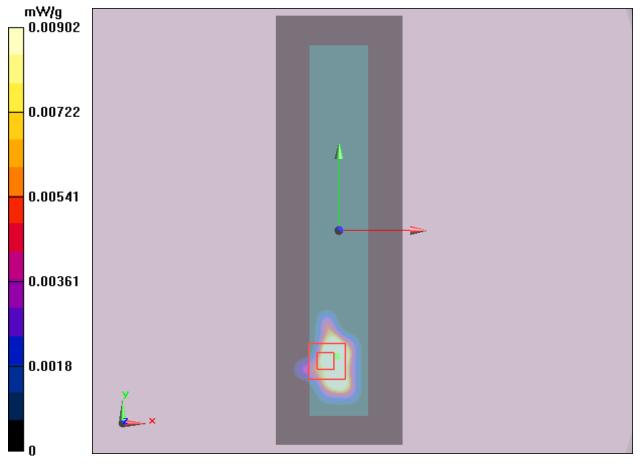


Figure 23 802.11g Test Position 2 Channel 11

Report No. RXC1209-0833SAR01R3


802.11g Test Position 5 High

Date/Time: 11/20/2012 3:23:35 PM Communication System: 802.11g; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; σ = 1.92 mho/m; ϵ_r = 51.7; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ES3DV3 - SN3189; ConvF(3.96, 3.96, 3.96); Calibrated: 6/22/2012 Electronics: DAE4 Sn1317; Calibrated: 1/23/2012 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Test Position 5 High/Area Scan (51x171x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.024 mW/g

Test Position 5 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.199 dB Peak SAR (extrapolated) = 0.020 W/kg SAR(1 g) = 0.009 mW/g; SAR(10 g) = 0.003 mW/g

Maximum value of SAR (measured) = 0.00902 mW/g

ANNEX D: Probe Calibration Certificate

ne Swiss Accreditation Servio ultilateral Agreement for the			
ultilateral Agreement for the		a stiff a stars	
	-		
ient TA-Shanghai	(Auden)	Certificate No:	ES3-3189_Jun12
ALIBRATION	CERTIFICATE		
Dbject	ES3DV3 - SN:318	39	
Calibration procedure(s)	Course was a service and a service of the service o	A CAL-12.v7, QA CAL-23.v4, QA dure for dosimetric E-field probes	CAL-25.v4
Calibration date:	June 22, 2012		
The measurements and the unc	certainties with confidence pr	nal standards, which realize the physical units obability are given on the following pages and y facility: environment temperature (22 ± 3)°C a	are part of the certificate.
The measurements and the unc	certainties with confidence pr ucted in the closed laborator	obability are given on the following pages and	are part of the certificate.
The measurements and the unc All calibrations have been cond Calibration Equipment used (Mi	certainties with confidence pr ucted in the closed laborator	obability are given on the following pages and a y facility: environment temperature (22 ± 3)°C a	are part of the certificate. and humidity < 70%.
The measurements and the uncount of the second calibration Equipment used (Mi Primary Standards	sertainties with confidence pr ucted in the closed laborator &TE critical for calibration)	obability are given on the following pages and a y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.)	are part of the certificate.
The measurements and the uncount All calibrations have been cond Calibration Equipment used (Mit Primary Standards Power meter E4419B	sertainties with confidence pr ucted in the closed laborator &TE critical for calibration)	obability are given on the following pages and a y facility: environment temperature (22 ± 3)°C a	are part of the certificate. and humidity < 70%. Scheduled Calibration
The measurements and the uncount All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E4419B Power sensor E4412A	ertainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874	obability are given on the following pages and a y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-13
The measurements and the uncount of the condition of the	artainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-13 Apr-13
The measurements and the unc All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	artainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c)	Obability are given on the following pages and a y facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13
The measurements and the uncount NI calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator	artainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-0151) 27-Mar-12 (No. 217-01529)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13
The measurements and the unconstruction Equipment used (Mi Calibration Equipment used (Mi Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	artainties with confidence pr ucted in the closed laboratory &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531) 27-Mar-12 (No. 217-01532)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Apr-13
The measurements and the unconstruction of the second of t	artainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531) 27-Mar-12 (No. 217-01532) 29-Dec-11 (No. ES3-3013_Dec11) 10-Jan-12 (No. DAE4-660_Jan12)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-12 Jan-13 *
The measurements and the uncount of the control of the uncount of	artainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5056 (20b) SN: S5129 (30b) SN: 3013 SN: 660	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531) 27-Mar-12 (No. 217-01532) 29-Dec-11 (No. ES3-3013_Dec11) 10-Jan-12 (No. DAE4-660_Jan12) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-12 Jan-13 Scheduled Check
The measurements and the uncount All calibrations have been cond Calibration Equipment used (Mil Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	Artainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531) 27-Mar-12 (No. 217-01532) 29-Dec-11 (No. ES3-3013_Dec11) 10-Jan-12 (No. DAE4-660_Jan12)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-12 Jan-13 *
The measurements and the unc All calibrations have been cond Calibration Equipment used (Mil Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	Artainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55056 (20b) SN: 55129 (30b) SN: 3013 SN: 3013 SN: 660 ID US3642U01700	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01529) 29-Dec-11 (No. ES3-3013_Dec11) 10-Jan-12 (No. DAE4-660_Jan12) Check Date (in house) 4-Aug-99 (in house check Apr-11)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-12 Jan-13 Scheduled Check In house check: Apr-13 In house check: Oct-12
The measurements and the unc	artainties with confidence pr ucted in the closed laborator &TE critical for calibration) ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 660 ID US3642U01700	Cal Date (Certificate No.) 29-Mar-12 (No. 217-01508) 29-Mar-12 (No. 217-01508) 29-Mar-12 (No. 217-01508) 27-Mar-12 (No. 217-01531) 27-Mar-12 (No. 217-01532) 29-Dec-11 (No. ES3-3013_Dec11) 10-Jan-12 (No. DAE4-660_Jan12) Check Date (in house) 4-Aug-99 (in house check Apr-11) 18-Oct-01 (in house check Oct-11)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-13 Apr-13 Apr-13 Apr-13 Apr-13 Dec-12 Jan-13 Scheduled Check In house check: Apr-13

Certificate No: ES3-3189_Jun12

Page 1 of 11

Report No. RXC1209-0833SAR01R3

Page 64 of 106

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- SWISS OPLARATO S
 - Schweizerischer Kalibrierdienst Service suisse d'étalonnage
 - Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization &	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3189_Jun12

Page 2 of 11

ES3DV3 - SN:3189

June 22, 2012

Probe ES3DV3

SN:3189

Manufactured: Calibrated: March 25, 2008 June 22, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3189_Jun12

Page 3 of 11

Page 65 of 106

ES3DV3- SN:3189

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.32	1.35	1.05	± 10.1 %
DCP (mV) ⁸	99.5	100.6	100.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	CW	0.00	X	0.00	0.00	1.00	160.3	±3.8 %
			Y	0.00	0.00	1.00	164.9	
			Z	0.00	0.00	1.00	182.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
⁹ Numerical linearization parameter: uncertainty not required.
⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field unclear. field value.

Certificate No: ES3-3189_Jun12

Page 4 of 11

ES3DV3- SN:3189

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	45.3	0.87	6.83	6.83	6.83	0.25	1.06	± 13.4 %
450	43.5	0.87	6.37	6.37	6.37	0.14	1.67	± 13.4 %
835	41.5	0.90	5.81 5.81		5.81 5.81	0.63	1.24	± 12.0 %
1750	40.1	1.37	4.90		4.90	4.90 0.80 4.69 0.62	1.14 1.31	± 12.0 %
1900	40.0	1.40	4.69		4.69			
2450	0 39.2 1.80 4.14		4.14	4.14	0.65	1.36	± 12.0 %	

C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
⁷ At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: ES3-3189_Jun12

Page 5 of 11

ES3DV3-SN:3189

June 22, 2012

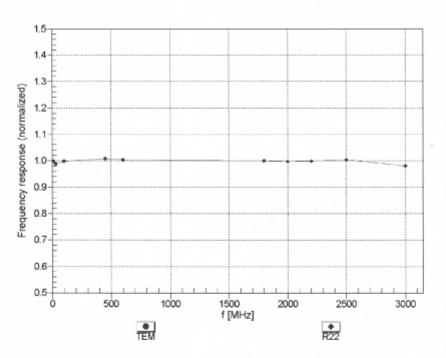
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
300	58.2	0.92	0.92 6.53 6		6.53 6.53	0.23	1.90	± 13.4 %
450	56.7	0.94	6.73	6.73	6.73	0.10	1.00	± 13.4 %
835	55.2	0.97	5.81	5.81	5.81	0.54	1.33	± 12.0 %
1750	53.4	1.49	4.65	4.65	4.65	0.67	1.38	± 12.0 %
1900	53.3	1.52	4.36	4.36 3.96	4.36 3.96	0.62	1.40 0.99	± 12.0 %
2450	52.7	1.95	3.96					

Calibration Parameter Determined in Body Tissue Simulating Media

C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ⁷ At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: ES3-3189_Jun12

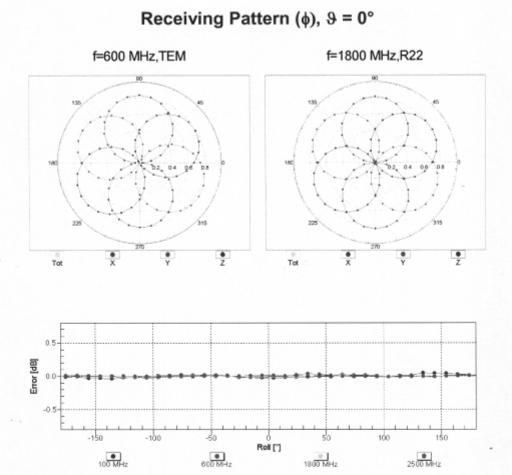

Page 6 of 11

Report No. RXC1209-0833SAR01R3

June 22, 2012

ES3DV3- SN:3189

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

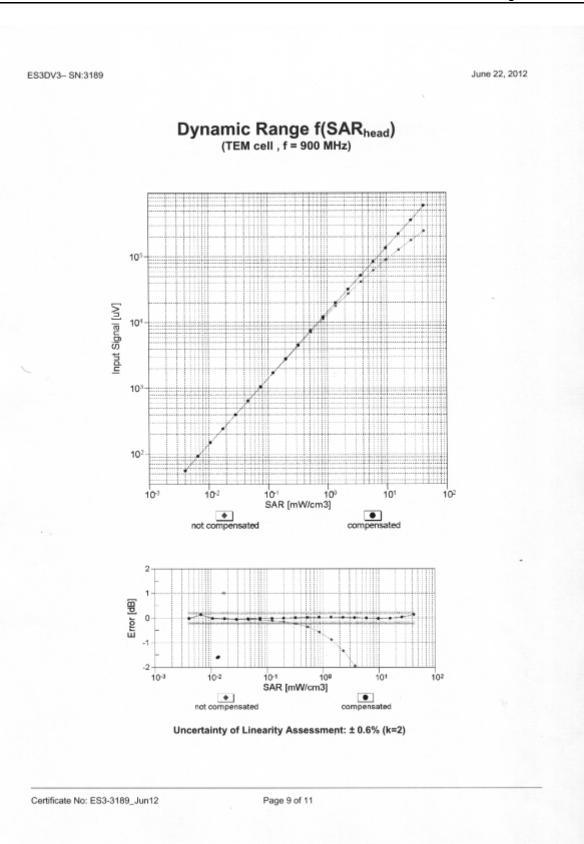

Certificate No: ES3-3189_Jun12

Page 7 of 11

Report No. RXC1209-0833SAR01R3

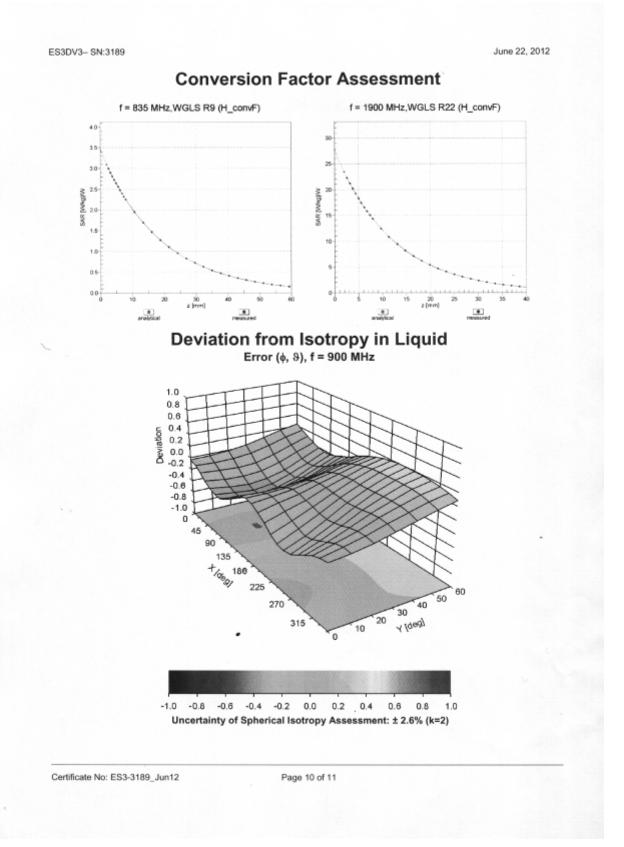
ES3DV3- SN:3189

June 22, 2012


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3189_Jun12

Page 8 of 11


Report No. RXC1209-0833SAR01R3

Page 71 of 106

Report No. RXC1209-0833SAR01R3

Page 72 of 106

Report No. RXC1209-0833SAR01R3

ES3DV3- SN:3189

June 22, 2012

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3189

Other Probe Parameters

Triangular
54.1
enabled
disabled
337 mm
10 mm
10 mm
4 mm
2 mm
2 mm
2 mm
3 mm

Certificate No: ES3-3189_Jun12

Page 11 of 11

ANNEX E: D835V2 Dipole Calibration Certificate

		Wellingen OKK	Swiss Calibration Service
ccredited by the Swiss Accredita he Swiss Accreditation Servic lultilateral Agreement for the r	e is one of the signatorie	s to the EA	No.: SCS 108
llent TA-Shanghai (A	Auden)	Certificate N	o: D835V2-4d020_Aug11
CALIBRATION C	CERTIFICATE	Contractor of the prop	
Dbject	D835V2 - SN: 4d	020	
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	August 26, 2011		
	집 동안은 가지가 지않고 같아? 저 친구가 많은 것이 같다.	onal standards, which realize the physical ur robability are given on the following pages ar	
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&	rtainties with confidence p cted in the closed laborator TE critical for calibration)		nd are part of the certificate. C and humidity < 70%.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards	rtainties with confidence p cted in the closed laborato FE critical for calibration)	robability are given on the following pages ar y facility: environment temperature (22 ± 3) ^o Cal Date (Certificate No.)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A	International state of the closed laborator of the closed laborator of the closed laborator of the critical for calibration)	robability are given on the following pages ar y facility: environment temperature (22 ± 3) ^{on} Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	International contribution of the closed laborator of the closed laborator of the critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	International state of the closed laborator of the closed laborator of the closed laborator of the critical for calibration)	robability are given on the following pages ar y facility: environment temperature (22 ± 3) ^{on} Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 SN: S5086 (20b)	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205	robability are given on the following pages ar y facility: environment temperature (22 ± 3) ^o Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: S5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: S5047.2 / 06327 SN: 3205 SN: 601 ID # ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 = ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the unce	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: S5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11

Certificate No: D835V2-4d020_Aug11

Report No. RXC1209-0833SAR01R3

Page 75 of 106

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS Z

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d020_Aug11

S Schweizer C Service su Servicio sv S Swiss Cali

Report No. RXC1209-0833SAR01R3

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

Contraction of the second states of the second stat	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.32 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.34 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.52 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	0.99 mha/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.42 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.46 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	1
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW inpút power	1.59 mW / g

Certificate No: D835V2-4d020_Aug11

Report No. RXC1209-0833SAR01R3

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 3.1 jΩ	
Return Loss	- 27.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω - 5.4 jΩ
Return Loss	- 25.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.391 ns	Electrical Delay (one direction)	1.391 ns
---	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

2

Manufactured by	SPEAG
Manufactured on	April 22, 2004

Certificate No: D835V2-4d020_Aug11

Page 4 of 8

Report No. RXC1209-0833SAR01R3

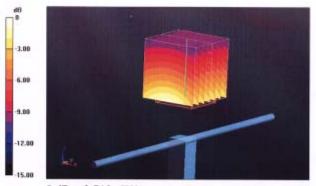
Page 78 of 106

DASY5 Validation Report for Head TSL

Date: 25.08.2011

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

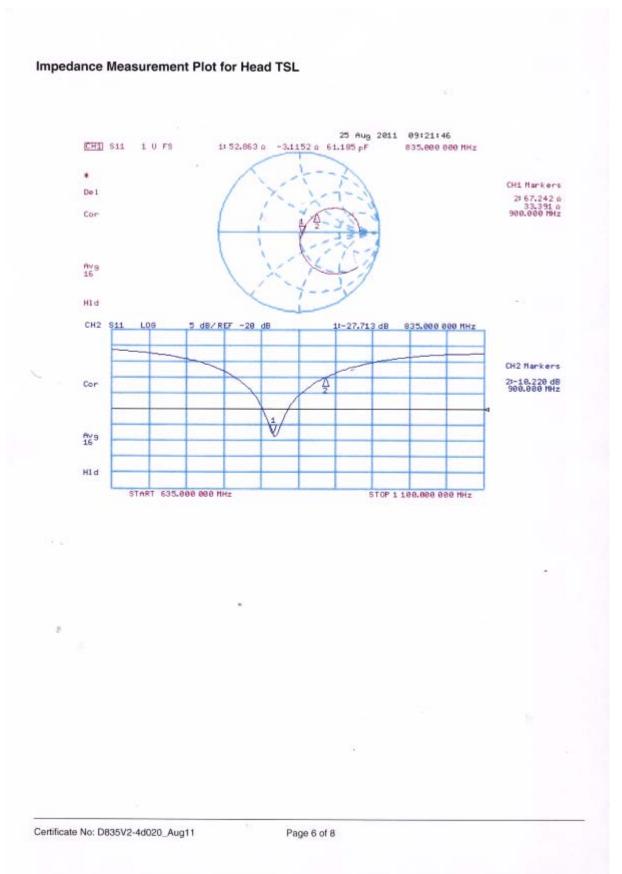

Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.89 mho/m; ϵ_r = 41.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

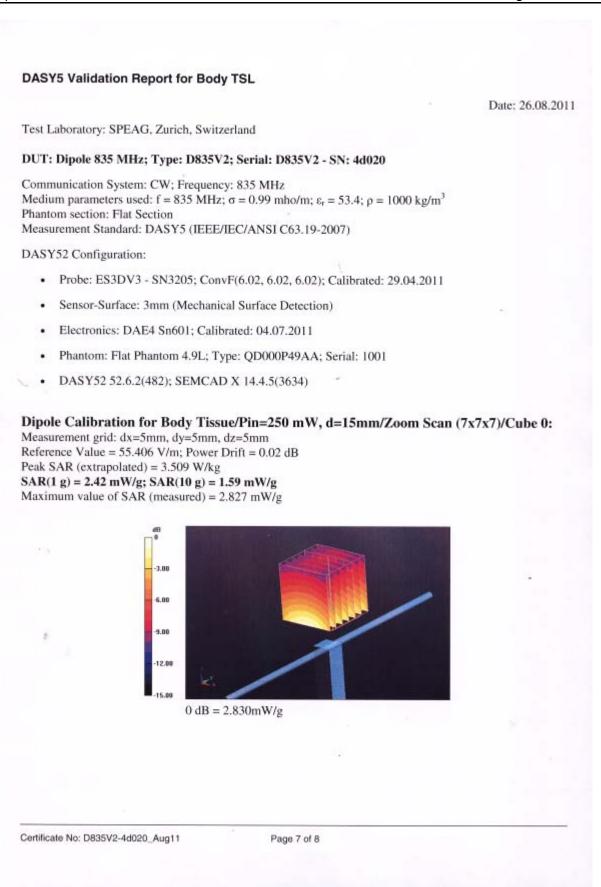
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.930 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.421 W/kg SAR(1 g) = 2.32 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.708 mW/g

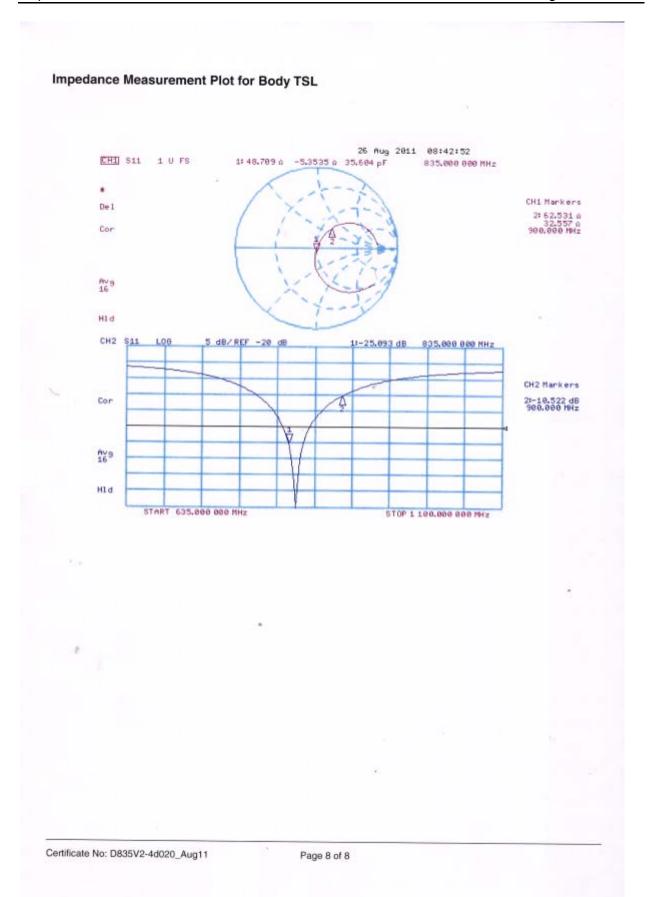

 $0 \, dB = 2.710 \, mW/g$

Certificate No: D835V2-4d020_Aug11

Page 5 of 8


Report No. RXC1209-0833SAR01R3

Page 79 of 106


Report No. RXC1209-0833SAR01R3

Page 80 of 106

Report No. RXC1209-0833SAR01R3

Page 81 of 106

ANNEX F: D1900V2 Dipole Calibration Certificate

Engineering AG leughausstrasse 43, 8004 Zurio	ry of	IBC MRA	S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
Accredited by the Swiss Accredit The Swiss Accreditation Servic fulfilateral Agreement for the	e is one of the signatori	es to the EA	tion No.: SCS 108
Client TA-Shanghai (No: D1900V2-5d060_Aug1
CALIBRATION			
Object	D1900V2 - SN: 5	0060	A CONTRACTOR OF THE
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	edure for dipole validation kits a	bove 700 MHz
Calibration date:	August 31, 2011		
	ingenen, men		
The measurements and the unce	ertainties with confidence p	ional standards, which realize the physical probability are given on the following pages ry facility: environment temperature (22 ± 3	and are part of the certificate.
The measurements and the unc	ertainties with confidence p	robability are given on the following pages	and are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards	ertainties with confidence p icted in the closed laborato TE critical for calibration)	robability are given on the following pages ny facility: environment temperature (22 ± 3 Cal Date (Certificate No.)	and are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A	ertainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704	robability are given on the following pages ny facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 06-Oct-10 (No. 217-01286)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	ertainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783	robability are given on the following pages ny facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ertainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b)	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ertainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 -
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ertainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ertainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Jul-12
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ertainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ertainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 3205 SN: 601 ID # MY41092317	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Jul-12 Scheduled Check In house check: Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ertainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ertainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. 217-01371) 29-Apr-11 (No. DAE4-601_Jul11) Ot-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the unce	ertainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ertainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 55086 (20b) SN: 55047.2 / 06327 SN: 3205 SN: 601 ID # ID # MY41092317 100005 US37390585 S4206	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. 217-01371) 29-Apr-11 (No. DAE4-601_Jul11) Ot-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: D1900V2-5d060_Aug11

Page 1 of 8

Report No. RXC1209-0833SAR01R3

Page 83 of 106

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

GWISS CRU RATIO

S

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
- reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d060_Aug11

Report No. RXC1209-0833SAR01R3

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.30 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mhō/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.57 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.55 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.0 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d060_Aug11

Report No. RXC1209-0833SAR01R3

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.6 Ω + 7.5 jΩ	
Return Loss	- 22.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.3 Ω + 7.9 jΩ	
Return Loss	- 21.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.194 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

2

Manufactured by	SPEAG
Manufactured on	December 10, 2004

Page 4 of 8

Report No. RXC1209-0833SAR01R3

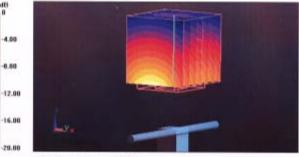
Page 86 of 106

Date: 30.08.2011

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

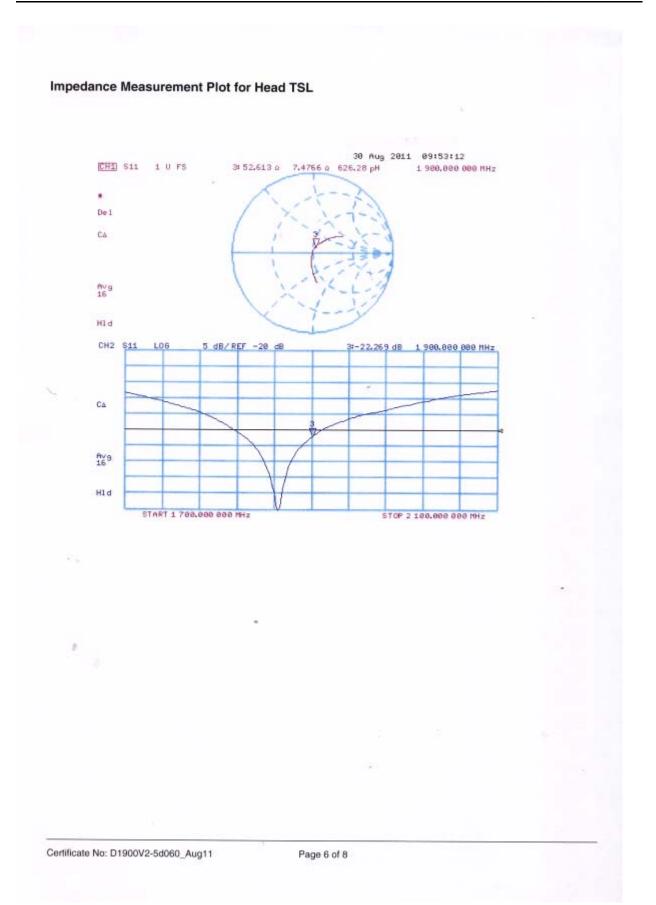

Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.42 mho/m; ϵ_r = 39.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 29.04.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

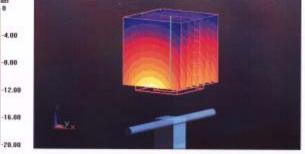
Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.636 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 18.535 W/kg SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.3 mW/g Maximum value of SAR (measured) = 12.600 mW/g


 $0 \, dB = 12.600 \, mW/g$

Certificate No: D1900V2-5d060_Aug11

Page 5 of 8

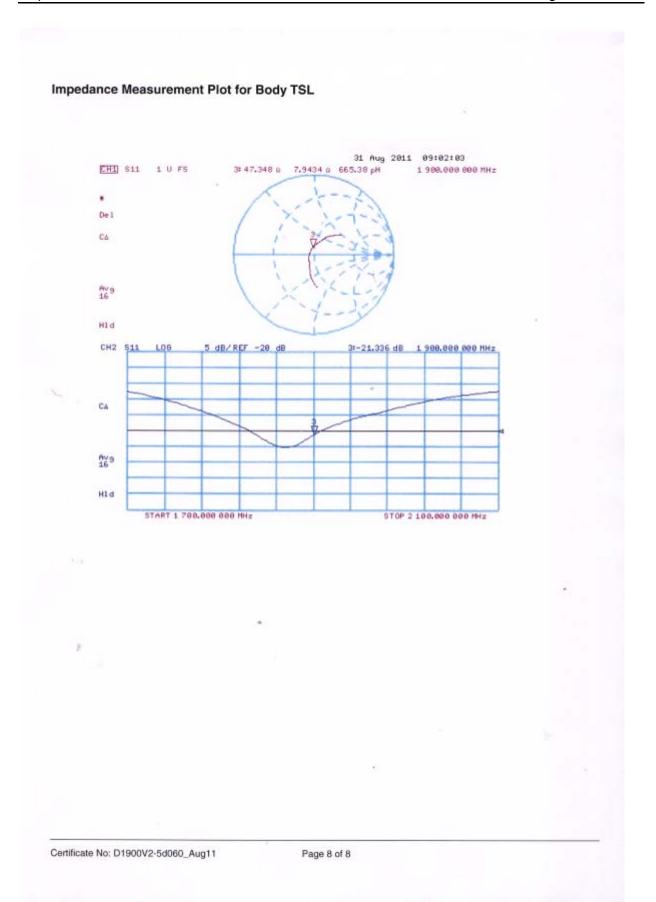
Report No. RXC1209-0833SAR01R3


Page 87 of 106

Report No. RXC1209-0833SAR01R3

Page 88 of 106

DASY5 Validation Report for Body TSL Date: 31.08.2011 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.57 \text{ mho/m}$; $\epsilon_r = 53.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 29.04.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) ٠ Electronics: DAE4 Sn601; Calibrated: 04.07.2011 ٠ Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 ٠ DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) ٠ Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.435 V/m; Power Drift = -0.0099 dB Peak SAR (extrapolated) = 18.663 W/kg SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.55 mW/g Maximum value of SAR (measured) = 13.397 mW/g


0 dB = 13.400mW/g

Certificate No: D1900V2-5d060_Aug11

Page 7 of 8

Report No. RXC1209-0833SAR01R3

Page 89 of 106

Report No. RXC1209-0833SAR01R3

Page 90 of 106

ANNEX G: D2450V2 Dipole Calibration Certificate

Schmid & Partner Engineering AG eughausstrasse 43, 8004 Zurio	ry of	Hac MRA	Service suisse d'étalonnage Servizio svizzero di taratura
Accredited by the Swiss Accredit The Swiss Accreditation Servic Multilateral Agreement for the	ce is one of the signatorie	es to the EA	on No.: SCS 108
Client TA-Shanghai (and to four subscription of the second s	lo: D2450V2-786_Aug11
	D2450V2 - SN: 7		
Calibration procedure(s)	QA CAL-05.v8 Calibration proce	odure for dipole validation kits ab	ove 700 MHz
Calibration date:	August 29, 2011		
	1109001 201 2011	amenterstonen medannen van der	HINE DAY AND THE AVERAGE STREET
The measurements and the unco	ertainties with confidence p	ional standards, which realize the physical u probability are given on the following pages a ry facility: environment temperature (22 ± 3)	and are part of the certificate.
The measurements and the unco All calibrations have been condu Calibration Equipment used (M&	ertainties with confidence p ucted in the closed laborato TE critical for calibration)	robability are given on the following pages a	and are part of the certificate.
The measurements and the unco All calibrations have been condu Calibration Equipment used (M& Primary Standards	ertainties with confidence p ucted in the closed laborato TE critical for calibration)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	nd are part of the certificate. *C and humidity < 70%. Scheduled Calibration
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A	ertainties with confidence p ucted in the closed laborato TE critical for calibration) ID # GB37480704	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	C and humidity < 70%. Scheduled Calibration
The measurements and the unco All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	ertainties with confidence p ucted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ertainties with confidence p ucted in the closed laborato TE critical for calibration) ID # GB37480704	robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	C and humidity < 70%. Scheduled Calibration
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ertainties with confidence p ucted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b)	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 09-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367)	C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ertainties with confidence p inted in the closed laborato interaction of the calibration ID # GB37480704 US37292783 SN: S5086 (20b) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 09-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371)	C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 -
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ertainties with confidence p inted in the closed laborato (TE critical for calibration) (D #) (GB37480704 US37292783 SN: S5086 (20b) SN: S5086 (20b) SN: S5086 (20b) SN: S5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12
The measurements and the unco All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ertainties with confidence p inted in the closed laborato (TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: S5086 (Cal Date (Certificate No.) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12 Scheduled Check
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ertainties with confidence p inted in the closed laborato (TE critical for calibration) (D #) (GB37480704 US37292783 SN: S5086 (20b) SN: S5086 (20b) SN: S5086 (20b) SN: S5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11)	C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Apr-12 Jul-12
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ertainties with confidence p inted in the closed laborato (TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20b) SN: S5086 (Cal Date (Certificate No.) Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11
The measurements and the unco All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ertainties with confidence p inted in the closed laborato ITE critical for calibration) ID # GB37480704 US37292783 SN: 55086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	and are part of the certificate. *C and humidity < 70%. *C and humidity < 70
The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ertainties with confidence p inted in the closed laborato (TE critical for calibration) BD # GB37480704 US37292783 SN: S5086 (20b) SN: S5086 (20b) SN: S5086 (20b) SN: 5047.2 / 06327 SN: 3205 SN: 601 BD # ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 29-Mar-11 (No. 217-01367) 29-Mar-11 (No. 217-01371) 29-Apr-11 (No. ES3-3205_Apr11) 04-Jul-11 (No. DAE4-601_Jul11) Check Date (in house) 18-Oct-02 (in house check Oct-09) 04-Aug-99 (in house check Oct-09)	and are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-11 Oct-11 Apr-12 Apr-12 Jul-12 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: D2450V2-786_Aug11

Page 1 of 8

Report No. RXC1209-0833SAR01R3

Page 91 of 106

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS SP Z Z BIJORATO

s

С

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-786_Aug11

Report No. RXC1209-0833SAR01R3

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.8 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.41 mW / g

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mhơ/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.7 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.10 mW / g

Certificate No: D2450V2-786_Aug11

Report No. RXC1209-0833SAR01R3

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.0 Ω + 2.4 jΩ	
Return Loss	- 25.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.4 Ω + 3.5 jΩ	
Return Loss	- 29.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

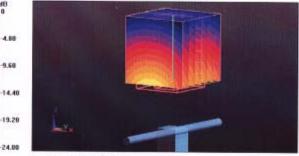
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	May 06, 2005	

Page 4 of 8

Report No. RXC1209-0833SAR01R3

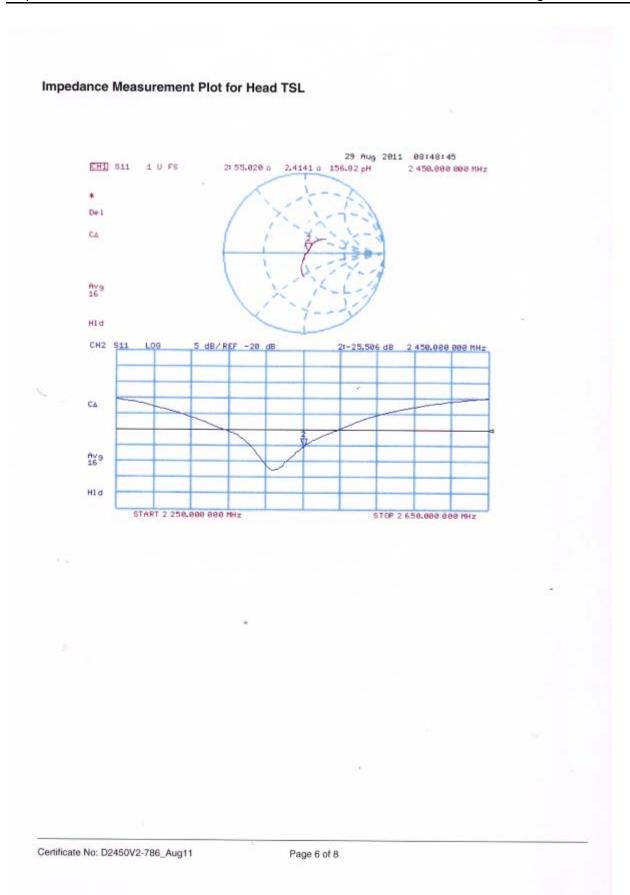

Page 94 of 106

DASY5 Validation Report for Head TSL Date: 29.08.2011 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_t = 38.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011 • Sensor-Surface: 3mm (Mechanical Surface Detection)

- · Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

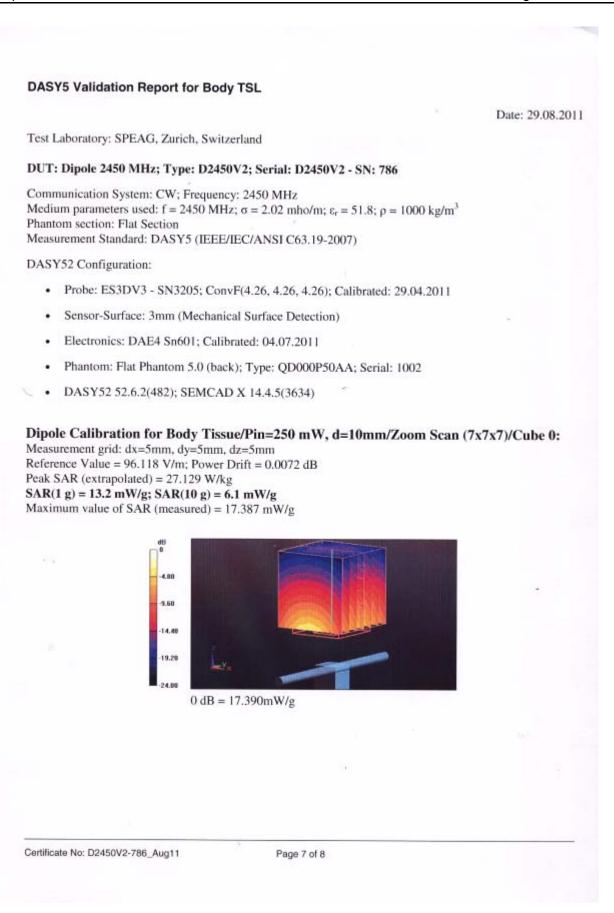
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.5 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 28.303 W/kg SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.41 mW/g Maximum value of SAR (measured) = 17.561 mW/g

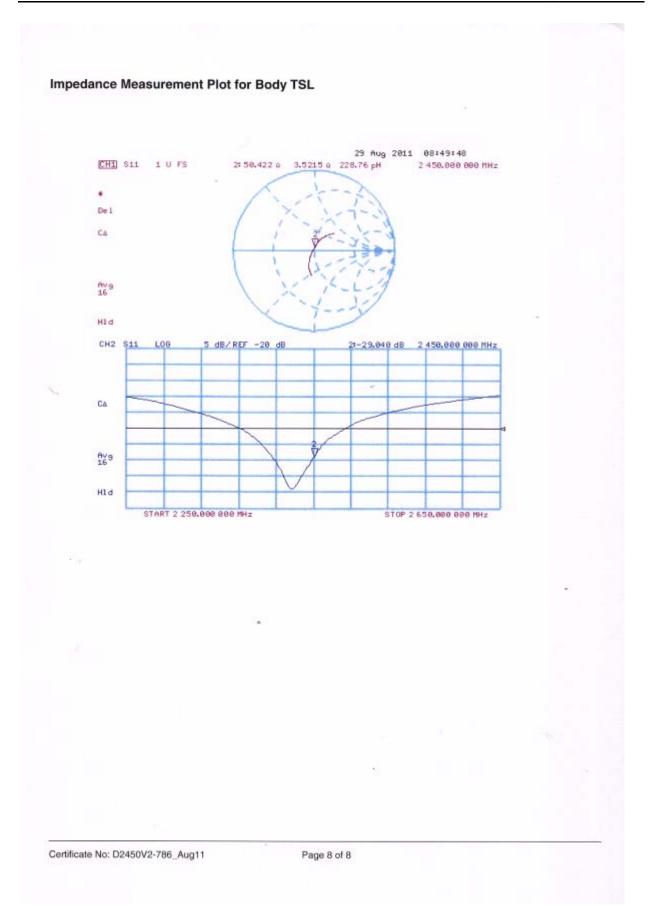

0 dB = 17.560 mW/g

Certificate No: D2450V2-786_Aug11

Page 5 of 8


Report No. RXC1209-0833SAR01R3

Page 95 of 106


Report No. RXC1209-0833SAR01R3

Page 96 of 106

Report No. RXC1209-0833SAR01R3

Page 97 of 106

Report No. RXC1209-0833SAR01R3

Page 98 of 106

ANNEX H: DAE4 Calibration Certificate

Calibration Laborator Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zuric	5-	IDC MRA	ISS Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
Accredited by the Swiss Accredita The Swiss Accreditation Service Multilateral Agreement for the r	e is one of the signatories		Accreditation No.: SCS 108
Client TA Shanghai (Auden)		Certificate No: DAE4-1317_Jan12
CALIBRATION O	ERTIFICATE		August and a state of the second s
Object	DAE4 - SD 000 D	04 BJ - SN: 1317	
Calibration procedure(s)	QA CAL-06.v24 Calibration procee	dure for the data acqu	uisition electronics (DAE)
Calibration date:	January 23, 2012		
Calibration Equipment used (M&		Cal Date (Certificate No.)	ature (22 ± 3)°C and humidity < 70%. Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-11 (No:11450)	Sep-12
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Calibrator Box V2.1	SE UWS 053 AA 1001	05-Jan-12 (in house check)	In house check: Jan-13
	• Name	Function	Signature
Calibrated by:	Dominique Steffen	Technician	Wighted to
Approved by:	Fin Bomholt	R&D Director	F. Bradall
This calibration certificate shall no	ot be reproduced except in t	full without written approval of	Issued: January 23, 2012 I the laboratory.

Report No. RXC1209-0833SAR01R3

Page 99 of 106

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst s Service suisse d'étalonnage С Servizio svizzero di taratura s

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by ٠ comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on ٠ the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an ٠ input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter ٠ corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of ٠ zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1317_Jan12

DC Voltage Measurement

A/D - Converter Resolution nominal

 High Range:
 1LSB =
 6.1µV ,
 full range =
 -100...+300 mV ·

 Low Range:
 1LSB =
 61nV ,
 full range =
 -1.....+3mV

 DASY measurement parameters:
 Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	z
High Range	404.064 ± 0.1% (k=2)	404.056 ± 0.1% (k=2)	403.955 ± 0.1% (k=2)
Low Range	3.98762 ± 0.7% (k=2)	3.98737 ± 0.7% (k=2)	3.98343 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	117.0°±1°
---	-----------

Certificate No: DAE4-1317_Jan12

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199992.18	-1.75	-0.00
Channel X + Input	20001.35	0.46	0.00
Channel X - Input	-19997.31	1.96	-0.01
Channel Y + Input	199993.18	-1.24	-0.00
Channel Y + Input	20001.40	0.60	0.00
Channel Y - Input	-20000.04	-0.70	0.00
Channel Z + Input	199991.58	-2.43	-0.00
Channel Z + Input	19999.62	-1.14	-0.01
Channel Z - Input	-20001.31	-1.83	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.74	-0.89	-0.04
Channel X + Input	202.18	-0.01	-0.01
Channel X - Input	-197.58	0.36	-0.18
Channel Y + Input	2000.34	-1.20	-0.06
Channel Y + Input	199.67	-2.39	-1.18
Channel Y - Input	-197.64	0.32	-0.16
Channel Z + Input	2000.69	-0.78	-0.04
Channel Z + Input	200.84	-1.16	-0.57
Channel Z - Input	-198.45	-0.47	0.24

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-23.40	-24.98
	- 200 +	28.01	26.12
Channel Y	200	-2.57	-2.75
	- 200	1.67	1.31
Channel Z	200	-11.92	-11.43
	- 200	9.80	9.45

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		-2.15	-4.41
Channel Y	200	7.18	-	-2.47
Channel Z	200	7.44	5.46	

Certificate No: DAE4-1317_Jan12

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

High Range (LSB)	Low Range (LSB)
16081	17027
16103	16170
16221	16651
	16081 16103

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (µV)	min. Offset (μV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-0.45	-1.32	0.40	0.32
Channel Y	-2.63	-3.99	-1.68	0.42
Channel Z	-0.67	-3.07	1.36	0.50

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

ANNEX I: The EUT Appearances and Test Configuration

a: Front side

b: Back View Picture 5: Constituents of the EUT

Report No. RXC1209-0833SAR01R3

Picture 6: Test position 1

Picture 7: Test position 2

Report No. RXC1209-0833SAR01R3

Picture 8: Test position 3

Picture 9: Test position 4

Report No. RXC1209-0833SAR01R3

Picture 10: Test position 5