

CS8140 Technical Description

The Equipment Under Test (EUT) is a Bluetooth Pendant model: CS8140. It is powered by an internal 3.7V rechargeable battery , Car charger (Input: 12-24V DC, , output: DC 5.0V, 500mA)or an external adaptor (Input: 100-240V AC, 50/ 60Hz, output: DC 5.0V, 500mA). The main function of EUT is to prove Bluetooth function for people who are using other devise with T-coil mode. The EUT can not transmit when charging.

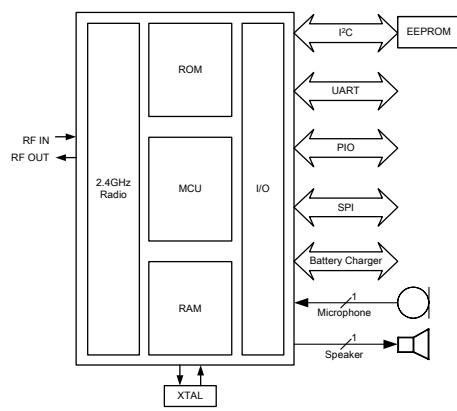
Operating Frequency Band: 2.402 MHz ~ 2.480 MHz

RF channels: 79

Channel spacing: 1 MHz

Coding Schemes Used: FHSS

The main IC function is mentioned as below.


1. U1 CSR BC6 Bluetooth: offering a Bluetooth radio, baseband and battery charger
2. U2 EEPROM: store system data

Features

- Single-chip Bluetooth® mono headset solution
- World's lowest power consumption: up to 18 hours talk-time from a 120mAh battery
- Built-in echo and noise reduction feature
- Multipoint support: allows a headset connection to 2 phones
- Integrated CSR AuriStream™ low-power codec for wide-band voice quality
- Fully-qualified Bluetooth v2.1 + EDR specification with support for secure simple pairing
- Best in class Bluetooth radio with 7.5dBm transmit power and -92dBm receive sensitivity
- Minimum external components
- Configurable mono headset software
- HFP1.5 and HSP1.0 support
- Low-power 1.5V operation, 1.8V to 3.6V I/O
- Integrated 1.5V and 1.9V linear regulators
- Integrated switch-mode regulator
- Integrated 150mA lithium battery charger
- Integrated High-quality mono codec
- 48-lead 7 x 7 x 0.9mm, 0.5mm pitch QFN
- Green (RoHS and no Antimony or Halogenated Flame Retardants)
- A complete BlueVox2 Low-cost Mono Headset Solution development kit, including example design, is available. Order code BV-002-1A

General Description

BlueVox®2 QFN is a low-cost fully-featured ROM chip solution for mono headsets with extremely low-power consumption. It is based on CSR's highly-integrated BlueCore®6-Audio ROM QFN IC, offering a Bluetooth radio, baseband, DAC/ADC, AuriStream codec, switch-mode power supply and battery charger in a compact 7 x 7 x 0.9mm QFN package for low-cost designs. A small 4.5 x 5.5mm VFBGA is also available for cutting-edge designs, see *BlueVox2 BGA Product Data Sheet*.

BlueVox®2 QFN

BlueVox2 Low-cost Mono Headset Solution

Production Information

BC63C159A03

Issue 5

Applications

- BlueVox2 Low-cost Mono Headset Solution

BlueVox2 QFN also includes a configurable echo and noise reduction feature in hardware which reduces headset echo and wind noise allowing the headset-user to be heard more clearly. The ability to connect to 2 phones simultaneously greatly enhances the use case. BlueVox2 QFN supports the latest Bluetooth v2.1 + EDR specification which includes secure simple pairing, greatly simplifying the pairing process making it even easier for users to get up and running with a Bluetooth headset.

The device incorporates auto-calibration and BIST routines to simplify development, type approval and production test.

BlueVox2 QFN has been designed to reduce the number of external components required which ensures production costs are minimised.

BlueVox2 QFN includes AuriStream, which offers significant power reduction over the CVSD based system when used at both ends of the link.

All hardware and device firmware is fully compliant with the Bluetooth v2.1 + EDR specification (all mandatory features).

Document History

Revision	Date	Change Reason
Issue 1	19 OCT 07	Original publication of this document
Issue 2	19 OCT 07	VDD_PADS information updated, Package Information, Device Terminal Functions section
Issue 3	20 OCT 07	Editorial updates
Issue 4	08 APR 08	Production Information added. Auristream section updated and moved. Changes to software sections. Package information updated Removal of external clock information and coexistence details. Various editorial and marketing updates. Example Application Schematic updated. Power consumption figures added. Updates to the mono codec and power control, charger, LED driver and regulation information, including corresponding electrical characteristics and high-voltage linear regulator changed from 1.8V to 1.9V output.
Issue 5	06 AUG 08	Device renamed from BlueCore6-Audio ROM QFN to BlueVox2 QFN. Correction to transmit power value, trickle charge characteristics, and clock characteristics added. Update to the power control and regulation, and UART interface sections. Multipoint section, example application schematic and tape and reel information updated. If you have any comments about this document, email comments@csr.com giving the number, title and section with your feedback.

Status Information

The status of this Product Data Sheet is **Production Information**.

CSR Product Data Sheets progress according to the following format:

Advance Information

Information for designers concerning CSR product in development. All values specified are the target values of the design. Minimum and maximum values specified are only given as guidance to the final specification limits and must not be considered as the final values.

All detailed specifications including pinouts and electrical specifications may be changed by CSR without notice.

Pre-production Information

Pinout and mechanical dimension specifications finalised. All values specified are the target values of the design. Minimum and maximum values specified are only given as guidance to the final specification limits and must not be considered as the final values.

All electrical specifications may be changed by CSR without notice.

Production Information

Final Data Sheet including the guaranteed minimum and maximum limits for the electrical specifications.

Production Data Sheets supersede all previous document versions.

ESD Precautions

BlueVox2 QFN is classified as a JESD22-A114 class 2 product. Apply ESD static handling precautions during manufacturing.

Life Support Policy and Use in Safety-critical Applications

CSR's products are not authorised for use in life-support or safety-critical applications. Use in such applications is done at the sole discretion of the customer. CSR will not warrant the use of its devices in such applications.

CSR Green Semiconductor Products and RoHS Compliance

BlueVox2 QFN devices meet the requirements of Directive 2002/95/EC of the European Parliament and of the Council on the Restriction of Hazardous Substance (RoHS).

BlueVox2 QFN devices are also free from halogenated or antimony trioxide-based flame retardants and other hazardous chemicals. For more information, see CSR's *Environmental Compliance Statement for CSR Green Semiconductor Products*.

Trademarks, Patents and Licences

Unless otherwise stated, words and logos marked with TM or [®] are trademarks registered or owned by CSR plc or its affiliates. Bluetooth[®] and the Bluetooth logos are trademarks owned by Bluetooth SIG, Inc. and licensed to CSR. Other products, services and names used in this document may have been trademarked by their respective owners.

The publication of this information does not imply that any license is granted under any patent or other rights owned by CSR plc.

CSR reserves the right to make technical changes to its products as part of its development programme.

While every care has been taken to ensure the accuracy of the contents of this document, CSR cannot accept responsibility for any errors.

CSR's products are not authorised for use in life-support or safety-critical applications.

Refer to www.csrsupport.com for compliance and conformance to standards information.

Contents

1	Device Details	8
2	Functional Block Diagram	9
3	Package Information	10
3.1	48-lead 7 x 7 x 0.9mm, 0.5mm pitch QFN Pinout Diagram	10
3.2	Device Terminal Functions	11
3.3	Package Dimensions	15
3.4	PCB Design and Assembly Considerations	16
3.5	Typical Solder Reflow Profile	16
4	Bluetooth Modem	17
4.1	RF Ports	17
4.1.1	RF_N and RF_P	17
4.2	RF Receiver	17
4.2.1	Low-noise Amplifier	17
4.2.2	RSSI Analogue to Digital Converter	17
4.3	RF Transmitter	17
4.3.1	IQ Modulator	17
4.3.2	Power Amplifier	18
4.4	Bluetooth Radio Synthesiser	18
4.5	Baseband	18
4.5.1	Burst Mode Controller	18
4.5.2	Physical Layer Hardware Engine	18
4.6	AuriStream Codec	18
4.7	Basic Rate Modem	19
4.8	Enhanced Data Rate Modem	19
4.8.1	Enhanced Data Rate $\pi/4$ DQPSK	19
4.8.2	Enhanced Data Rate 8DPSK	20
5	Clock Generation	22
5.1	Clock Architecture	22
5.2	Input Frequencies and PS Key Settings	22
5.3	Crystal Oscillator (XTAL_IN, XTAL_OUT)	22
5.3.1	Load Capacitance	23
5.3.2	Frequency Trim	23
5.3.3	Transconductance Driver Model	24
5.3.4	Negative Resistance Model	24
5.3.5	Crystal PS Key Settings	25
5.4	External 32kHz Clock	25
6	Bluetooth Stack Microcontroller	26
6.1	Programmable I/O (PIO) Parallel Ports	26
7	Memory Interface and Management	27
7.1	Memory Management Unit	27
7.2	System RAM	27
7.3	Internal ROM	27
8	Serial Interfaces	28
8.1	UART Interface	28
8.1.1	UART Configuration While Reset is Active	29
8.2	Serial Peripheral Interface	29
8.2.1	Instruction Cycle	29
8.2.2	Writing to the Device	30
8.2.3	Reading from the Device	30
8.2.4	Multi-slave Operation	31

8.3	I ² C Interface	31
9	Audio Interface	32
9.1	Audio Input and Output	32
9.2	Mono Audio Codec Block Diagram	32
9.2.1	ADC	32
9.2.2	ADC Digital Gain	32
9.2.3	ADC Analogue Gain	33
9.2.4	DAC	33
9.2.5	DAC Digital Gain	34
9.2.6	DAC Analogue Gain	35
9.2.7	Microphone Input	36
9.2.8	Line Input Mode	38
9.2.9	Output Stage	39
9.2.10	Side Tone	39
9.2.11	Integrated Digital Filter	39
10	Power Control and Regulation	42
10.1	Power Sequencing	42
10.2	External Voltage Source	42
10.3	Switch-mode Regulator	43
10.4	High-voltage Linear Regulator	43
10.5	Low-voltage Linear Regulator	43
10.6	Voltage Regulator Enable Pins	44
10.7	Battery Charger	44
10.8	LED Drivers	44
10.9	Reset, RST#	46
10.9.1	Digital Pin States on Reset	46
10.9.2	Status after Reset	46
11	Example Application Schematic	47
12	Electrical Characteristics	48
12.1	Absolute Maximum Ratings	48
12.2	Recommended Operating Conditions	48
12.3	Input/Output Terminal Characteristics	49
12.3.1	High-voltage Linear Regulator	49
12.3.2	Switch-mode Regulator	50
12.3.3	Low-voltage Linear Regulator	51
12.3.4	Battery Charger	52
12.3.5	Reset	53
12.3.6	Regulator Enable	53
12.3.7	Digital Terminals	54
12.3.8	LED Driver Pads	55
12.3.9	Auxiliary ADC	55
12.3.10	Mono Codec: Analogue to Digital Converter	56
12.3.11	Mono Codec: Digital to Analogue Converter	57
12.3.12	Clocks	57
13	HCI Power Consumption	58
14	CSR Green Semiconductor Products and RoHS Compliance	61
14.1	RoHS Statement	61
14.1.1	List of Restricted Materials	61
15	BlueVox2 QFN Software Stack	62
15.1	BlueVox2 Low-cost Mono Headset Solution Development Kit, BV-002-1A	62
15.2	BlueVox2 Low-cost Mono Headset Solution Mono Headset ROM Software (BC63C159A03)	62
15.3	Multipoint Support	62
16	Ordering Information	63

16.1	BlueVox2 Low-cost Mono Headset Solution Development Kit Ordering Information	63
17	Tape and Reel Information	64
17.1	Tape Orientation	64
17.2	Tape Dimensions	64
17.3	Reel Information	65
17.4	Moisture Sensitivity Level	65
18	Document References	66
	Terms and Definitions	67

List of Figures

Figure 2.1	BlueVox2 QFN Functional Block Diagram	9
Figure 3.1	48-lead 7 x 7 x 0.9mm, 0.5mm pitch QFN Pinout Diagram	10
Figure 3.2	48-lead 7 x 7 x 0.9mm, 0.5mm pitch QFN Package	15
Figure 4.1	Simplified Circuit RF_N and RF_P	17
Figure 4.2	Basic Rate and Enhanced Data Rate Packet Structure	19
Figure 4.3	$\pi/4$ DQPSK Constellation Pattern	20
Figure 4.4	8DPSK Constellation Pattern	21
Figure 5.1	Clock Architecture	22
Figure 5.2	Crystal Driver Circuit	22
Figure 5.3	Crystal Equivalent Circuit	22
Figure 8.1	Break Signal	28
Figure 8.2	SPI Write Operation	30
Figure 8.3	SPI Read Operation	31
Figure 8.4	Example EEPROM Connection	31
Figure 9.1	BlueVox2 QFN Codec Diagram	32
Figure 9.2	ADC Analogue Amplifier Block Diagram	33
Figure 9.3	Microphone Biasing	36
Figure 9.4	Differential Input	38
Figure 9.5	Single-Ended Input	39
Figure 9.6	Speaker Output	39
Figure 10.1	Voltage Regulator Configuration	42
Figure 10.2	LED Equivalent Circuit	45
Figure 11.1	Example Application Schematic for BlueVox2 QFN	47
Figure 17.1	BlueVox2 QFN Tape Orientation	64
Figure 17.2	Reel Dimensions	65

List of Tables

Table 4.1	Data Rate Schemes	19
Table 4.2	2-Bits Determine Phase Shift Between Consecutive Symbols	20
Table 4.3	3-Bits Determine Phase Shift Between Consecutive Symbols	21
Table 5.1	Crystal Specification	23
Table 8.1	Possible UART Settings	28
Table 8.2	Standard Baud Rates	29
Table 8.3	Instruction Cycle for an SPI Transaction	30
Table 9.1	ADC Digital Gain Rate Selection	32
Table 9.2	DAC Digital Gain Rate Selection	34
Table 9.3	DAC Analogue Gain Rate Selection	35
Table 9.4	Voltage Output Steps	37
Table 9.5	Current Output Steps	38
Table 10.1	BlueVox2 QFN Voltage Regulator Enable Pins	44
Table 10.2	Pin States on Reset	46

List of Equations

Equation 5.1 Load Capacitance	23
Equation 5.2 Trim Capacitance	23
Equation 5.3 Frequency Trim	23
Equation 5.4 Pullability	24
Equation 5.5 Transconductance Required for Oscillation	24
Equation 5.6 Equivalent Negative Resistance	24
Equation 8.1 Baud Rate	28
Equation 9.1 IIR Filter Transfer Function, $H(z)$	40
Equation 9.2 IIR Filter plus DC Blocking Transfer Function, $H_{DC}(z)$	40
Equation 10.1 LED Current	45
Equation 10.2 LED PAD Voltage	45

1 Device Details

Radio

- Common TX/RX terminal simplifies external matching; eliminates external antenna switch
- BIST minimises production test time
- Bluetooth v2.1 + EDR specification compliant

Transmitter

- 7.5dBm RF transmit power with level control from on-chip 6-bit DAC over a dynamic range >30dB
- Class 2 and Class 3 support without the need for an external power amplifier or TX/RX switch

Receiver

- Receiver sensitivity of -92dBm
- Integrated channel filters
- Digital demodulator for improved sensitivity and co-channel rejection
- Real-time digitised RSSI available on HCI interface
- Fast AGC for enhanced dynamic range

Synthesiser

- Fully integrated synthesiser requires no external VCO, varactor diode, resonator or loop filter
- Compatible with crystals 16MHz to 26MHz

Baseband and Software

- Internal ROM
- 48Kbyte internal RAM, allows full speed data transfer, mixed voice and data, and full piconet operation, including all EDR packet types
- Logic for forward error correction, header error control, access code correlation, CRC, demodulation, encryption bit stream generation, whitening and transmit pulse shaping. Supports all mandatory Bluetooth v2.1 + EDR specification features including eSCO and AFH
- Transcoders for A-law, μ -law and linear voice from host and A-law, μ -law and CVSD voice over air
- AuriStream codec, which offers significant power reduction over the CVSD based system when used at both ends of the link
- Configurable mono headset ROM software to set-up headset features and user interface (UI)
- Support for HFP 1.5 (including three-way calling) and HSP 1.0
- Support for Bluetooth v2.1 + EDR specification Secure Simple Pairing
- Multipoint support, allowing the headset to connect to two phones or one phone and a VoIP dongle
- Built-in echo and noise reduction hardware

Auxiliary Features

- Crystal oscillator with built-in digital trimming
- Device can run in low power modes from an external 32768Hz clock signal
- Power management includes digital shutdown, and wake up commands with an integrated low power oscillator for ultra low power Park/Sniff/Hold mode
- On-chip regulators: 1.5V output from 1.7V to 2.8V input and 1.9V output from 2.7V to 5.5V input
- On-chip high-efficiency switched-mode regulator; 1.5V output from 2.2V to 4.4V input
- Power-on-reset cell detects low supply voltage
- Arbitrary sequencing of power supplies permitted
- 10-bit ADC
- Battery charger with programmable current (20-150mA) for lithium ion/polymer battery
- Two LED drivers with faders

Audio Codec

- 16-bit resolution mono codec
- Integrated amplifiers for driving 16 Ω speakers; no need for external components
- Support for single-ended speaker termination and line output
- Integrated low-noise microphone bias
- Digital enhancements to add bass cut and side tone
- Analogue enhancements to support single-ended speaker drive capability and reference availability

Physical Interfaces

- Synchronous serial interface for system debugging
- I²C compatible interface used to communicate with an external EEPROM which contains all of the device configuration (PS Keys)
- UART interface with data rates up to 3Mbits/s

Mono Headset Software

- Complete on-chip part to operate as a Bluetooth mono headset, including all the protocol layers:
 - HCI
 - RFCOMM
 - Bluetooth profiles

Package Option

- 48-lead 7 x 7 x 0.9mm, 0.5mm pitch QFN described in this document
- 64-ball 4.5 x 5.5 x 1.0mm, 0.5mm pitch VFBGA available for BlueVox2 BGA, see *BlueVox2 BGA Product Data Sheet*

2 Functional Block Diagram

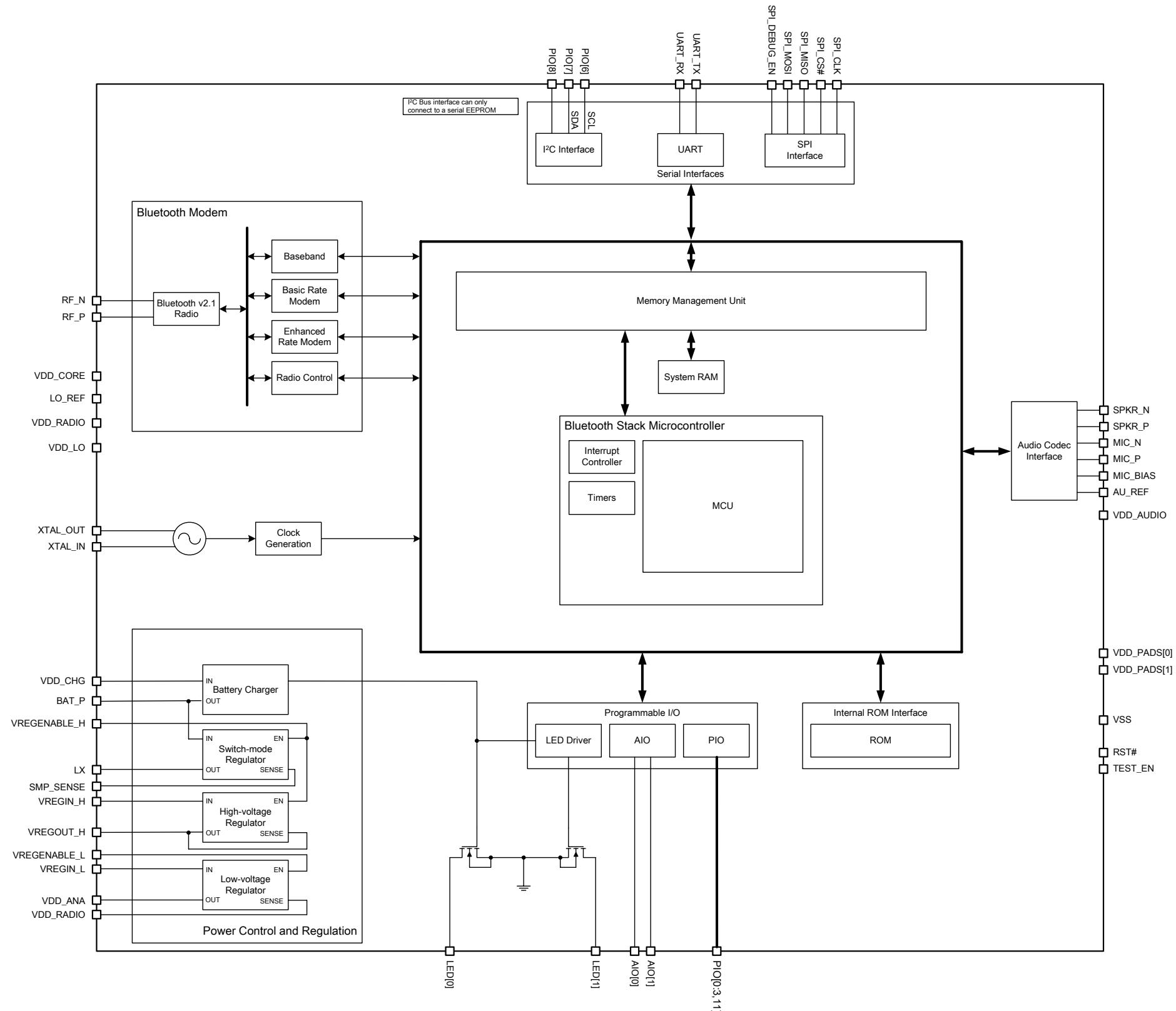


Figure 2.1: BlueVox2 QFN Functional Block Diagram

3 Package Information

3.1 48-lead 7 x 7 x 0.9mm, 0.5mm pitch QFN Pinout Diagram

Top View

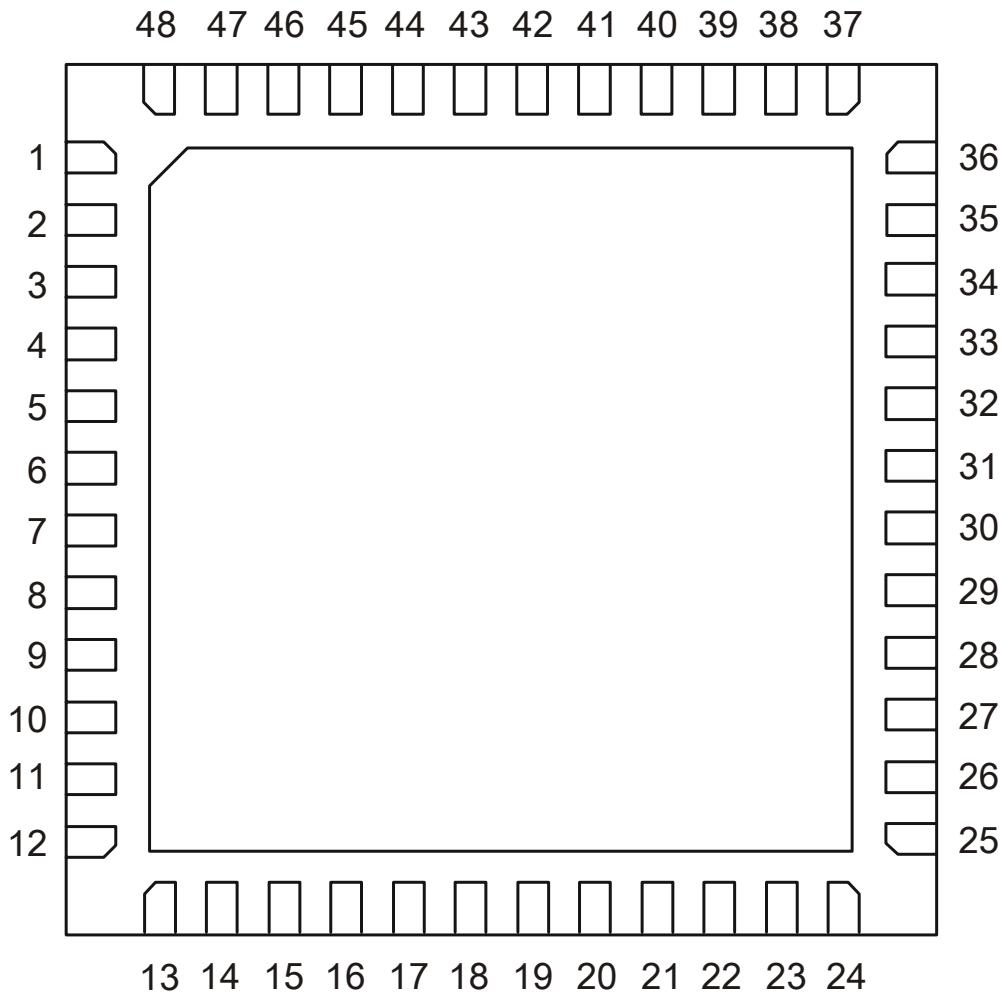


Figure 3.1: 48-lead 7 x 7 x 0.9mm, 0.5mm pitch QFN Pinout Diagram

3.2 Device Terminal Functions

Bluetooth Radio	Lead	Pad Type	Supply Domain	Description
RF_N	8	RF	VDD_RADIO	Transmitter output/switched receiver
RF_P	7	RF	VDD_RADIO	Complement of RF_N

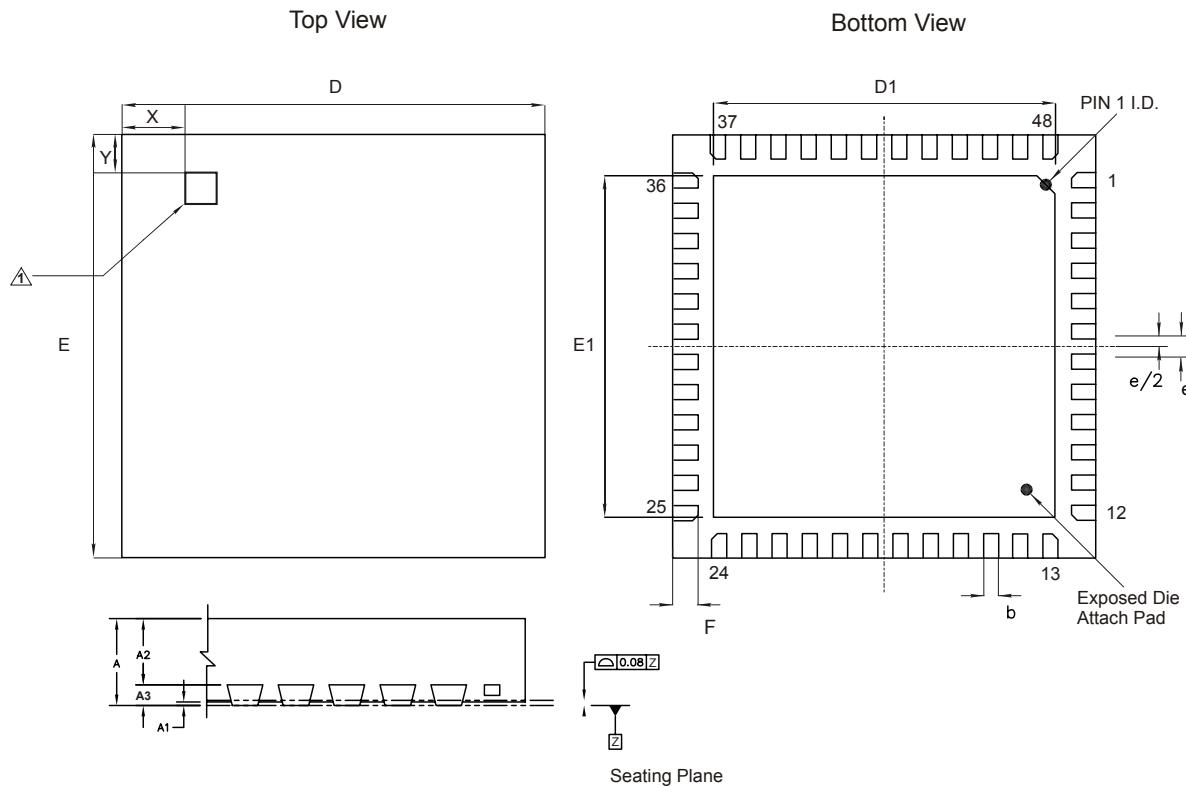
Synthesiser and Oscillator	Lead	Pad Type	Supply Domain	Description
XTAL_IN	13	Analogue	VDD_ANA	For crystal or external clock input
XTAL_OUT	14	Analogue	VDD_ANA	Drive for crystal
LO_REF	15	Analogue	VDD_ANA	Reference voltage to decouple the synthesiser

SPI Interface	Lead	Pad Type	Supply Domain	Description
SPI_MOSI	38	Input, with weak internal pull-down	VDD_PADS[1]	SPI data input
SPI_CS#	40	Bi-directional with weak internal pull-down	VDD_PADS[1]	Chip select for SPI, active low
SPI_CLK	39	Bi-directional with weak internal pull-down	VDD_PADS[1]	SPI clock
SPI_MISO	41	Bi-directional with weak internal pull-down	VDD_PADS[1]	SPI data output
SPI_DEBUG_EN	42	Input with strong internal pull-down	VDD_PADS[1]	Enable for debug interface, active high. Must be enabled before SPI_CS#.

UART Interface	Lead	Pad Type	Supply Domain	Description
UART_TX	19	Bi-directional with weak internal pull-up	VDD_PADS[0]	UART data output, active high
UART_RX	18	Bi-directional with weak internal pull-down	VDD_PADS[0]	UART data input, active high

PIO Port ^(a)	Lead	Pad Type	Supply Domain	Description
PIO[11]	27	Bi-directional with programmable strength internal pull-up/down	VDD_PADS[0]	Programmable input/output line
PIO[8]	44	Bi-directional with programmable strength internal pull-up/down	VDD_PADS[1]	Programmable input/output line
PIO[7]	45			
PIO[6]	46			
PIO[3]	21	Bi-directional with programmable strength internal pull-up/down	VDD_PADS[0]	Programmable input/output line
PIO[2]	22			
PIO[1]	23			
PIO[0]	24			
AIO[0]	17	Bi-directional	VDD_ANA	Programmable input/output line
AIO[1]	16			

^(a) PIO[10:9,5:4] unavailable on BlueVox2 QFN


Audio	Lead	Pad Type	Supply Domain	Description
SPKR_N	3	Analogue	VDD_AUDIO	Speaker output, negative
SPKR_P	4	Analogue	VDD_AUDIO	Speaker output, positive
MIC_N	2	Analogue	VDD_AUDIO	Microphone input, negative
MIC_P	1	Analogue	VDD_AUDIO	Microphone input, positive
MIC_BIAS	47	Analogue	VDD_AUDIO, BAT_P	Microphone bias
AU_REF	5	Analogue	VDD_AUDIO	Decoupling of audio reference (for high quality audio)

LED Drivers	Lead	Pad Type	Supply Domain	Description
LED[1]	28	Open drain output	Open drain	LED driver
LED[0]	29	Open drain output	Open drain	LED driver

Test and Debug	Lead	Pad Type	Supply Domain	Description
RST#	26	Input with weak internal pull-up	VDD_PADS[0]	Reset if low. Input debounced so must be low for >5ms to cause a reset
TEST_EN	25	Input with strong internal pull-down	VDD_PADS[0]	For test purposes only (leave unconnected)

Power Supplies Control	Lead	Description
VREGENABLE_L	10	Take high to enable low-voltage regulator
VREGENABLE_H	33	Take high to enable both high-voltage regulator and switch-mode regulator
VREGIN_L	11	Input to internal low-voltage regulator
VREGIN_H	32	Input to internal high-voltage regulator
LX	35	Switch-mode power regulator output
VREGOUT_H	31	High-voltage regulator output
VDD_PADS[1]	43	Positive supply for digital input/output ports including PIO[8:6] and SPI interface
VDD_PADS[0]	20	Positive supply for digital input/output ports including PIO[11,3:0]
VDD_CORE	30	Positive supply for internal digital circuitry
VDD_RADIO	6	Positive supply for RF circuitry
VDD_ANA	12	Positive supply for analogue circuitry, AIO[1:0]. Output from internal 1.5V regulator
VDD_LO	9	Positive supply for local oscillator circuitry
VDD_AUDIO	48	Positive supply for audio
BAT_P	36	Lithium ion/polymer battery positive terminal. Battery charger output and input to switch-mode regulator
VDD_CHG	37	Lithium ion/polymer battery charger input
SMP_SENSE	34	Positive supply for switch-mode control circuitry
VSS	Exposed Pad	Ground connections

3.3 Package Dimensions

Description	48 Lead Quad Flat No-lead (QFN) Package			
Size	7 x 7 x 0.9mm			
Pitch	0.5mm			
Dimension	Minimum	Typical	Maximum	Notes
A	0.80	0.85	0.90	⚠ Top-side polarity mark. The dimensions of the square polarity mark are 0.6 x 0.6mm.
A1	0.00	0.035	0.05	
A2	-	0.65	0.67	
A3	-	0.203	-	
b	0.20	0.25	0.30	
D	6.90	7.00	7.05	
E	6.90	7.00	7.05	
e	0.5			
D1	5.55	5.65	5.75	
E1	5.55	5.65	5.75	
F	0.35	0.40	0.45	
X	0	0.9	1.8	
Y	0	0.5	1.0	
JEDEC	MO-220			
Unit	mm			

Figure 3.2: 48-lead 7 x 7 x 0.9mm, 0.5mm pitch QFN Package

3.4 PCB Design and Assembly Considerations

The following list details the recommendations to achieve maximum board-level reliability for BlueVox2 QFN:

- NSMD lands (lands smaller than the solder mask aperture) are preferred, because of the greater accuracy of the metal definition process compared to the solder mask process. With solder mask defined pads, the overlap of the solder mask on the land creates a step in the solder at the land interface, which can cause stress concentration and act as a point for crack initiation.
- PCB land width should be 0.3mm and PCB land length should be >0.8mm to achieve maximum reliability.
- Solder paste must be used during the assembly process.

3.5 Typical Solder Reflow Profile

See *Typical Solder Reflow Profile for Lead-free Devices* for information.

4 Bluetooth Modem

4.1 RF Ports

4.1.1 RF_N and RF_P

RF_N and RF_P form a complementary balanced pair and are available for both transmit and receive. On transmit their outputs are combined using an external balun into the single-ended output required for the antenna. Similarly, on receive their input signals are combined internally.

Both terminals present similar complex impedances that may require matching networks between them and the balun. Viewed from the chip, the outputs can each be modelled as an ideal current source in parallel with a lossy capacitor. An equivalent series inductance can represent the package parasitics.

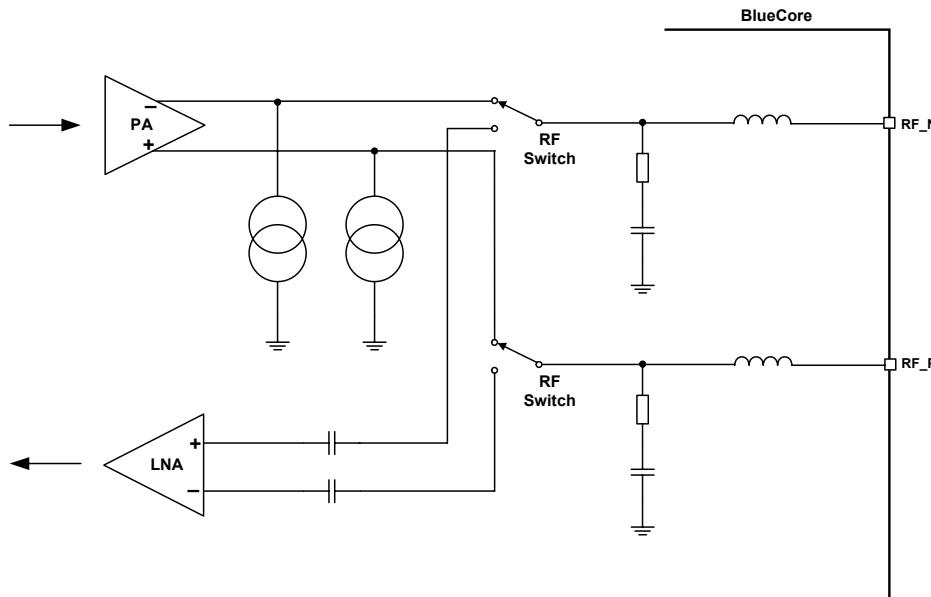


Figure 4.1: Simplified Circuit RF_N and RF_P

The DC level must be set at VDD_RADIO.

4.2 RF Receiver

The receiver features a near-zero IF architecture that allows the channel filters to be integrated onto the die.

The use of a digital FSK discriminator means that no discriminator tank is needed and its excellent performance in the presence of noise allows BlueVox2 QFN to exceed the Bluetooth requirements for co-channel and adjacent channel rejection.

For EDR, the demodulator contains an ADC which digitises the IF received signal. This information is then passed to the EDR modem.

4.2.1 Low-noise Amplifier

The LNA operates in differential mode and takes its input from the shared RF port.

4.2.2 RSSI Analogue to Digital Converter

The ADC implements fast AGC. The ADC samples the RSSI voltage on a slot-by-slot basis. The front-end LNA gain is changed according to the measured RSSI value, keeping the first mixer input signal within a limited range. This improves the dynamic range of the receiver, improving performance in interference limited environments.

4.3 RF Transmitter

4.3.1 IQ Modulator

The transmitter features a direct IQ modulator to minimise the frequency drift during a transmit timeslot, which results in a controlled modulation index. Digital baseband transmit circuitry provides the required spectral shaping.

4.3.2 Power Amplifier

The internal PA has a maximum output power that allows BlueVox2 QFN to be used in Class 2 and Class 3 radios without an external RF PA.

4.4 Bluetooth Radio Synthesiser

The Bluetooth radio synthesiser is fully integrated onto the die with no requirement for an external VCO screening can, varactor tuning diodes, LC resonators or loop filter. The synthesiser is guaranteed to lock in sufficient time across the guaranteed temperature range to meet the Bluetooth v2.1 + EDR specification.

4.5 Baseband

4.5.1 Burst Mode Controller

During transmission the BMC constructs a packet from header information previously loaded into memory-mapped registers by the software and payload data/voice taken from the appropriate ring buffer in the RAM. During reception, the BMC stores the packet header in memory-mapped registers and the payload data in the appropriate ring buffer in RAM. This architecture minimises the intervention required by the processor during transmission and reception.

4.5.2 Physical Layer Hardware Engine

Dedicated logic performs the following:

- Forward error correction
- Header error control
- Cyclic redundancy check
- Encryption
- Data whitening
- Access code correlation
- Audio transcoding

Firmware performs the following voice data translations and operations:

- A-law/μ-law/linear voice data (from host)
- A-law/μ-law/CVSD (over the air)
- Voice interpolation for lost packets
- Rate mismatches

The hardware supports all optional and mandatory features of Bluetooth v2.1 + EDR specification including AFH and eSCO.

4.6 AuriStream Codec

The AuriStream codec is an ADPCM codec and works on the principle of transmitting the difference between the actual value of the signal and a prediction rather than the signal itself. Therefore, the information transmitted is reduced along with the power requirement. The quality of the output depends on the number of bits used to represent the sample.

Note:

The use of the AuriStream codec is as follows:

- The AuriStream codec is an alternative to standard CVSD
- It requires CSR devices supporting AuriStream at both ends of the link
- AuriStream is negotiated when the link is brought up. If AuriStream is not supported on either end, the system will switch to standard CVSD ensuring full interoperability with any non-AuriStream Bluetooth devices

The inclusion of the AuriStream codec can greatly enhance audio quality in the wideband mode and results in reduced power consumption compared to a CVSD implementation when used at both ends of the system.

AuriStream codec on BlueVox2 QFN supports only two G726 modes of operation which is configured by PS Key PSKEY_USR28:

1. 4-bit, 8kHz sample rate, 32kbps
 - Mode 1 gives 30% reduced power in both handset and headset Bluetooth ICs
2. 4-bit, 16kHz sample rate, 64kbps
 - Mode 2 gives wideband voice quality with no power consumption impact compared to standard CVSD

4.7 Basic Rate Modem

The basic rate modem satisfies the basic data rate requirements of the Bluetooth v2.1 + EDR specification. The basic rate was the standard data rate available on the Bluetooth v1.2 specification and below, it is based on GFSK modulation scheme.

The inclusion of the basic rate modem allows BlueVox2 QFN compatibility with earlier Bluetooth products.

The basic rate modem uses the RF ports, receiver, transmitter and synthesiser, alongside the baseband components described in Section 4.5.

4.8 Enhanced Data Rate Modem

The EDR modem satisfies the requirements of the Bluetooth v2.1 + EDR specification. EDR has been introduced to provide 2x and 3x data rates with minimal disruption to higher layers of the Bluetooth stack. BlueVox2 QFN supports both the basic and enhanced data rates and is compliant with the Bluetooth v2.1 + EDR specification.

At the baseband level, EDR utilises both the same 1.6kHz slot rate and the 1MHz symbol rate as defined for the basic data rate. EDR differs in that each symbol in the payload portion of a packet represents 2 or 3-bits. This is achieved using two new distinct modulation schemes. Table 4.1 and Figure 4.2 summarise these. Link Establishment and management are unchanged and still use GFSK for both the header and payload portions of these packets.

The enhanced data rate modems uses the RF Ports, Receiver, Transmitter and Synthesiser, with the baseband components described in Section 4.5.

Data Rate Scheme	Bits Per Symbol	Modulation
Basic Data Rate	1	GFSK
EDR	2	$\pi/4$ DQPSK
EDR	3	8DPSK (optional)

Table 4.1: Data Rate Schemes

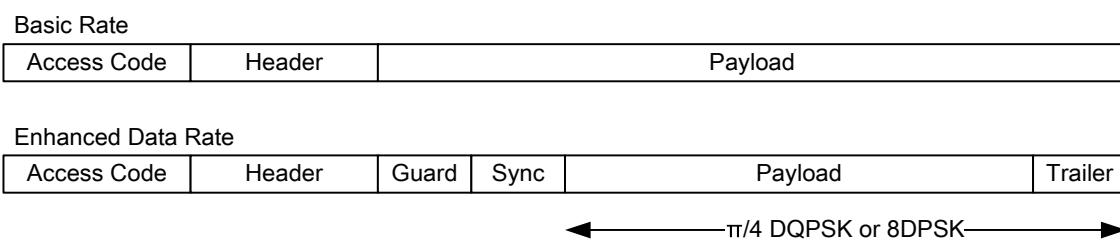
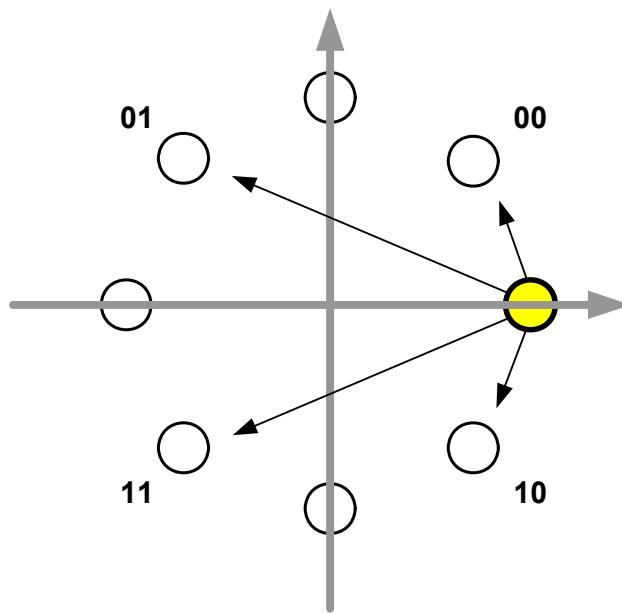


Figure 4.2: Basic Rate and Enhanced Data Rate Packet Structure


4.8.1 Enhanced Data Rate $\pi/4$ DQPSK

The 2x data rate for EDR uses a $\pi/4$ -DQPSK. Each symbol represents 2-bits of information. Figure 4.3 shows the constellation. It has two planes, each having four points. Although it seems there are eight possible phase states, the encoding ensures that the trajectory of the modulation between symbols is restricted to the four states in the other plane.

For a given starting point, each phase change between symbols is restricted to $3\pi/4$, $\pi/4$, $-\pi/4$ or $-3\pi/4$ radians (135° , 45° , -45° or -135°). For example, the arrows shown in Figure 4.3 represent trajectory to the four possible states in the other plane. Table 4.2 shows the phase shift encoding of symbols.

There are two main advantages in using $\pi/4$ DQPSK modulation:

- The scheme avoids the crossing of the origin (a π or $-\pi$ phase shift) and therefore minimises amplitude variations in the envelope of the transmitted signal. This in turn allows the RF power amplifiers of the transmitter to be operated closer to their compression point without introducing spectral distortions. Consequently, the DC to RF efficiency is maximised.
- The differential encoding also allows for the demodulation without the knowledge of an absolute value for the phase of the RF carrier.

Figure 4.3: $\pi/4$ DQPSK Constellation Pattern

Bit Pattern	Phase Shift
00	$\pi/4$
01	$3\pi/4$
11	$-3\pi/4$
10	$-\pi/4$

Table 4.2: 2-Bits Determine Phase Shift Between Consecutive Symbols

4.8.2 Enhanced Data Rate 8DPSK

The 3x data rate modulation uses 8DPSK. Each symbol in the payload portion of the packet represents 3 baseband bits. Although it seems the 8DPSK is similar to $\pi/4$ DQPSK, the differential phase shifts between symbols are now permissible between any of the eight possible phase states. This reduces the separation between adjacent symbols on the constellation to $\pi/4$ (45°) and thereby reduces the noise and interference immunity of the modulation scheme. Nevertheless, because each symbol now represents 3 baseband bits, the actual throughput of the data is 3x when compared with the basic rate packet.

Figure 4.4 shows the 8DPSK constellation and Table 4.3 shows the phase encoding.

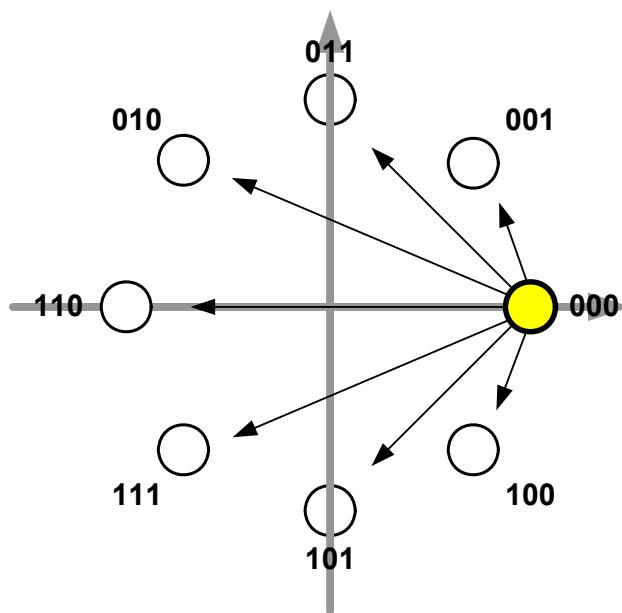


Figure 4.4: 8DPSK Constellation Pattern

Bit Pattern	Phase Shift
000	0
001	$\pi/4$
011	$\pi/2$
010	$3\pi/4$
110	π
111	$-3\pi/4$
101	$-\pi/2$
100	$-\pi/4$

Table 4.3: 3-Bits Determine Phase Shift Between Consecutive Symbols

5 Clock Generation

BlueVox2 QFN requires a Bluetooth reference clock frequency, it derives this from an externally connected crystal in the range 16MHz to 26MHz.

All BlueVox2 QFN internal digital clocks are generated using a phase locked loop, which is locked to the frequency of the external reference clock.

The Bluetooth operation determines the use of the watchdog clock in low-power modes.

5.1 Clock Architecture

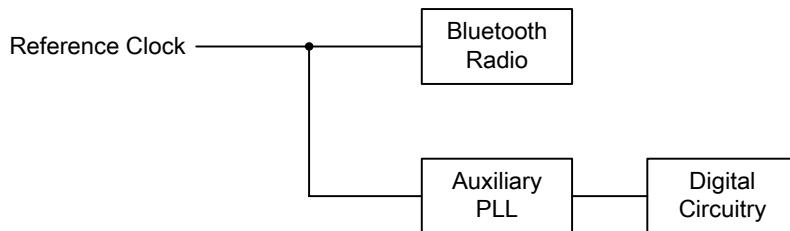


Figure 5.1: Clock Architecture

5.2 Input Frequencies and PS Key Settings

BlueVox2 QFN is configured to operate with a chosen reference frequency. Configuration is by setting the PS Key PSKEY_ANA_FREQ (0x01FE) for all frequencies with an integer multiple of 250kHz. The input frequency default setting for BlueVox2 QFN is 26MHz depending on the software build. Full details are in the software release note for the specific build from www.csrsupport.com.

5.3 Crystal Oscillator (XTAL_IN, XTAL_OUT)

BlueVox2 QFN contains a crystal driver circuit. This operates with an external crystal and capacitors to form a Pierce oscillator. The external crystal is connected to pins XTAL_IN, XTAL_OUT.

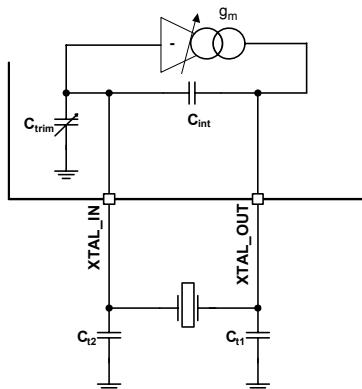


Figure 5.2: Crystal Driver Circuit

Figure 5.3 shows an electrical equivalent circuit for a crystal. The crystal appears inductive near its resonant frequency. It forms a resonant circuit with its load capacitors.

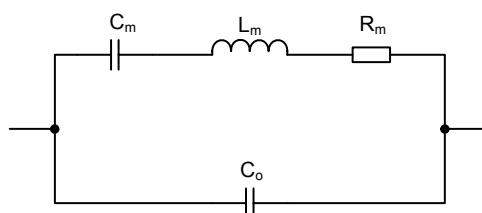


Figure 5.3: Crystal Equivalent Circuit

The resonant frequency may be trimmed with the crystal load capacitance. BlueVox2 QFN contains variable internal capacitors to provide a fine trim.

Parameter	Min	Typ	Max	Unit
Frequency	16	26	26	MHz
Initial Tolerance	-	± 25	-	ppm
Pullability	-	± 20	-	ppm/pF
Transconductance	2.0	-	-	mS

Table 5.1: Crystal Specification

The BlueVox2 QFN driver circuit is a transconductance amplifier. A voltage at XTAL_IN generates a current at XTAL_OUT. The value of transconductance is variable and may be set for optimum performance.

5.3.1 Load Capacitance

For resonance at the correct frequency the crystal should be loaded with its specified load capacitance, which is defined for the crystal. This is the total capacitance across the crystal viewed from its terminals. BlueVox2 QFN provides some of this load with the capacitors C_{trim} and C_{int} . The remainder should be from the external capacitors labelled C_{t1} and C_{t2} . C_{t1} should be three times the value of C_{t2} for best noise performance. This maximises the signal swing, hence slew rate at XTAL_IN (to which all on-chip clocks are referred).

Crystal load capacitance, C_{L} is calculated with Equation 5.1:

$$C_{\text{L}} = C_{\text{int}} + \frac{(C_{\text{t2}} + C_{\text{trim}})C_{\text{t1}}}{C_{\text{t2}} + C_{\text{trim}} + C_{\text{t1}}}$$

Equation 5.1: Load Capacitance

Note:

$C_{\text{trim}} = 3.4\text{pF}$ nominal (mid-range setting)

$C_{\text{int}} = 1.5\text{pF}$

C_{int} does not include the crystal internal self capacitance; it is the driver self capacitance.

5.3.2 Frequency Trim

BlueVox2 QFN enables frequency adjustments to be made. This feature is typically used to remove initial tolerance frequency errors associated with the crystal. Frequency trim is achieved by adjusting the crystal load capacitance with an on-chip trim capacitor, C_{trim} . The value of C_{trim} is set by a 6-bit word in the PS Key PSKEY_ANA_FTRIM (0x1f6). Its value is calculated as follows:

$$C_{\text{trim}} = 125\text{fF} \times \text{PSKEY_ANA_FTRIM}$$

Equation 5.2: Trim Capacitance

The C_{trim} capacitor is connected between XTAL_IN and ground. When viewed from the crystal terminals, the combination of the tank capacitors and the trim capacitor presents a load across the terminals of the crystal which varies in steps of typically 125fF for each least significant bit increment of PSKEY_ANA_FTRIM.

Equation 5.3 describes the frequency trim.

$$\frac{\Delta(F_x)}{F_x} = \text{pullability} \times 0.110 \times \left(\frac{C_{\text{t1}}}{C_{\text{t1}} + C_{\text{t2}} + C_{\text{trim}}} \right) (\text{ppm / LSB})$$

Equation 5.3: Frequency Trim

Note:

F_x = crystal frequency

Pullability is a crystal parameter with units of ppm/pF.

Total trim range is 0 to 63.

If not specified, the pullability of a crystal may be calculated from its motional capacitance with Equation 5.4.

$$\frac{\partial(F_x)}{\partial(C_l)} = F_x \cdot \frac{C_m}{2(C_l + C_0)^2}$$

Equation 5.4: Pullability

Note:

C_0 = Crystal self capacitance (shunt capacitance)

C_m = Crystal motional capacitance (series branch capacitance in crystal model). See Figure 5.3.

It is a Bluetooth requirement that the frequency is always within ± 20 ppm. The trim range should be sufficient to pull the crystal within ± 5 ppm of the exact frequency. This leaves a margin of ± 15 ppm for frequency drift with ageing and temperature. A crystal with an ageing and temperature drift specification of better than ± 15 ppm is required.

5.3.3 Transconductance Driver Model

The crystal and its load capacitors should be viewed as a transimpedance element, whereby a current applied to one terminal generates a voltage at the other. The transconductance amplifier in BlueVox2 QFN uses the voltage at its input, XTAL_IN, to generate a current at its output, XTAL_OUT. Therefore, the circuit will oscillate if the transconductance, transimpedance product is greater than unity. For sufficient oscillation amplitude, the product should be greater than three. The transconductance required for oscillation is defined by the relationship shown in Equation 5.5.

$$g_m > 3 \frac{(2 \pi F_x)^2 R_m ((C_0 + C_{int})(C_{t1} + C_{t2} + C_{trim}) + C_{t1}(C_{t2} + C_{trim}))}{C_{t1}(C_{t2} + C_{trim})}$$

Equation 5.5: Transconductance Required for Oscillation

BlueVox2 QFN guarantees a transconductance value of at least 2mA/V at maximum drive level.

Note:

More drive strength is required for higher frequency crystals, higher loss crystals (larger R_m) or higher capacitance loading.

Optimum drive level is attained when the level at XTAL_IN is approximately 1V pk-pk. The drive level is determined by the crystal driver transconductance.

5.3.4 Negative Resistance Model

An alternative representation of the crystal and its load capacitors is a frequency dependent resistive element. The driver amplifier may be considered as a circuit that provides negative resistance. For oscillation, the value of the negative resistance must be greater than that of the crystal circuit equivalent resistance. Although the BlueVox2 QFN crystal driver circuit is based on a transimpedance amplifier, an equivalent negative resistance can be calculated for it using Equation 5.6.

$$R_{neg} > \frac{C_{t1}(C_{t2} + C_{trim})}{g_m (2 \pi F_x)^2 (C_0 + C_{int}) ((C_{t1} + C_{t2} + C_{trim}) + C_{t1}(C_{t2} + C_{trim}))^2}$$

Equation 5.6: Equivalent Negative Resistance

This formula shows the negative resistance of the BlueVox2 QFN driver as a function of its drive strength.

The value of the driver negative resistance may be easily measured by placing an additional resistor in series with the crystal. The maximum value of this resistor (oscillation occurs) is the equivalent negative resistance of the oscillator.

5.3.5 Crystal PS Key Settings

The BlueVox2 QFN firmware automatically controls the drive level on the crystal circuit to achieve optimum input swing. The PS Key PSKEY_XTAL_TARGET_AMPLITUDE (0x24b) is used by the firmware to servo the required amplitude of crystal oscillation. Refer to the software build release note for a detailed description.

BlueVox2 QFN should be configured to operate with the chosen reference frequency.

5.4 External 32kHz Clock

A 32kHz clock can be applied to AIO[0] by setting PS Key DEEP_SLEEP_EXTERNAL_CLOCK_SOURCE.

If the external clock is applied to the analogue pad AIO[0], the digital signal should be driven with a maximum 1.5V.

Note:

If the 32kHz clock is accurate and stable to within 200ppm, then further power saving features can be enabled. See the relevant software release note for more information.

6 Bluetooth Stack Microcontroller

A 16-bit RISC MCU is used for low power consumption and efficient use of memory.

The MCU, interrupt controller and event timer run the Bluetooth software stack and control the Bluetooth radio and host interfaces.

6.1 Programmable I/O (PIO) Parallel Ports

8 lines of programmable bi-directional I/O are provided.

Note:

PIO[11,3:0] are powered from VDD_PADS[0] and PIO[8:6] are powered from VDD_PADS[1]. AIO[1:0] are powered from VDD_ANA.

Any of the PIO lines can be configured as interrupt request lines or as wake-up lines from sleep modes. PIO[6] or PIO[2] can be configured as a request line for an external clock source. Using PS Key PSKEY_CLOCK_REQUEST_ENABLE (0x246), this terminal can be configured to be low when BlueVox2 QFN is in Deep Sleep and high when a clock is required.

Note:

CSR cannot guarantee that the PIO assignments remain as described. Refer to the relevant software release note for the implementation of these PIO lines, as they are firmware build-specific.

BlueVox2 QFN has 2 general-purpose analogue interface pins, AIO[1:0], used to access internal circuitry and control signals. Auxiliary functions available on the analogue interface include a 10-bit ADC. Signals selectable on this interface include the band gap reference voltage and a variety of clock signals: 64, 48, 32, 24, 16, 12, 8, 6 and 2MHz (output from AIO[0] only) and the XTAL and XTAL/2 clock frequency (output from AIO[1] and AIO[0]). When used with analogue signals the voltage range is constrained by the analogue supply voltage. When configured to drive out digital level signals (clocks) generated from within the analogue part of the device, the output voltage level is determined by VDD_ANA.

7 Memory Interface and Management

7.1 Memory Management Unit

The MMU provides a number of dynamically allocated ring buffers that hold the data that is transferred between BlueVox2 QFN and the air, or the host. The dynamic allocation of memory ensures efficient use of the available RAM and is performed by a hardware MMU to minimise the overheads on the processor during data/voice transfers.

7.2 System RAM

48Kbyte of on-chip RAM supports the RISC MCU and is shared between the ring buffers used to hold voice/data for each active connection and the general-purpose memory required by the Bluetooth stack.

7.3 Internal ROM

Internal ROM is provided for system firmware implementation.

8 Serial Interfaces

8.1 UART Interface

Note:

The UART on the BlueVox2 QFN is for test and debug only.

BlueVox2 QFN has a standard UART interface that provides a simple mechanism for communicating using RS232 protocol.

Two signals implement the UART function, UART_TX and UART_RX. When BlueVox2 QFN is connected to another digital device, UART_RX and UART_TX transfer data between the 2 devices.

UART configuration parameters, such as baud rate and packet format, are set using BlueVox2 QFN firmware.

Note:

To communicate with the UART at its maximum data rate using a standard PC, an accelerated serial port adapter card is required for the PC.

Parameter	Possible Values	
Baud rate	Minimum	1200 baud ($\leq 2\%$ Error)
		9600 baud ($\leq 1\%$ Error)
	Maximum	4Mbaud ($\leq 1\%$ Error)
Flow control		None
Parity		None, Odd or Even
Number of stop bits		1 or 2
Bits per byte		8

Table 8.1: Possible UART Settings

The UART interface can reset BlueVox2 QFN on reception of a break signal. A break is identified by a continuous logic low (0V) on the UART_RX terminal, as shown in Figure 8.1. If t_{BRK} is longer than the value, defined by the PS Key HOSTIO_UART_RESET_TIMEOUT, (0x1a4), a reset occurs. This feature allows a host to initialise the system to a known state. Also, BlueVox2 QFN can emit a break character that may be used to wake the host.

Figure 8.1: Break Signal

Table 8.2 shows a list of commonly used baud rates and their associated values for the PS Key UART_BAUDRATE (0x1be). There is no requirement to use these standard values. Any baud rate within the supported range can be set in UART_BAUDRATE according to the formula in Equation 8.1.

$$\text{Baud Rate} = \frac{\text{PSKEY_UART_BAUDRATE}}{0.004096}$$

Equation 8.1: Baud Rate

Baud Rate	Persistent Store Value		Error
	Hex	Dec	
1200	0x0005	5	1.73%
2400	0x000a	10	1.73%
4800	0x0014	20	1.73%
9600	0x0027	39	-0.82%
19200	0x004f	79	0.45%
38400	0x009d	157	-0.18%
57600	0x00ec	236	0.03%
76800	0x013b	315	0.14%
115200	0x01d8	472	0.03%
230400	0x03b0	944	0.03%
460800	0x075f	1887	-0.02%
921600	0x0ebf	3775	0.00%
1382400	0x161e	5662	-0.01%
1843200	0x1d7e	7550	0.00%
2764800	0x2c3d	11325	0.00%
3686400	0x3afb	15099	0.00%

Table 8.2: Standard Baud Rates

8.1.1 UART Configuration While Reset is Active

The UART interface for BlueVox2 QFN is tri-state while the chip is being held in reset. This allows the user to daisy chain devices onto the physical UART bus. The constraint on this method is that any devices connected to this bus must tri-state when BlueVox2 QFN reset is de-asserted and the firmware begins to run.

8.2 Serial Peripheral Interface

Note:

SPI_DEBUG_EN has to be pulled high before the SPI debug port is enabled.

The primary function of the SPI is for debug. BlueVox2 QFN uses a 16-bit data and 16-bit address SPI, where transactions may occur when the internal processor is running or is stopped. This section details the interface considerations for connection to BlueVox2 QFN .

Data may be written or read one word at a time, or the auto-increment feature is available for block access.

8.2.1 Instruction Cycle

The BlueVox2 QFN is the slave and receives commands on SPI_MOSI and outputs data on SPI_MISO. Table 8.3 shows the instruction cycle for an SPI transaction.

1	Reset the SPI interface	Hold SPI_CS# high for two SPI_CLK cycles
2	Write the command word	Take SPI_CS# low and clock in the 8-bit command
3	Write the address	Clock in the 16-bit address word
4	Write or read data words	Clock in or out 16-bit data word(s)
5	Termination	Take SPI_CS# high

Table 8.3: Instruction Cycle for an SPI Transaction

With the exception of reset, SPI_CS# must be held low during the transaction. Data on SPI_MOSI is clocked into the BlueVox2 QFN on the rising edge of the clock line SPI_CLK. When reading, BlueVox2 QFN replies to the master on SPI_MISO with the data changing on the falling edge of the SPI_CLK. The master provides the clock on SPI_CLK. The transaction is terminated by taking SPI_CS# high.

Sending a command word and the address of a register for every time it is to be read or written is a significant overhead, especially when large amounts of data are to be transferred. To overcome this BlueVox2 QFN offers increased data transfer efficiency via an auto increment operation. To invoke auto increment, SPI_CS# is kept low, which auto increments the address, while providing an extra 16 clock cycles for each extra word to be written or read.

8.2.2 Writing to the Device

To write to BlueVox2 QFN, the 8-bit write command (00000010) is sent first (C[7:0]) followed by a 16-bit address (A[15:0]). The next 16-bits (D[15:0]) clocked in on SPI_MOSI are written to the location set by the address (A). Thereafter for each subsequent 16-bits clocked in, the address (A) is incremented and the data written to consecutive locations until the transaction terminates when SPI_CS# is taken high.

Figure 8.2: SPI Write Operation

8.2.3 Reading from the Device

Reading from BlueVox2 QFN is similar to writing to it. An 8-bit read command (00000011) is sent first (C[7:0]), followed by the address of the location to be read (A[15:0]). BlueVox2 QFN then outputs on SPI_MISO a check word during T[15:0] followed by the 16-bit contents of the addressed location during bits D[15:0].

The check word is composed of {command, address [15:8]}. The check word may be used to confirm a read operation to a memory location. This overcomes the problems encountered with typical serial peripheral interface slaves, whereby it is impossible to determine whether the data returned by a read operation is valid data or the result of the slave device not responding.

If SPI_CS# is kept low, data from consecutive locations is read out on SPI_MISO for each subsequent 16 clocks, until the transaction terminates when SPI_CS# is taken high.

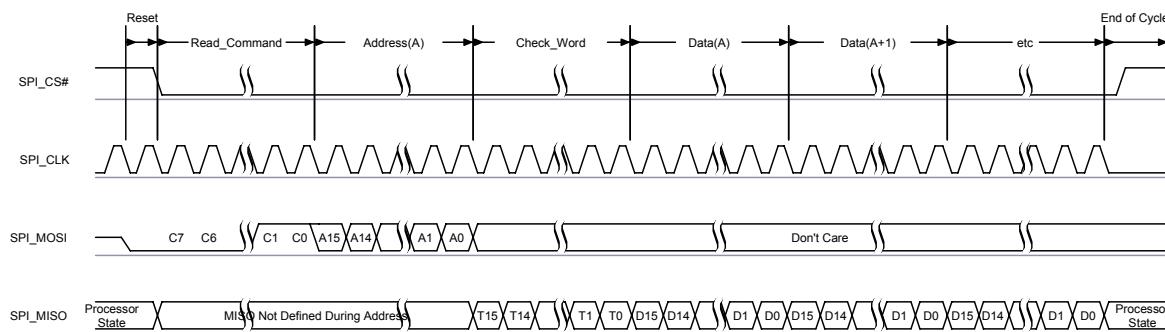


Figure 8.3: SPI Read Operation

8.2.4 Multi-slave Operation

BlueVox2 QFN should not be connected in a multi-slave arrangement by simple parallel connection of slave MISO lines. When BlueVox2 QFN is deselected ($\text{SPI_CS\#} = 1$), the SPI_MISO line does not float. Instead, BlueVox2 QFN outputs 0 if the processor is running or 1 if it is stopped.

8.3 I²C Interface

PIO[8:6] is available to form a master I²C interface. The interface is formed using software to drive these lines.

Note:

The program memory for the BlueVox2 QFN is internal ROM so the I²C interface can only connect to a serial EEPROM, an example is shown in Figure 8.4. The EEPROM stores PS Keys and configuration information.

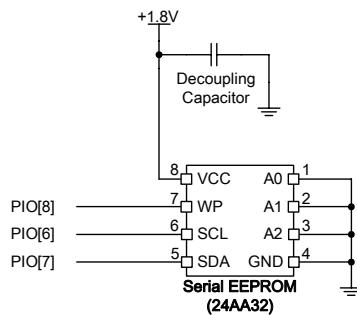


Figure 8.4: Example EEPROM Connection

9 Audio Interface

The audio interface circuit consists of:

- Mono audio codec
- Audio inputs and outputs

9.1 Audio Input and Output

The audio input circuitry consists of an audio input that can be configured to be either single-ended or fully differential and programmed for either microphone or line input. It has an analogue and digital programmable gain stage for optimisation of different microphones.

The audio output circuitry consists of a differential class A-B output stage.

9.2 Mono Audio Codec Block Diagram

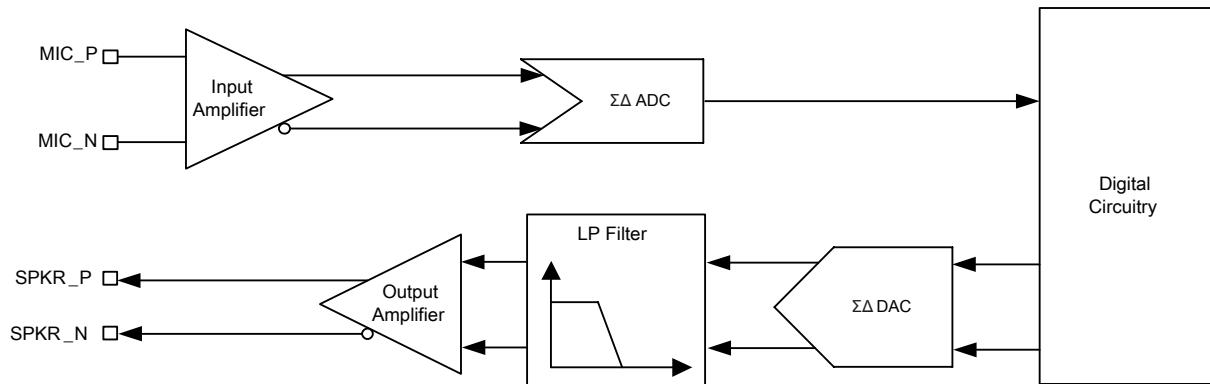


Figure 9.1: BlueVox2 QFN Codec Diagram

The mono audio codec uses a fully differential architecture in the analogue signal path, which results in low noise sensitivity and good power supply rejection while effectively doubling the signal amplitude. It operates from a single power-supply of 1.5V and uses a minimum of external components.

9.2.1 ADC

The ADC consists of:

- A second-order sigma-delta converter, as shown in Figure 9.1.
- Two gain stages; one of which is an analogue gain stage and the other is a digital gain stage.

9.2.2 ADC Digital Gain

The digital gain stage has a programmable selection value in the range of 0 to 15 with the associated ADC gain settings summarised in Table 9.1. There is also a high resolution digital gain mode that allows the gain to be changed in 1/32dB steps. Contact CSR for more information.

Gain Selection Value	ADC Digital Gain Setting (dB)
0	0
1	3.5
2	6
3	9.5
4	12
5	15.5

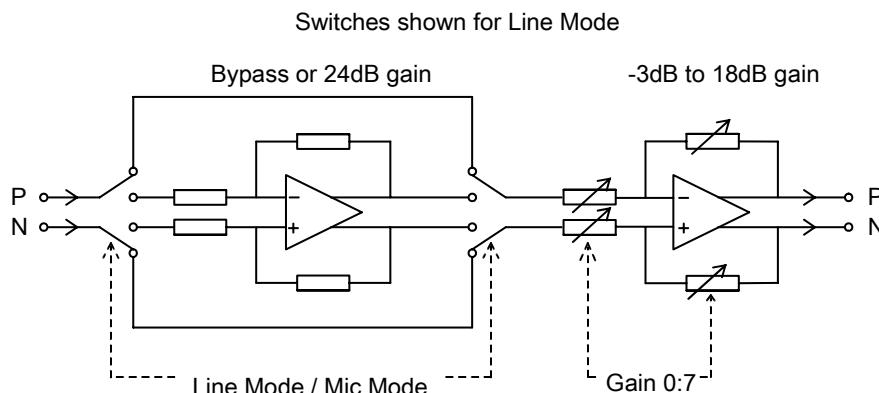

Gain Selection Value	ADC Digital Gain Setting (dB)
6	18
7	21.5
8	-24
9	-20.5
10	-18
11	-14.5
12	-12
13	-8.5
14	-6
15	-2.5

Table 9.1: ADC Digital Gain Rate Selection

9.2.3 ADC Analogue Gain

Figure 9.2 shows the equivalent block diagram for the ADC analogue amplifier. It is a two-stage amplifier:

- The first stage amplifier has a selectable gain of either bypass for line input mode or gain of 24dB gain for the microphone mode.
- The second stage has a programmable gain with seven individual 3dB steps. By combining the 24dB gain selection of the microphone input with the seven individual 3dB gain steps, the overall range of the analogue amplifier is approximately -3dB to 42dB in 3dB steps. All gain control of the ADC is controlled by the BlueVox2.

Microphone Mode input impedance = 6kΩ

Line mode input impedance = 6kΩ to 30kΩ

Figure 9.2: ADC Analogue Amplifier Block Diagram

9.2.4 DAC

The DAC consists of:

- A second-order Sigma Delta converter, as shown in Figure 9.1.
- Two gain stages; one of which is an analogue gain stage and the other is a digital gain stage.

9.2.5 DAC Digital Gain

The digital gain stage has a programmable selection value in the range of 0 to 15 with associated DAC gain settings, summarised in Table 9.2. There is also a high resolution digital gain mode that allows the gain to be changed in 1/32dB steps. Contact CSR for more information.

The overall gain control of the DAC is controlled by the BlueVox2. Its setting is a combined function of the digital and analogue amplifier settings.

Digital Gain Selection Value	DAC Digital Gain Setting (dB)
0	0
1	3.5
2	6
3	9.5
4	12
5	15.5
6	18
7	21.5
8	-24
9	-20.5
10	-18
11	-14.5
12	-12
13	-8.5
14	-6
15	-2.5

Table 9.2: DAC Digital Gain Rate Selection

9.2.6 DAC Analogue Gain

The DAC analogue gain stage consists of eight gain selection values that represent seven 3dB steps, as shown in Table 9.3.

The overall gain control of the DAC is controlled by the BlueVox2. Its setting is a combined function of the digital and analogue amplifier settings.

Analogue Gain Selection Value	DAC Analogue Gain Setting (dB)
7	3
6	0
5	-3
4	-6
3	-9
2	-12
1	-15
0	-18

Table 9.3: DAC Analogue Gain Rate Selection

9.2.7 Microphone Input

Figure 9.3 shows an example of microphone biasing. The microphone bias, MIC_BIAS, derives its power from the BAT_P and also requires a 1 μ F capacitor on its output.

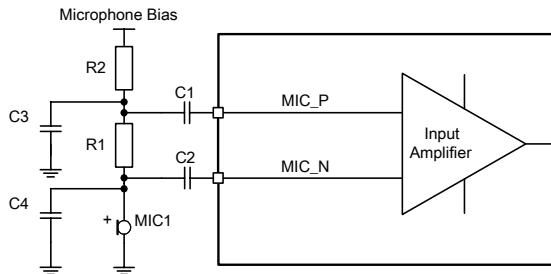


Figure 9.3: Microphone Biasing

The MIC_BIAS is like any voltage regulator and requires a minimum load to maintain regulation. The MIC_BIAS maintains regulation within the limits 0.200 - 1.230mA. If a microphone sits below these limits, then the microphone output must be pre-loaded with a large value resistor to ground.

The audio input is intended for use in the range from 1 μ A@94dB SPL to about 10 μ A@94dB SPL. With biasing resistors R1 and R2 equal to 1k Ω , this requires microphones with sensitivity between about -40dBV and -60dBV.

The input impedance at MIC_N and MIC_P is typically 6.0k Ω .

C1 and C2 should be 150nF if bass roll-off is required to limit wind noise on the microphone.

R1 sets the microphone load impedance and is normally in a range of 1 - 2k Ω .

R2, C3 and C4 improve the supply rejection by decoupling supply noise from the microphone. Values should be selected as required. R2 may be connected to a convenient supply, in which case the bias network is permanently enabled, or to the MIC_BIAS output (which is ground referenced and provides good rejection of the supply), which may be configured to provide bias only when the microphone is required.

The microphone bias provides a 4-bit programmable output voltage, shown in Table 9.4, with a 4-bit programmable output current, shown in Table 9.5.

The characteristics of the microphone bias include:

- Power supply:
 - BlueVox2 QFN microphone supply is BAT_P
 - Minimum input voltage = Output voltage + drop-out voltage
 - Maximum input voltage is 4.4V
 - Typically the microphone bias is at the same level as VDD_AUDIO (1.5V)
- Drop-out voltage:
 - 300mV minimum
 - Guaranteed for configuration of voltage or current output shown in Table 9.4 and Table 9.5
- Output voltage:
 - 4-bit programmable between 1.7 - 3.6V
 - Tolerance 90 - 110%
- Output current:
 - 4-bit programmable between 200 μ A - 1.230mA
 - Maximum current guaranteed to be >1mA
- Load capacitance:
 - Unconditionally stable for 1 μ F \pm 20% and 2.2 μ F \pm 20% pure C

Output Step	VOL_SET[3:0]	Typ	Units
0	0000	1.71	V
1	0001	1.76	V
2	0010	1.82	V
3	0011	1.87	V
4	0100	1.95	V
5	0101	2.02	V
6	0110	2.10	V
7	0111	2.18	V
8	1000	2.32	V
9	1001	2.43	V
10	1010	2.56	V
11	1011	2.69	V
12	1100	2.90	V
13	1101	3.08	V
14	1110	3.33	V
15	1111	3.57	V

Table 9.4: Voltage Output Steps

Output Step	CUR_SET[3:0]	Typ	Units
0	0000	0.200	mA
1	0001	0.280	mA
2	0010	0.340	mA
3	0011	0.420	mA
4	0100	0.480	mA
5	0101	0.530	mA
6	0110	0.610	mA
7	0111	0.670	mA
8	1000	0.750	mA
9	1001	0.810	mA
10	1010	0.860	mA
11	1011	0.950	mA
12	1100	1.000	mA
13	1101	1.090	mA
14	1110	1.140	mA
15	1111	1.230	mA

Table 9.5: Current Output Steps

Note:

For BAT_P, the PSRR at 100Hz to 22kHz, with >300mV supply headroom, decoupling capacitor of 1.1 μ F, is typically 58.9dB and worst case 53.4dB.

For VDD_AUDIO, the PSRR at 100Hz to 22kHz, decoupling capacitor of 1.1 μ F, is typically 88dB and worst case 60dB.

9.2.8 Line Input Mode

If the input analogue gain is set to less than 24dB, BlueVox2 QFN automatically selects line input mode. In line input mode the first stage of the amplifier is automatically disabled, providing additional power saving. In line input mode the input impedance varies from 6k Ω - 30k Ω , depending on the volume setting. Figure 9.4 and Figure 9.5 show two circuits for line input operation and show connections for either differential or single-ended inputs.

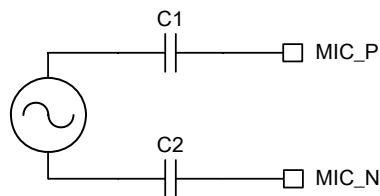


Figure 9.4: Differential Input

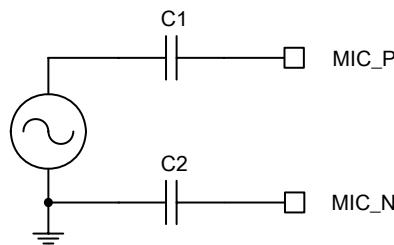


Figure 9.5: Single-Ended Input

9.2.9 Output Stage

The output stage digital circuitry converts the signal from 16-bit per sample, linear PCM of variable sampling frequency to bit stream, which is fed into the analogue output circuitry.

The output stage circuit comprises a DAC with gain setting and class AB output stage amplifier. The output is available as a differential signal between SPKR_N and SPKR_P, as shown in Figure 9.6.

The output stage is capable of driving a speaker directly when its impedance is at least 8Ω and an external regulator is used, but this will be at a reduced output swing.

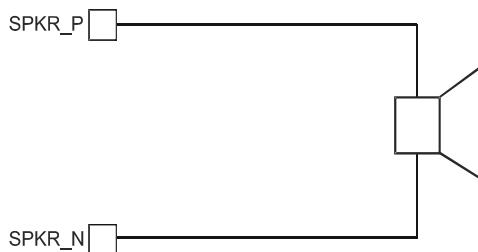


Figure 9.6: Speaker Output

The analogue gain of the output stage is controlled by a 3-bit programmable resistive divider, which sets the gain in steps of approximately 3dB.

9.2.10 Side Tone

In some applications it is necessary to implement side tone. This involves feeding an attenuated version of the microphone signal to the earpiece. The BlueVox2 QFN codec contains side tone circuitry to do this. The side tone hardware is configured through the the following PS Keys:

- PSKEY_SIDE_TONE_ENABLE
- PSKEY_SIDE_TONE_GAIN
- PSKEY_SIDE_TONE_AFTER_ADC
- PSKEY_SIDE_TONE_AFTER_DAC

9.2.11 Integrated Digital Filter

BlueVox2 QFN has a programmable digital filter integrated into the ADC channel of the codec. The filter is a two stage, second order IIR and can be used for functions such as custom wind noise rejection. The filter also has optional DC blocking.

The filter has 10 configuration words used as follows:

- 1 for gain value
- 8 for coefficient values
- 1 for enabling and disabling the DC blocking

The gain and coefficients are all 12-bit 2's complement signed integer with the format XX . XXXXXXXXXXXX

Note:

The position of the binary point is between bit 10 and bit 9, where bit 11 is the most significant bit.

For example:

01.1111111111 = most positive number, close to 2

01.0000000000 = 1

00.0000000000 = 0

11.0000000000 = -1

10.0000000000 = -2, most negative number

The equation for the IIR filter is shown in Equation 9.1. When the DC blocking is enabled the equation is shown in Equation 9.2.

The filter can be configured, enabled and disabled from the VM via the CodecSetIIRFilterA and CodecSetIIRFilterB traps¹. The configuration function takes 10 variables in the order shown below:

0 : Gain

1 : b_{01}

2 : b_{02}

3 : a_{01}

4 : a_{02}

5 : b_{11}

6 : b_{12}

7 : a_{11}

8 : a_{12}

9 : DC Block (1 = enable, 0 = disable)

$$\text{Filter, } H(z) = \text{Gain} \times \frac{(1 + b_{01} z^{-1} + b_{02} z^{-2})}{(1 + a_{01} z^{-1} + a_{02} z^{-2})} \times \frac{(1 + b_{11} z^{-1} + b_{12} z^{-2})}{(1 + a_{11} z^{-1} + a_{12} z^{-2})}$$

Equation 9.1: IIR Filter Transfer Function, $H(z)$

$$\text{Filter with DC Blocking, } H_{DC}(z) = H(z) \times (1 - z^{-1})$$

Equation 9.2: IIR Filter plus DC Blocking Transfer Function, $H_{DC}(z)$

9.2.11.1 Integrated Digital Filter Configuration

The behaviour of the integrated digital IIR filter described in Section 9.2.11, is configurable through 12 values stored in the PS Key PSKEY_USR29:

- 10-words for the IIR filter parameters in Section 9.2.11
- 1-word for the audio energy estimation threshold
- 1-word for the gain to be applied when the audio energy estimation is above the threshold

Adjusting these values configures the IIR filter for different functions:

- Echo reduction, see Section 9.2.11.2
- Noise reduction (wind noise filter), see Section 9.2.11.3

¹ Requires firmware support

Note:

The IIR filter is switched off at initialisation.

9.2.11.2 Echo Reduction

The echo reduction feature on BlueVox2 QFN uses the integrated digital IIR filter in Section 9.2.11.

In order to implement the echo reduction feature the energy estimation of the SCO connections is constantly monitored. When the energy estimation goes above a given threshold, the IIR filter is switched on. When the energy estimation goes below a given threshold, the IIR filter is switched off. Additionally, the echo reduction gain is applied to the filter.

9.2.11.3 Noise Reduction

The noise reduction feature on BlueVox2 QFN uses the integrated digital IIR filter in Section 9.2.11 to create a wind noise filter.

The wind noise filter is basically a high-pass filter that is always on. To achieve this:

- The filter threshold is set to 0
- The filter echo reduction gain is set to 0
- The filter coefficients are left at their default values

However, it is possible to calculate values for a custom configuration using the filter equation, see Equation 9.1 and Equation 9.2.

10 Power Control and Regulation

BlueVox2 QFN contains 3 regulators:

- A high-voltage linear regulator used to generate a 1.9V rail
- A switch-mode regulator, used to generate a 1.5V rail
- A low-voltage regulator which can generate an optional 1.5V rail

Various configurations for power control and regulation with BlueVox2 QFN are available, but a typical configuration is shown in Figure 10.1. This configuration has the switch-mode regulator generating a 1.5V supply rail, and the high-voltage linear regulator creating a 1.9V supply rail.

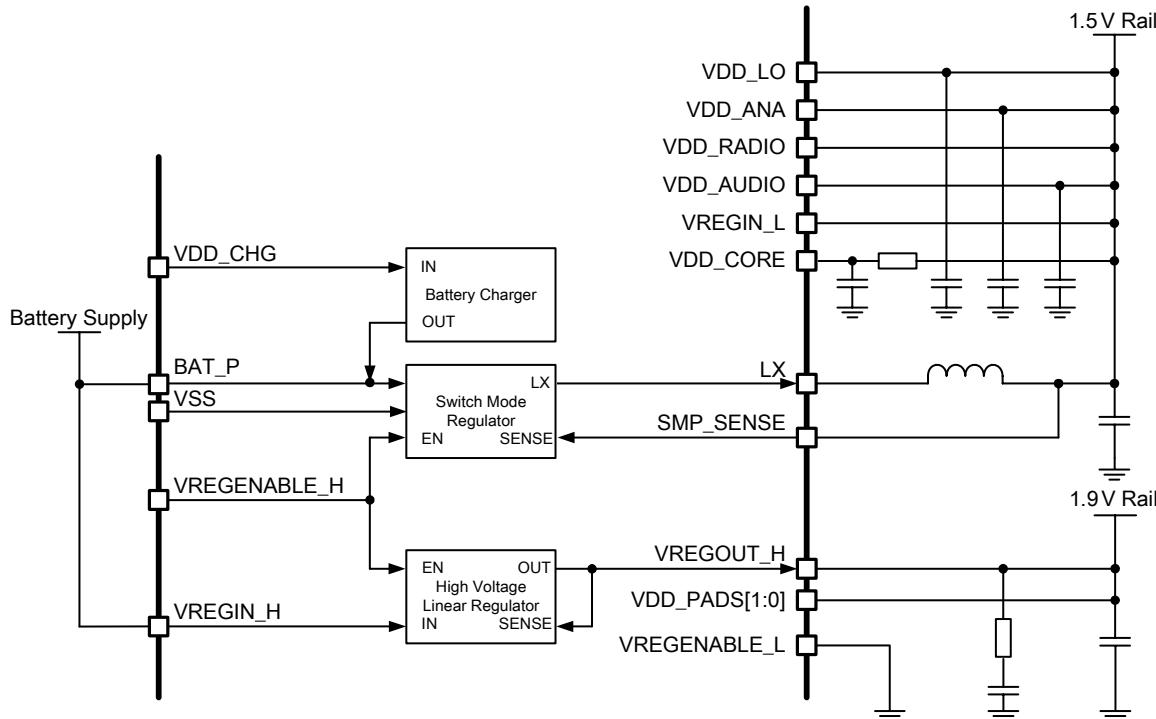


Figure 10.1: Voltage Regulator Configuration

10.1 Power Sequencing

The 1.5V supply rails are VDD_ANA, VDD_AUDIO, VDD_CORE, VDD_LO and VDD_RADIO. CSR recommends that these supply rails are all powered at the same time.

The digital I/O supply rails are VDD_PADS[1:0].

The sequence of powering the 1.5V supply rails relative to the digital I/O supply rails is not important. If the digital I/O supply rails are powered before the 1.5V supply rails, all digital I/Os will have a weak pull-down irrespective of the reset state.

VDD_ANA, VDD_AUDIO, VDD_LO and VDD_RADIO can connect directly to a 1.5V supply.

A simple RC filter is recommended for VDD_CORE to reduce transients fed back onto the power supply rails.

The digital I/O supply rails are connected together or independently to an appropriate voltage rail. Decoupling of the digital I/O supply rails is recommended.

10.2 External Voltage Source

If any of the supply rails for BlueVox2 QFN are supplied from an external voltage source, rather than one of the internal voltage regulators, then it is recommended that VDD_AUDIO, VDD_LO and VDD_RADIO should have less than 10mV rms noise levels between 0 to 10MHz. Also avoid single tone frequencies.

The transient response of any external regulator used should match or be better than the internal regulator available on BlueVox2 QFN, refer to regulator characteristics in Section 12. It is essential that the power rail recovers quickly at the start of a packet, where the power consumption jumps to high levels.

10.3 Switch-mode Regulator

The on-chip switch-mode regulator is available to power a 1.5V supply rail.

An external LC filter circuit of a low-resistance series inductor, L1 (22 μ H), followed by a low ESR shunt capacitor, C1 (4.7 μ F), is required between the LX terminal and the 1.5V supply rail. A connection between the 1.5V supply rail and the SMP_SENSE pin is required.

A decoupling capacitor (2.2 μ F) is required between BAT_P and VSS.

To maintain high-efficiency power conversion and low supply ripple, it is essential that the series resistance of tracks between the BAT_P and VSS terminals, the filter and decoupling components, and the external voltage source are minimised.

The switch-mode regulator is enabled by either:

- VREGENABLE_H pin
- BlueVox2 QFN device firmware
- BlueVox2 QFN battery charger

The switch-mode regulator is switched into a low-power pulse skipping mode when the device is sent into deep-sleep mode, or in reset.

When the switch-mode regulator is not required the terminals BAT_P and LX must be grounded or left unconnected.

10.4 High-voltage Linear Regulator

The high-voltage linear regulator is available to power a 1.9V supply rail.

A smoothing circuit using a low ESR 2.2 μ F capacitor and a 2.2 Ω resistor to ground, should be connected to the output of the high-voltage linear regulator, VREGOUT_H. Alternatively use a 2.2 μ F capacitor with an ESR of at least 2 Ω .

The high-voltage linear regulator is enabled by either:

- VREGENABLE_H pin
- BlueVox2 QFN device firmware
- BlueVox2 QFN battery charger

The regulator is switched into a low-power mode when the device is in deep-sleep mode, or in reset.

When the high-voltage linear regulator is not used the terminals VREGIN_H and VREGOUT_H must be left unconnected, or tied to ground.

10.5 Low-voltage Linear Regulator

The low-voltage linear regulator is available to power a 1.5V supply rail. Its output is connected internally to VDD_ANA, and can be connected externally to the other 1.5V power inputs.

If the low-voltage linear regulator is used a smoothing circuit using a low ESR 2.2 μ F capacitor and a 2.2 Ω resistor to ground, should be connected to the output of the low-voltage linear regulator, VDD_ANA. Alternatively use a 2.2 μ F capacitor with an ESR of at least 2 Ω .

The low-voltage linear regulator is enabled by either:

- VREGENABLE_L pin
- BlueVox2 QFN device firmware
- BlueVox2 QFN battery charger

The low-voltage linear regulator is switched into a low power mode when the device is in deep-sleep mode, or in reset.

When the low-voltage linear regulator is not used the terminal VREGIN_L must be left unconnected, or tied to VDD_ANA.

10.6 Voltage Regulator Enable Pins

The voltage regulator enable pins, VREGENABLE_H and VREGENABLE_L, are used to enable the BlueVox2 QFN device if the on-chip regulators are being used. Table 10.1 shows the enable pin responsible for each voltage regulator.

Enable Pin	Regulator
VREGENABLE_H	High-voltage Linear Regulator and Switch-mode Regulator
VREGENABLE_L	Low-voltage Linear Regulator

Table 10.1: BlueVox2 QFN Voltage Regulator Enable Pins

The voltage regulator enable pins are active high, with weak pull-downs.

BlueVox2 QFN boots-up when the voltage regulator enable pins are pulled high, enabling the appropriate regulators. The firmware then latches the regulators on and the voltage regulator enable pins may then be released.

The status of the VREGENABLE_H pin is available to firmware through an internal connection. VREGENABLE_H also works as an input line.

10.7 Battery Charger

The battery charger is a constant current / constant voltage charger circuit, and is suitable for lithium ion/polymer batteries only. It shares a connection to the battery terminal, BAT_P, with the switch-mode regulator. However it may be used in conjunction with either of the high-voltage regulators on the device.

The constant current level can be varied to allow charging of different capacity batteries.

The charger enters various states of operation as it charges a battery, as listed below. A full operational description is in *BlueCore5 Charger Description and Calibration Application Note*:

- Off : entered when charger disconnected.
- Trickle charge: entered when battery is below 2.9V. The battery is charged at a nominal 4.5mA. This mode is for the safe charge of deeply discharged cells.
- Fast charge constant current: entered when battery is above 2.9V. The charger enters the main fast charge mode. This mode charges the battery at the selected constant current, I_{chgset} .
- Fast charge constant voltage: entered when battery has reached a selected voltage, V_{float} . The charger switches mode to maintain the cell voltage at the V_{float} voltage by adjusting the charge current.
- Standby: this is the state when the battery is fully charged and no charging takes place. The battery voltage is continuously monitored and if it drops by more than 150mV below the V_{float} voltage the charger will re-enter the fast charge constant current mode to keep the battery fully charged.

When a voltage is applied to the charger input terminal VDD_CHG, and the battery is not fully charged, the charger operates and an LED connected to the terminal LED[0] illuminates. By default, until the firmware is running, the LED pulses at a low-duty cycle to minimise current consumption.

The battery charger circuitry auto-detects the presence of a power source, allowing the firmware to detect, using an internal status bit, when the charger is powered. Therefore when the charger supply is not connected to VDD_CHG, the terminal must be left open-circuit. The VDD_CHG pin when not connected must be allowed to float and not pulled to a power rail. When the battery charger is not enabled this pin may float to a low undefined voltage. Any DC connection increases current consumption of the device. Capacitive components may be connected such as diodes, FETs and ESD protection.

The battery charger is designed to operate with a permanently connected battery. If the application enables the charger input to be connected while the battery is disconnected, then the BAT_P pin voltage may become unstable. This in turn may cause damage to the internal switch-mode regulator. Connecting a 470 μ F capacitor to BAT_P limits these oscillations so preventing damage.

10.8 LED Drivers

BlueVox2 QFN includes two pads dedicated to driving LED indicators. Both terminals may be controlled by firmware, while LED[0] can also be set by the battery charger.

The terminals are open-drain outputs, so the LED must be connected from a positive supply rail to the pad in series with a current limiting resistor.

It is recommended that the LED pad (LED[0] or LED[1] pins) are operated with a pad voltage below 0.5V. In this case the pad can be thought of as a resistor, R_{ON} . The resistance together with the external series resistor sets the current, I_{LED} , in the LED. The current is also dependent on the external voltage, VDD , shown in Figure 10.2.

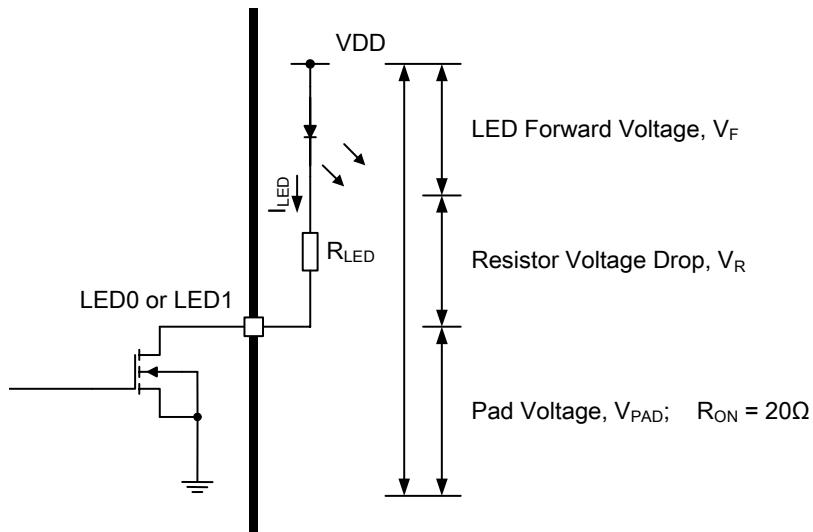


Figure 10.2: LED Equivalent Circuit

From Figure 10.2 it is possible to derive Equation 10.1 to calculate I_{LED} or if a known value of current is required through the LED, to give a specific luminous intensity, then the value of R_{LED} could be calculated.

$$I_{LED} = \frac{VDD - V_F}{R_{LED} + R_{ON}}$$

Equation 10.1: LED Current

For LED[0] or LED[1] pad to act as resistance, the external series resistor, R_{LED} , needs to be such that the voltage drop across it, V_R , keeps V_{PAD} below 0.5V. Therefore Equation 10.2 also applies.

$$VDD = V_F + V_R + V_{PAD}$$

Equation 10.2: LED PAD Voltage

Note:

The LED current will add to the overall current, so conservative selection of the LEDs will extend talk-time.

10.9 Reset, RST#

BlueVox2 QFN can be reset from several sources:

- RST# pin
- Power-on reset
- UART break character
- Software configured watchdog timer

The RST# pin is an active low reset and is internally filtered using the internal low frequency clock oscillator. A reset is performed between 1.5 and 4.0ms following RST# being active. CSR recommends that RST# be applied for a period greater than 5ms.

The power-on reset typically occurs when the VDD_CORE supply falls below 1.26V and is released when VDD_CORE rises above typically 1.31V. At reset the digital I/O pins are set to inputs for bi-directional pins and outputs are tri-state. Following a reset, BlueVox2 QFN assumes the maximum XTAL_IN frequency, which ensures that the internal clocks run at a safe (low) frequency until BlueVox2 QFN is configured for the actual XTAL_IN frequency. If no clock is present at XTAL_IN, the oscillator in BlueVox2 QFN free runs, again at a safe frequency.

10.9.1 Digital Pin States on Reset

Table 10.2 shows the pin states of BlueVox2 QFN on reset. Pull-up (PU) and pull-down (PD) default to weak values unless specified otherwise.

Pin Name / Group	I/O Type	No Core Voltage Reset	Full Chip Reset
UART_RX	Digital input with PD	PD	PD
UART_TX	Digital bi-directional with PU	PU	PU
SPI_MOSI	Digital input with PD	PD	PD
SPI_CLK	Digital bi-directional with PD	PD	PD
SPI_CS#	Digital bi-directional with PD	PD	PD
SPI_MISO	Digital tri-state output with PD	PD	PD
RST#	Digital input with PU	PU	PU
TEST_EN	Digital input with strong PD	PD	PD
PIO[11,3:0] PIO[8:6]	Digital bi-directional with PU/ PD	PD	PD

Table 10.2: Pin States on Reset

10.9.2 Status after Reset

The chip status after a reset is as follows:

- Warm reset: data rate and RAM data remain available
- Cold reset: data rate and RAM data not available

11 Example Application Schematic

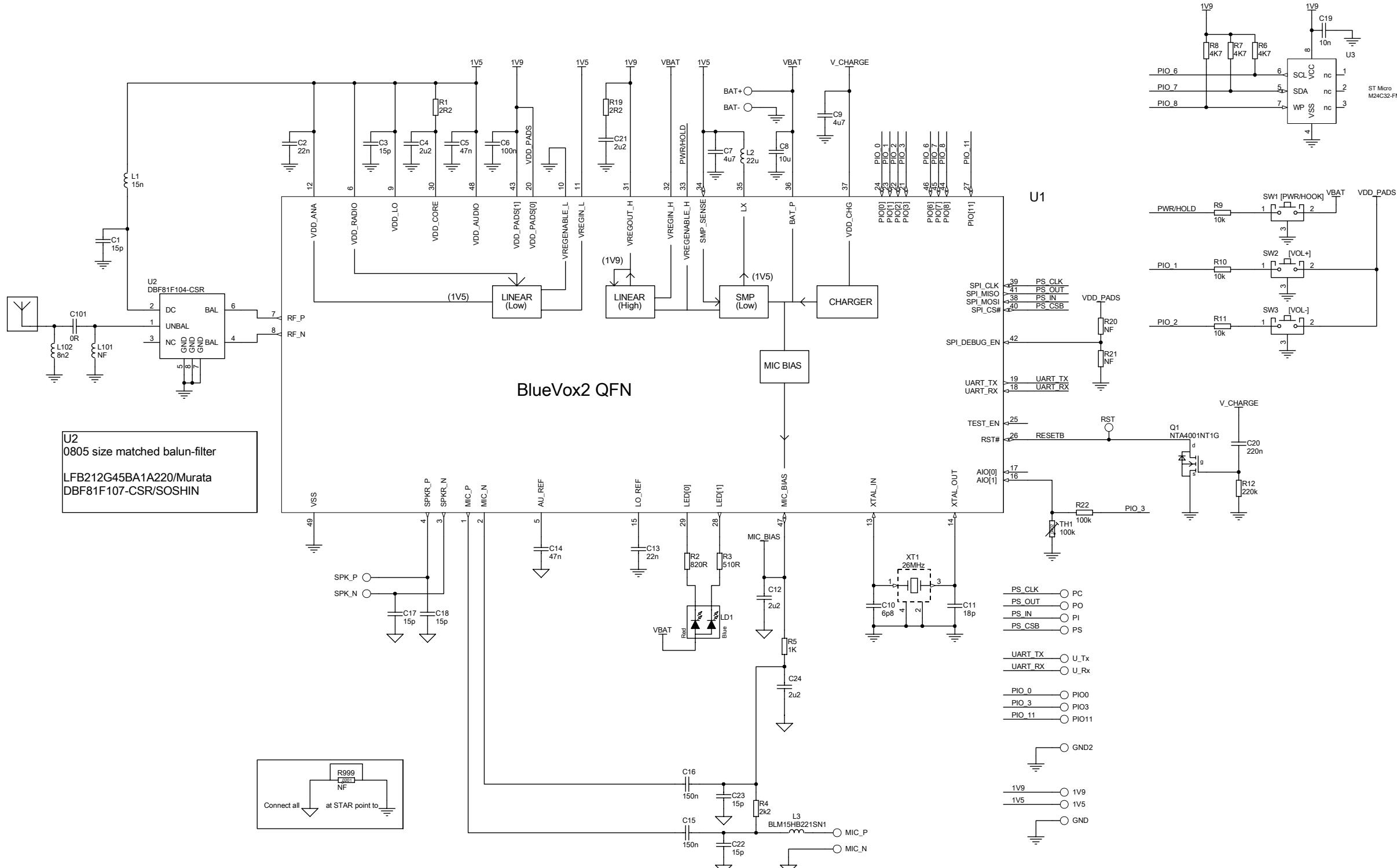


Figure 11.1: Example Application Schematic for BlueVox2 QFN

12 Electrical Characteristics

12.1 Absolute Maximum Ratings

Rating		Min	Max	Unit
Storage Temperature		-40	105	°C
Core Supply Voltage	VDD_ANA, VDD_AUDIO, VDD_CORE, VDD_LO and VDD_RADIO	-0.4	1.65	V
I/O Voltage	VDD_PADS[1:0]	-0.4	3.6	V
Supply Voltage	VREGIN_L	-0.4	2.7	V
	VREGIN_H, VREGENABLE_H and VREGENABLE_L	-0.4	4.9	V
	BAT_P	-0.4	4.4	V
	LED[1:0]	-0.4	4.4	V
	VDD_CHG	-0.4	6.5	V
Other Terminal Voltages		VSS - 0.4	VDD + 0.4	V

12.2 Recommended Operating Conditions

Operating Condition		Min	Typ	Max	Unit
Operating Temperature Range ^(a)		-40	20	85	°C
Core Supply Voltage	VDD_ANA, VDD_AUDIO, VDD_CORE, VDD_LO and VDD_RADIO	1.42	1.50	1.57	V
I/O Supply Voltage	VDD_PADS[1:0]	1.7	3.3	3.6	V

^(a) For radio performance over temperature refer to *BlueVox2 QFN Performance Specification*.

12.3 Input/Output Terminal Characteristics

Note:

For all I/O Terminal Characteristics:

- VDD_ANA, VDD_AUDIO, VDD_CORE, VDD_LO and VDD_RADIO at 1.5V unless shown otherwise.
- VDD_PADS[1:0] at 3.3V unless shown otherwise.
- Current drawn into a pin is defined as positive; current supplied out of a pin is defined as negative.

12.3.1 High-voltage Linear Regulator

Normal Operation	Min	Typ	Max	Unit
Input voltage	2.7	-	4.9 ^(a)	V
Output voltage (I _{load} = 100mA / VREGIN_H = 3.0V)	1.80	1.90	2.05	V
Temperature coefficient	-300	0	300	ppm/°C
Output Noise ^(b) ^(c)	-	-	1	mV rms
Load regulation (100µA < I _{load} < 100mA), ΔV _{out}	-	-	5	mV
Settling time ^(b) ^(d)	-	-	50	µs
Maximum output current	100	-	-	mA
Minimum load current	5	-	-	µA
Drop-out voltage (I _{load} = 100mA)	-	-	800	mV
Quiescent current (excluding load, I _{load} < 1mA)	30	50	60	µA
Low-power Mode ^(e)				
Quiescent current (excluding load, I _{load} < 100µA)	11	15	21	µA

^(a) Short-term operation up to 5.5V is permissible without damage and without the output voltage rising sufficiently to damage the rest of the device, but output regulation and other specifications are no longer guaranteed at input voltages in excess of 4.9V. 5.5V can only be tolerated for short periods.

^(b) Regulator output connected to 47nF pure and 4.7µF 2.2Ω ESR capacitors.

^(c) Frequency range 100Hz to 100kHz.

^(d) 1mA to 100mA pulsed load.

^(e) The regulator is in low power mode when the chip is in deep sleep mode, or in reset.

12.3.2 Switch-mode Regulator

Switch-mode Regulator	Min	Typ	Max	Unit
Input voltage	2.7	-	4.4	V
Output voltage ($I_{load} = 70\text{mA}$)	1.42	1.50	1.57	V
Temperature coefficient	-250	-	250	ppm/ $^{\circ}\text{C}$
Normal Operation				
Output ripple	-	-	10	mV rms
Transient settling time ^(a)	-	-	50	μs
Maximum load current	200	-	-	mA
Conversion efficiency ($I_{load} = 70\text{mA}$)	-	90	-	%
Switching frequency ^(b)	-	1.333	-	MHz
Start-up current limit ^(c)	30	50	80	mA
Low-power Mode (d)				
Output ripple	-	-	1	mV rms
Transient settling time ^(e)	-	-	700	μs
Maximum load current	5	-	-	mA
Minimum load current	1	-	-	μA
Conversion efficiency ($I_{load} = 1\text{mA}$)	-	80	-	%
Switching frequency ^(f)	50	-	150	kHz

(a) For step changes in load of 30 to 80mA and 80 to 30mA.

(b) Locked to crystal frequency.

(c) Current is limited on start-up to prevent excessive stored energy in the filter inductor.

(d) The regulator is in low power mode when the chip is in deep sleep mode, or in reset.

(e) 100 μA to 1mA pulsed load.

(f) Defines minimum period between pulses. Pulses are skipped at low current loads.

Note:

The external inductor used with the switch-mode regulator must have an ESR in the range 0.3 - 0.7 Ω :

- Low ESR < 0.3 Ω causes instability.
- High ESR > 0.7 Ω derates the maximum current.

12.3.3 Low-voltage Linear Regulator

Normal Operation	Min	Typ	Max	Unit
Input voltage	1.80	2.00	2.70	V
Output voltage ($I_{load} = 70\text{mA}$ / VREGIN_L = 1.7V)	1.42	1.50	1.57	V
Temperature coefficient	-300	0	300	ppm/°C
Output noise ^(a) ^(b)	-	-	1	mV rms
Load regulation ($100\mu\text{A} < I_{load} < 90\text{mA}$), ΔV_{out}	-	-	5	mV
Load regulation ($100\mu\text{A} < I_{load} < 115\text{mA}$), ΔV_{out}	-	-	25	mV
Settling time ^(a) ^(c)	-	-	50	μs
Maximum output current	115	-	-	mA
Minimum load current	5	-	100	μA
Drop-out voltage ($I_{load} = 115\text{mA}$)	-	-	300	mV
Quiescent current (excluding load, $I_{load} < 1\text{mA}$)	50	90	150	μA
Low-power Mode ^(d)				
Quiescent current (excluding load, $I_{load} < 100\mu\text{A}$)	5	8	15	μA

^(a) Regulator output connected to 47nF pure and 4.7μF 2.2Ω ESR capacitors.

^(b) Frequency range 100Hz to 100kHz.

^(c) 1mA to 115mA pulsed load.

^(d) The regulator is in low power mode when the chip is in deep sleep mode, or in reset.

12.3.4 Battery Charger

Battery Charger	Min	Typ	Max	Unit
Input voltage	4.5	-	6.5	V

Charging Mode (BAT_P rising to 4.2V)	Min	Typ	Max	Unit
Supply current ^(a)	-	4.5	6	mA
Battery trickle charge current ^{(b) (c)}	-	4	-	mA
Maximum battery fast charge current (I-CTRL = 15) ^{(c) (d)}	Headroom ^(e) > 0.7V	-	150	-
	Headroom = 0.3V	-	120	-
Minimum battery fast charge current (I-CTRL = 0) ^{(c) (d)}	Headroom > 0.7V	-	40	-
	Headroom = 0.3V	-	35	-
Fast charge step size (I-CTRL = 0 to 15)	Spread ±17%	-	6.3	-
Trickle charge voltage threshold	-	2.9	-	V
Float voltage (with correct trim value set), V _{FLOAT} ^(f)	4.17	4.2	4.23	V
Float voltage trim step size ^(f)	-	50	-	mV
Battery charge termination current, % of fast charge current	5	10	20	%

(a) Current into VDD_CHG - does not include current delivered to battery ($I_{VDD_CHG} - I_{BAT_P}$)

(b) BAT_P < Float voltage

(c) Charge current can be set in 16 equally spaced steps.

(d) Trickle charge threshold < BAT_P < Float voltage

(e) Where headroom = VDD_CHG - BAT_P

(f) Float voltage can be adjusted in 15 steps. Trim setting is determined in production test and must be loaded into the battery charger by firmware during boot-up sequence

Standby Mode (BAT_P falling from 4.2V)	Min	Typ	Max	Unit
Supply current ^(a)	-	1.5	2	mA
Battery current	-	-5	-	µA
Battery recharge hysteresis ^(b)	100	-	200	mV

(a) Current into VDD_CHG - does not include current delivered to battery ($I_{VDD_CHG} - I_{BAT_P}$)

(b) Hysteresis of (V_{FLOAT} - BAT_P) for charging to restart

Shutdown Mode (VDD_CHG too low or disabled by firmware)		Min	Typ	Max	Unit
VDD_CHG under-voltage threshold	VDD_CHG rising	-	3.90	-	V
	VDD_CHG falling	-	3.70	-	V
VDD_CHG - BAT_P lockout threshold	VDD_CHG rising	-	0.22	-	V
	VDD_CHG falling	-	0.17	-	V
Supply current		-	1.5	2	mA
Battery current		-1	-	0	µA

12.3.5 Reset

Power-on Reset	Min	Typ	Max	Unit
VDD_CORE falling threshold	1.13	1.25	1.30	V
VDD_CORE rising threshold	1.20	1.30	1.35	V
Hysteresis	0.05	0.10	0.15	V

12.3.6 Regulator Enable

Switching Threshold	Min	Typ	Max	Unit
VREGENABLE_H				
Rising threshold	0.50	-	0.95	V
Falling threshold	0.35	-	0.80	V
Hysteresis	0.14	-	0.28	V
VREGENABLE_L				
Rising threshold	0.50	-	0.95	V
Falling threshold	0.35	-	0.80	V
Hysteresis	0.14	-	0.28	V

12.3.7 Digital Terminals

Supply Voltage Levels		Min	Typ	Max	Unit
V _{D^{DD_{PRE}}}	Pre-driver supply voltage	1.4	1.5	1.6	V
V _{D^{DD I/O}} supply voltage (post-driver)	Full spec.	3.0	3.3	3.6	V
	Reduced spec.	1.7	-	3.0	V
Input Voltage Levels		Min	Typ	Max	Unit
V _{IL} input logic level low		-0.3	-	0.25 x VDD	V
V _{IH} input logic level high		0.625 x VDD	-	VDD + 0.3	V
V _{SCHMITT} Schmitt voltage		0.25 x VDD	-	0.625 x VDD	V
Output Voltage Levels		Min	Typ	Max	Unit
V _{OL} output logic level low, I _{OL} = 4.0mA		0	-	0.125	V
V _{OH} output logic level high, I _{OH} = -4.0mA		0.75 x VDD	-	VDD	V
Input and Tri-state Currents		Min	Typ	Max	Unit
I _l input leakage current at V _{in} = VDD or 0V		-100	0	100	nA
I _{oz} tri-state output leakage current at V _o = VDD or 0V		-100	0	100	nA
With strong pull-up		-100	-40	-10	µA
With strong pull-down		10	40	100	µA
With weak pull-up		-5	-1.0	-0.2	µA
With weak pull-down		-0.2	1.0	5.0	µA
C _l Input Capacitance		1.0	-	5.0	pF
Resistive Strength		Min	Typ	Max	Unit
R _{puw} weak pull-up strength at VDD - 0.2V		0.5	-	2	MΩ
R _{pdw} weak pull-down strength at 0.2V		0.5	-	2	MΩ
R _{pus} strong pull-up strength at VDD - 0.2V		10	-	50	kΩ
R _{pds} strong pull-down strength at 0.2V		10	-	50	kΩ

12.3.8 LED Driver Pads

LED Driver Pads		Min	Typ	Max	Unit
Off current		-	1	2	µA
On resistance	$V_{PAD} < 0.5V$	-	20	33	Ω
On resistance, pad enabled by battery charger	$V_{PAD} < 0.5V$	-	20	50	Ω

12.3.9 Auxiliary ADC

Auxiliary ADC		Min	Typ	Max	Unit
Resolution		-	-	10	Bits
Input voltage range ^(a)		0	-	VDD_ANA	V
Accuracy (Guaranteed monotonic)	INL	-1	-	1	LSB
	DNL	0	-	1	LSB
Offset		-1	-	1	LSB
Gain Error		-0.8	-	0.8	%
Input Bandwidth		-	100	-	kHz
Conversion time		-	2.5	-	µs
Sample rate ^(b)		-	-	700	Samples/s

(a) LSB size = VDD_ANA/1023

(b) The auxiliary ADC is accessed through a VM function. The sample rate given is achieved as part of this function.

12.3.10 Mono Codec: Analogue to Digital Converter

Analogue to Digital Converter					
Parameter	Conditions	Min	Typ	Max	Unit
Resolution	-	-	-	16	Bits
Input Sample Rate, F_{sample}	-	8	-	32	kHz
Signal to Noise Ratio, SNR	$f_{\text{in}} = 1\text{kHz}$ B/W = 20Hz→20kHz A-Weighted THD+N < 1% 150mV _{pk-pk} input	F_{sample}			
		8kHz	-	79	-
		11.025kHz	-	77	-
		16kHz	-	76	-
		22.050kHz	-	76	-
		32kHz	-	75	-
Digital Gain	Digital Gain Resolution = 1/32dB	-24	-	21.5	dB
Analogue Gain	Analogue Gain Resolution = 3dB	-3	-3	42	dB
Input full scale at maximum gain (differential)		-	4	-	mV rms
Input full scale at minimum gain (differential)		-	800	-	mV rms
3dB Bandwidth		-	20	-	kHz
Microphone mode input impedance		-	6.0	-	Ω
THD+N (microphone input) @ 30mV rms input		-	0.04	-	%

12.3.11 Mono Codec: Digital to Analogue Converter

Digital to Analogue Converter						
Parameter	Conditions	Min	Typ	Max	Unit	
Resolution	-	-	-	16	Bits	
Output Sample Rate, F_{sample}	-	8	-	32	kHz	
Signal to Noise Ratio, SNR	$f_{\text{in}} = 1\text{kHz}$ $B/W = 20\text{Hz} \rightarrow 20\text{kHz}$ A-Weighted $\text{THD+N} < 0.01\%$ 0dBFS signal Load = 100k Ω	F_{sample}				
		8kHz	-	95	-	dB
		11.025kHz	-	95	-	dB
		16kHz	-	95	-	dB
		22.050kHz	-	95	-	dB
		32kHz	-	95	-	dB
Digital Gain	Digital Gain Resolution = 1/32dB	-24	-	21.5	dB	
Analogue Gain	Analogue Gain Resolution = 3dB	0	-	-21	dB	
Output voltage full-scale swing (differential)		-	750	-	mV rms	
Allowed Load	Resistive	16(8)	-	O.C.	Ω	
	Capacitive	-	-	500	pF	
THD+N 100k Ω load		-	-	0.01	%	
THD+N 16 Ω load		-	-	0.1	%	
SNR (Load = 16 Ω , 0dBFS input relative to digital silence)		-	95	-	dB	

12.3.12 Clocks

Clock Source	Min	Typ	Max	Unit
Crystal Oscillator				
Crystal frequency ^(a)	16	26	26	MHz
Digital trim range ^(b)	5.0	6.2	8.0	pF
Trim step size ^(b)	-	0.1	-	pF
Transconductance	2.0	-	-	mS
Negative resistance ^(c)	870	1500	2400	Ω

(a) Integer multiple of 250kHz

(b) The difference between the internal capacitance at minimum and maximum settings of the internal digital trim.

(c) XTAL frequency = 16MHz; XTAL $C_0 = 0.75\text{pF}$; XTAL load capacitance = 8.5pF.

13 HCI Power Consumption

DUT Role	Connection	Packet Type	Description	Average Current		Unit
				High-voltage Linear Regulator	Switch-mode Regulator	
N/A	Deep Sleep	-	Host connection	0.06	0.03	mA
N/A	Page Scan	-	1280ms Interval	0.50	0.22	mA
N/A	Inquiry and Page Scan	-	Inquiry (1280ms interval) Page (1280ms interval)	0.86	0.41	mA
Master	ACL	DH1	No traffic	4.6	2.4	mA
Master	ACL	DH1	File transfer, TX	8.9	4.2	mA
Master	ACL	DH1	Sniff mode (40ms interval, 1 attempt)	2.0	1.02	mA
Master	ACL	DH1	Sniff mode (1280ms interval, 8 attempts)	0.18	0.10	mA
Master	SCO	HV1	-	39.7	18.1	mA
Master	SCO	HV3	-	21.3	9.7	mA
Master	SCO	HV3	Sniff mode (30ms interval, 1 attempts)	21.2	9.5	mA
Master	eSCO	EV3	-	21.5	9.7	mA
Master	eSCO	EV5	-	16.1	7.2	mA
Master	eSCO	EV3	Setting S1	22.3	10.1	mA

DUT Role	Connection	Packet Type	Description	Average Current		Unit
				High-voltage Linear Regulator	Switch-mode Regulator	
Master	eSCO	2EV3	Setting S2	21.2	9.7	mA
Master	eSCO	2EV3	Setting S3	16.0	7.3	mA
Master	eSCO	2EV3	Setting S3 with Sniff mode (100ms interval, 1 attempt)	15.2	6.9	mA
Slave	ACL	DH1	No Traffic	14.4	6.5	mA
Slave	ACL	DH1	File transfer, RX	15.9	7.2	mA
Slave	ACL	DH1	Sniff mode (40ms interval, 1 attempt)	1.8	0.96	mA
Slave	ACL	DH1	Sniff mode (1280ms interval, 8 attempts)	0.23	0.11	mA
Slave	SCO	HV1	-	39.8	18.1	mA
Slave	SCO	HV3	-	26.3	11.8	mA
Slave	SCO	HV3	Sniff mode (30ms interval, 1 attempts)	20.8	9.4	mA

DUT Role	Connection	Packet Type	Description	Average Current		Unit
				High-voltage Linear Regulator	Switch-mode Regulator	
Slave	eSCO	EV3	-	24.3	10.9	mA
Slave	eSCO	EV5	-	20.9	9.3	mA
Slave	eSCO	EV3	Setting S1	26.3	11.7	mA
Slave	eSCO	2EV3	Setting S2	25.6	11.7	mA
Slave	eSCO	2EV3	Setting S3	23.2	10.3	mA
Slave	eSCO	2EV3	Setting S3 with Sniff mode (100ms interval, 1 attempt)	16.1	7.3	mA

Note:

Current consumption values are taken with:

- VREGIN_H for high-voltage linear regulator = 3.2V
- VREGIN_H for switch-mode regulator = 3.7V
- Clock frequency = 16MHz
- UART baud rate is 115200
- QFN device

14 CSR Green Semiconductor Products and RoHS Compliance

14.1 RoHS Statement

BlueVox2 QFN where explicitly stated in this Data Sheet meets the requirements of Directive 2002/95/EC of the European Parliament and of the Council on the *Restriction of Hazardous Substance* (RoHS).

14.1.1 List of Restricted Materials

BlueVox2 QFN is compliant with RoHS in relation to the following substances:

- Cadmium
- Lead
- Mercury
- Hexavalent chromium
- Polybrominated Biphenyl
- Polybrominated Diphenyl Ether

In addition, the following substances are not intentionally added to BlueVox2 QFN devices:

- Halogenated flame retardant
- Antimony (Sb) and Compounds, including Antimony Trioxide flame retardant
- Polybrominated Diphenyl and Biphenyl Oxides
- Tetrabromobisphenol-A bis (2,3-dibromopropylether)
- Asbestos or Asbestos compounds
- Azo compounds
- Organic tin compounds
- Mirex
- Polychlorinated napthalenes
- Polychlorinated terphenyls
- Polychlorinated biphenyls
- Polychlorinated/Short chain chlorinated paraffins
- Polyvinyl Chloride (PVC) and PVC blends
- Formaldehyde
- Arsenic and compounds (except as a semiconductor dopant)
- Beryllium and its compounds
- Ethylene Glycol Monomethyl Ether or its acetate
- Ethylene Glycol Monoethyl Ether or its acetate
- Halogenated dioxins and furans
- Persistent Organic Pollutants (POP), including Perfluorooctane sulphonates
- Red phosphorous
- Ozone Depleting Chemicals (Class I and II): Chlorofluorocarbons (CFC) and Halons
- Radioactive substances

For further information, see CSR's *Environmental Compliance Statement for CSR Green Semiconductor Products*.

15 BlueVox2 QFN Software Stack

BlueVox2 QFN is supplied with Bluetooth v2.1 + EDR specification compliant stack firmware, which runs on the internal RISC MCU.

The BlueVox2 QFN software architecture allows Bluetooth processing and the application program to be shared in different ways between the internal RISC MCU and an external host processor, if any. The upper layers of the Bluetooth stack, above the HCI, can be run either on-chip or on the host processor.

15.1 BlueVox2 Low-cost Mono Headset Solution Development Kit, BV-002-1A

CSR's BlueVox2 Low-cost Mono Headset Solution development kit for BlueVox2 QFN, order code BV-002-1A, includes a headset demonstrator board, form-factor representative example design, music and voice dongle and necessary interface adapters and cables. In conjunction with the BlueVox Configurator tool and other supporting utilities the development kit provides the best environment for designing a mono headset solution with BlueVox2 QFN.

15.2 BlueVox2 Low-cost Mono Headset Solution Mono Headset ROM Software (BC63C159A03)

- The CSR mono headset ROM software supports HFP1.5 and HSP1.0. Advanced features in these specifications are supported, including three-way calling.
- Bluetooth v2.1 + EDR specification is supported in the ROM software including Secure Simple Pairing, greatly simplifying the pairing process.
- For connection to more than one mobile phone Multipoint is supported. This allows a user to take calls from a work and personal phone or a work phone and a VoIP dongle for Skype users. This is supported with a minimal impact on power consumption and can be easily configured.
- The BlueVox2 Low-cost Mono Headset Solution includes noise reduction hardware controlled by the on-chip MCU. This improves the clarity of the speech in noisy environments.
- Most of the CSR mono headset ROM software features can be configured on the BlueVox2 QFN using the BlueVox Configurator tool available from www.crsupport.com/MonoHeadsetSolutions. The tool can be used to read and write headset configurations directly to the EEPROM or alternatively to a PSR file. Configurable headset features include:
 - Bluetooth v2.1 + EDR specification features
 - Reconnection policies, e.g. reconnect on power on
 - Audio features, including default volumes
 - Button events: configuring button presses and durations for certain events, e.g. double press on PIO[1] for Last Number redial
 - LED indications for states, e.g. headset connected, and events, e.g. power on
 - Indication tones for events and ringtones
 - HFP1.5 supported features
 - Battery divider ratios and thresholds, e.g. thresholds for battery low indication, full battery etc.
 - Multipoint settings
- The BlueVox2 Low-cost Mono Headset Solution includes the AuriStream, CSR's proprietary ADPCM codec which can be configured for low power consumption or improved audio quality
- The BlueVox2 Low-cost Mono Headset Solution has undergone extensive interoperability testing to ensure that it will work with the majority of phones on the market

15.3 Multipoint Support

Multipoint allows the connection of 2 devices to BlueVox2 QFN at the same time. For example, this could be either 2 phones connected to a BlueVox2 QFN headset, or a phone and a VoIP dongle connected to a headset.

The BlueVox2 Low-cost Mono Headset Solution:

- Supports a maximum of 2 connections
- When a call comes in on one of the connected devices the other device is disconnected
- During the call all headset buttons work as in the standard use case with one device connected
- At the end of the call the second device is automatically reconnected
- This implementation is easy to use with negligible effect on power consumption

16 Ordering Information

Device	Package			Order Number
	Type	Size	Shipment Method	
BlueVox2 Low-cost Mono Headset Solution	QFN 48-lead (Pb free)	7 x 7 x 0.9mm, 0.5mm pitch	Tape and reel	BC63C159A03-IQB-E4

Note:

BlueVox2 QFN is a ROM-based device where the product code has the form BC63C159Axx. xx is the specific ROM-variant, 03 is the ROM-variant for BlueVox2 Low-cost Mono Headset Solution.

Minimum Order Quantity is 2kpcs taped and reeled.

To contact a CSR representative, email sales@csr.com or go to www.csr.com/contacts

16.1 BlueVox2 Low-cost Mono Headset Solution Development Kit Ordering Information

Description	Order Number
BlueVox2 Low-cost Mono Headset Solution Development Kit, including headset example design	BV-002-1A

17 Tape and Reel Information

For tape and reel packing and labelling see *IC Packing and Labelling Specification*.

17.1 Tape Orientation

Figure 17.1 shows the BlueVox2 QFN packing tape orientation.

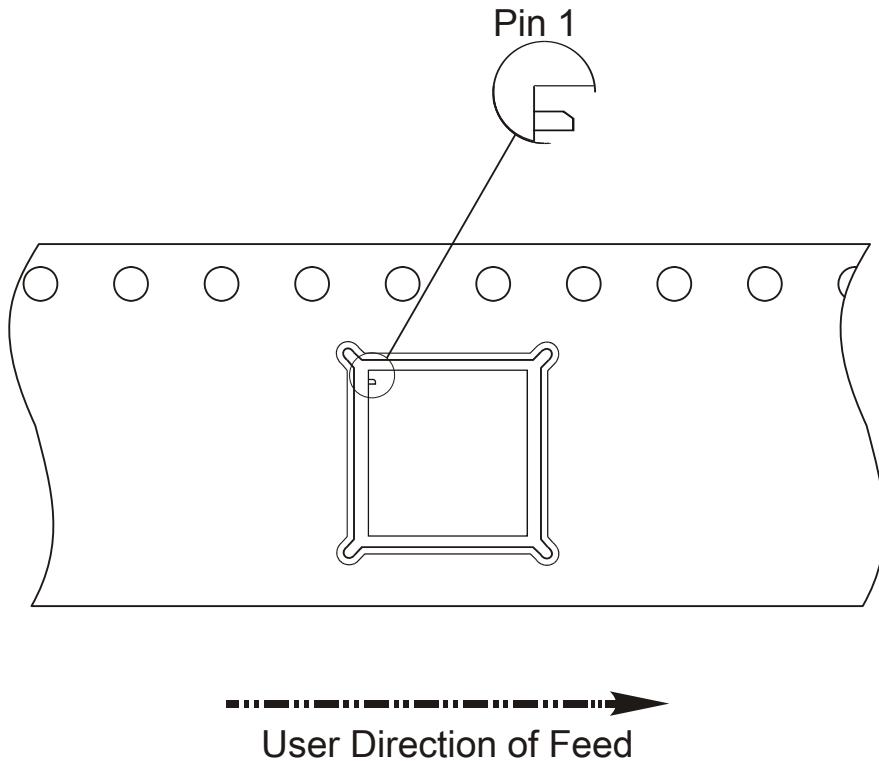
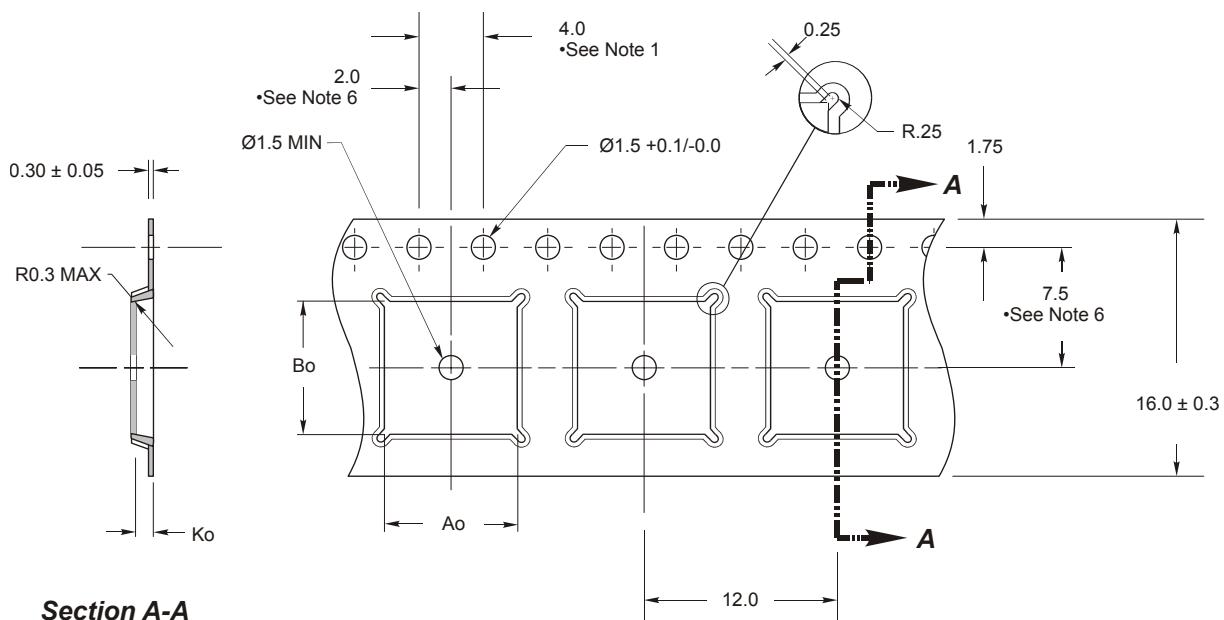



Figure 17.1: BlueVox2 QFN Tape Orientation

17.2 Tape Dimensions

Section A-A

A_0	B_0	K_0	Unit	Notes
7.25	7.25	1.10	mm	<ol style="list-style-type: none"> 10 sprocket hole pitch cumulative tolerance ± 0.2 Camber not to exceed 1mm in 100mm Material: PS + C A_0 and B_0 measured as indicated K_0 measured from a plane on the inside bottom of the pocket to the top surface of the carrier Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole

17.3 Reel Information

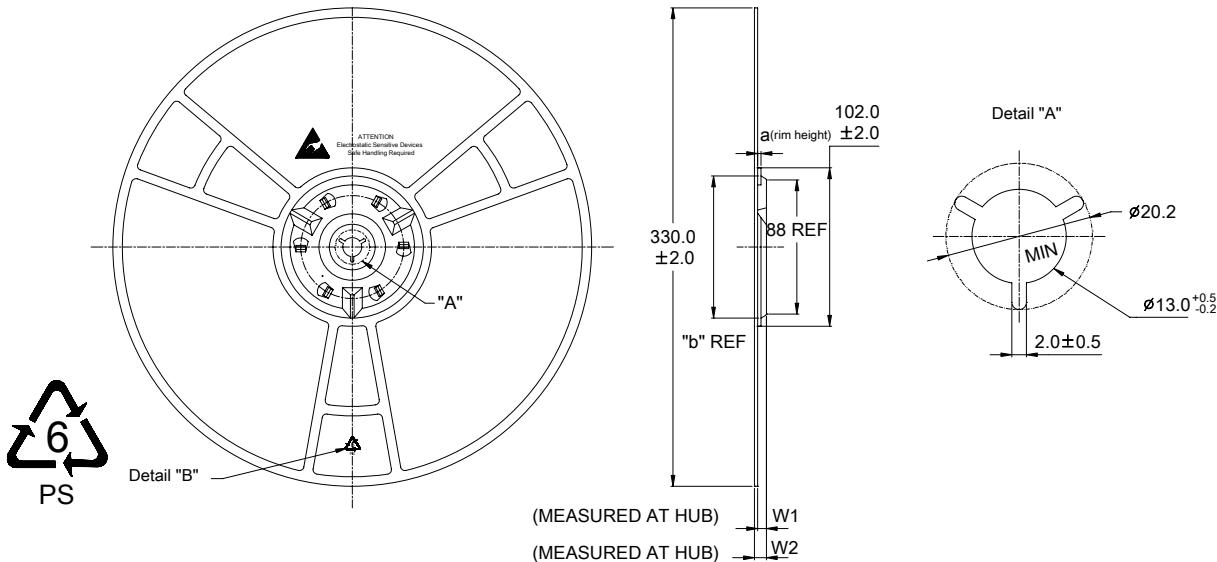


Figure 17.2: Reel Dimensions

Package Type	Nominal Hub Width (Tape Width)	a	b	W1	W2 Max	Units
7 x 7 x 0.9mm QFN	16	4.5	98.0	16.4 (3.0/-0.2)	19.1	mm

17.4 Moisture Sensitivity Level

BlueVox2 QFN is qualified to moisture sensitivity level MSL3 in accordance with JEDEC J-STD-020.

18 Document References

Document	Reference, Date
<i>BlueCore5 Charger Description and Calibration Procedure Application Note</i>	CS-113282-ANP, 2007
<i>BlueVox2 QFN Performance Specification</i>	CS-119931-SP, 2008
<i>BlueVox2 BGA Product Data Sheet</i>	CS-118691-DSP, 2008
<i>Core Specification of the Bluetooth System</i>	v2.1 + EDR, 26 July 2007
<i>Enhancing Microphone Bias Performance in Headset Designs using BlueVox2 Application Note</i>	CS-121678-ANP, 2008
<i>Environmental Compliance Statement for CSR Green Semiconductor Products</i>	CB-001036-ST, 27 September 2007
<i>IC Packing and Labelling Specification</i>	CS-112584-SPP, January 2007
<i>Selection of I²C EEPROMS for Use with BlueCore</i>	bcore-an-008P, 30 March 2004
<i>Test Suite Structure (TSS) and Test Purposes (TP) System Specification 1.2/2.0/2.0 + EDR/2.1/2.1 + EDR</i>	RF.TS/2.1.E.0, 27 December 2006
<i>Typical Solder Reflow Profile for Lead-free Device</i>	CS-116434-ANP, 2007

Terms and Definitions

Term	Definition
8DPSK	8 phase Differential Phase Shift Keying
$\pi/4$ DQPSK	$\pi/4$ rotated Differential Quaternary Phase Shift Keying
ADC	Analogue to Digital Converter
ADPCM	Adaptive Differential Pulse code Modulation
AFH	Adaptive Frequency Hopping
AGC	Automatic Gain Control
AuriStream	CSR proprietary ADPCM codec
BIST	Built-In Self Test
BlueCore®	Group term for CSR's range of Bluetooth wireless technology ICs
Bluetooth®	Set of technologies providing audio and data transfer over short-range radio connections
BMC	Burst Mode Controller
codec	Coder decoder
CRC	Cyclic Redundancy Check
CVSD	Continuous Variable Slope Delta Modulation
DAC	Digital to Analogue Converter or Device Access Code
DC	Direct Current
EDR	Enhanced Data Rate
eSCO	Extended SCO
ESR	Equivalent Series Resistance
FSK	Frequency Shift Keying
GFSK	Gaussian Frequency Shift Keying
HCI	Host Controller Interface
IIR	Infinite Impulse Response (filter)
IQ	In-Phase and Quadrature
I/O	Input/Output
I ² C	Inter-Integrated Circuit
IC	Integrated Circuit
IF	Intermediate Frequency
LC	An inductor (L) and capacitor (C) network
LED	Light Emitting Diode
LNA	Low Noise Amplifier
MCU	Micro Controller Unit
MMU	Memory Management Unit
NSMD	Non Solder Mask Defined
PA	Power Amplifier
PIO	Programmable Input Output
PSRR	Power Supply Rejection Ratio
QFN	Quad-Flat No-lead
RAM	Random Access Memory
RF	Radio Frequency
RISC	Reduced Instruction Set Computer

Term	Definition
RoHS	The Restriction of Hazardous Substances in Electrical and Electronic Equipment Directive (2002/95/EC)
ROM	Read Only Memory
RSSI	Received Signal Strength Indication
RX	Receive or Receiver
TX	Transmit or Transmitter
UART	Universal Asynchronous Receiver Transmitter
UI	User Interface
VCO	Voltage Controlled Oscillator
VFBGA	Very Fine Ball Grid Array
VM	Virtual Machine