

REPORT OF MEASUREMENTS
PART 15C - INTENTIONAL RADIATOR

DEVICE: KWIKSET TX REV. 04 SET NO. 2

MODEL: 872

MANUFACTURER: KWIKSET CORPORATION

ADDRESS: 516 EAST SANTA ANA STREET
PO BOX 4250
ANAHEIM CA 92803-4250

THE DATA CONTAINED IN THIS REPORT WAS
COLLECTED ON 19 JULY 1999 AND COMPILED BY:

PAUL G. SLAVENS
CHIEF EMC ENGINEER

DANIEL B. STATON
EMC TECHNICIAN

1. GENERAL	3
1.1 PURPOSE	3
1.2 MANUFACTURER	3
1.3 TEST LOCATION	3
1.4 TEST PERSONNEL.....	3
2. TEST RESULTS SUMMARY.....	4
3. MANUFACTURER'S STATEMENT OF RESPONSIBILITY	5
4. DESCRIPTION OF EQUIPMENT AND PERIPHERALS	6
4.1 EQUIPMENT UNDER TEST (EUT)	6
4.2 EUT PERIPHERALS FOR EMISSIONS	6
4.3 MODE OF OPERATION DURING TESTING	6
4.4 MODIFICATIONS REQUIRED FOR COMPLIANCE.....	6
5. ANTENNA REQUIREMENT	7
5.1 REGULATION	7
5.2 RESULT	7
6. CONDUCTED EMISSIONS TESTS	8
6.1 PURPOSE	8
6.2 TEST PROCEDURES	8
6.3 TEST RESULTS	8
7. PERIODIC OPERATION	9
7.1 REGULATION	9
7.2 RESULT	9
8. MANUALLY OPERATED TRANSMITTER DEACTIVATION	10
8.1 REGULATION	10
8.2 RESULT	10
9. AUTOMATICALLY OPERATED TRANSMITTER DEACTIVATION.....	11
9.1 REGULATION	11
9.2 RESULT	11
10. PROHIBITION OF PERIODIC TRANSMISSION.....	12
10.1 REGULATION	12
10.2 RESULT	12
11. CONTINUOUS TRANSMISSION DURING AN ALARM CONDITION.....	13
11.1 REGULATION	13
11.2 RESULT	13
12. RADIATED SPURIOUS EMISSIONS.....	14
12.1 REGULATION	14
12.2 TEST EQUIPMENT	15
12.3 TEST PROCEDURES	15
12.4 CALCULATION OF FIELD STRENGTH LIMITS	16
12.5 CALCULATION OF AVERAGE CORRECTION FACTOR	16
12.6 TEST RESULTS	16
13. 20 DB BANDWIDTH.....	18
13.1 REGULATION	18
13.2 TEST EQUIPMENT	18
13.3 CALCULATION OF 20 dB BANDWIDTH AND RESULT	18
14. MISCELLANEOUS COMMENTS AND NOTES	19
15. LIST OF ATTACHMENTS	19

1. General

1.1 Purpose

The purpose of this report is to show compliance to the FCC regulations for unlicensed devices operating under section 15.231 of the Code of Federal Regulations title 47.

1.2 Manufacturer

Company Name: Kwikset Corporation
Contact: Steve Armstrong
Street Address: 516 East Santa Ana Street
Mailing Address: PO Box 4250
City/State/Zip: Anaheim CA 92803-4250

1.3 Test location

Company: Acme Testing Inc.
Street Address: 2002 Valley Highway
Mailing Address: PO Box 3
City/State/Zip: Acme WA 98220-0003
Laboratory: Test Site 2
Telephone: 888 226-3837
Fax: 360 595-2722
E-mail: acmetest@acmetesting.com
Web: www.acmetesting.com
Receipt of EUT: 19 July 1999

1.4 Test Personnel

Paul G. Slavens
Daniel B. Staton

2. Test Results Summary

Summary of Test Results
Kwikset TX Rev. 04 Set No. 2, model 872

Requirement	CFR Section	Test Result
Antenna Requirement	15.203	Pass
Radiated Spurs < 15.209	15.205(b)	Pass
Conducted Emissions < 48.0 dBuV	15.207	*
Periodic Operation Characteristics	15.231(a)	Pass
Field Strength Limits	15.231(b)	Pass
20 dB Bandwidth	15.231(c)	Pass

* Not required, the EUT is battery powered.

The signed original of this report, supplied to the client, represents the only “official” copy. Retention of any additional copies (electronic or non-electronic media) is at Acme Testing’s discretion to meet internal requirements only. The client has made the determination that EUT Condition, Characterization, and Mode of Operation are representative of production units, and meet the requirements of the specifications referenced herein.

The measurements contained in this report were made in accordance with the procedure ANSI C63.4 - 1992 and all applicable Public Notices received prior to the date of testing. All emissions from the device were found to be within the limits outlined in this report. Acme Testing assumes responsibility only for the accuracy and completeness of this data as it pertains to the sample tested.

Paul G. Slavens
Chief EMC Engineer

Date of Issuance

3. Manufacturer's Statement Of Responsibility

This equipment has been tested in accordance with the requirements contained in the appropriate Commission regulations. To the best of my knowledge, these tests were performed using measurement procedures consistent with industry or Commission standards and demonstrate that the equipment complies with the appropriate standards. Each unit manufactured, imported or marketed, as defined in the Commission's regulations, will conform to the sample(s) tested within the variations that can be expected due to quantity production and testing on a statistical basis. I further certify that the necessary measurements were made by:

Acme Testing, Inc.
2002 Valley Highway
P.O. Box 3
Acme Washington 98220-0003
360-595-2785.

Signature

Title

4. Description of Equipment and Peripherals

4.1 Equipment Under Test (EUT)

Device: Kwikset TX Rev. 04 Set No. 2
Model Number: 872
Serial Number: None
FCC ID: None
Power: 6 VDC
Grounding: Local
Antenna Distance: 3 meters

4.2 EUT Peripherals for Emissions

The EUT was tested as a stand-alone device.

4.3 Mode of Operation During Testing

The EUT was exercised with the light switch button taped down in constant transmit mode.

4.4 Modifications Required for Compliance

1. None.

5. Antenna requirement

5.1 Regulation

15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of Part 15C. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators, which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

5.2 Result

The Antenna is a part of the PCB and is not removable.

6. Conducted Emissions Tests

Test Requirement: FCC CFR47, Part 15C

Test Procedure: ANSI C63.4:1992

6.1 Purpose

The purpose of this test is to evaluate the level of conducted noise the EUT imposes on the AC mains.

6.2 Test Procedures

For tabletop equipment, the EUT is placed on a 1 meter by 1.5 meters wide and 0.8 meter high nonconductive table that is placed above the groundplane. Floor standing equipment is placed directly on the groundplane. Any supplemental grounding mechanisms are connected, if appropriate. The EUT is connected to its associated peripherals, with any excess I/O cabling bundled to approximately 1 meter. The EUT is connected to a dedicated LISN and all peripherals are connected to a second separate LISN circuit. The LISNs are bonded to the groundplane.

Preview tests are performed to determine the “worst case” mode of operation. With the EUT operating in “worst case” mode, final conducted measurements are taken. Conducted measurements are made on each current carrying conductor with respect to ground.

Conducted Emissions Test Characteristics

Frequency range	0.45 MHz - 30.0 MHz
Test instrumentation resolution bandwidth	9 kHz
Lines Tested	Line 1/Line 2

6.3 Test Results

Conducted Emissions is not required, the EUT is DC powered.

7. Periodic Operation

7.1 Regulation

15.231(a) The provisions of this Section are restricted to periodic operation within the band 40.66 - 40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this Section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Radio control of toys is not permitted. Continuous transmissions, such as voice or video, and data transmissions are not permitted. The prohibition against data transmissions does not preclude the use of recognition codes. Those codes are used to identify the sensor that is activated or to identify the particular component as being part of the system.

7.2 Result

The EUT meets the requirements of this section.

8. Manually Operated Transmitter Deactivation

8.1 Regulation

15.231(a1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

8.2 Result

The EUT meets the requirements of this section.

9. Automatically Operated Transmitter Deactivation

9.1 Regulation

15.231(a2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

9.2 Result

The EUT meets the requirements of this section.

10. Prohibition of Periodic Transmission

10.1 Regulation

15.231(a3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions to determine system integrity of transmitters used in security or safety applications are allowed if the periodic rate of transmission does not exceed one transmission of not more than one second duration per hour for each transmitter.

10.2 Result

The EUT meets the requirements of this section.

11. Continuous Transmission During an Alarm Condition

11.1 Regulation

15.231(a4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.

11.2 Result

This section is not applicable to the EUT.

12. Radiated Spurious Emissions

Test Requirement: FCC CFR47, Part 15C

Test Procedure: ANSI C63.4:1992

12.1 Regulation

15.231(b) In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,750 **	125 to 375 **
174 - 260	3,750	75
260 - 470	3,750 to 12,500 **	375 to 1,250 **
Above 470	12,500	1,250

** linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, $\mu\text{V/m}$ at 3 meters = $56.81818(F) - 6136.3636$; for the band 260-470 MHz, $\mu\text{V/m}$ at 3 meters = $41.6667(F) - 7083.3333$. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

(1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

(2) Intentional radiators operating under the provisions of this Section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in Section 15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of Section 15.205 shall be demonstrated using the measurement instrumentation specified in that section.

(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength

12.2 Test Equipment

Spectrum Analyzer: Hewlett-Packard 8566B, Serial Number 2747A-05662, Calibrated: 9 September 1998, Calibration due Date: 9 September 1999

RF Preselector: Hewlett-Packard 85685A, Serial Number 2510A-00106, Calibrated: 9 September 1998, Calibration due Date: 9 September 1999

Quasi Peak Adapter: Hewlett-Packard 85650A, Serial Number 2521A-00931, Calibrated: 9 September 1998, Calibration due Date: 9 September 1999

Line Impedance Stabilization Network: Rhode & Schwarz ESH2-Z5, Serial Number ACMERS1, Calibrated: 1 March 1999, Calibration due Date: 01 September 1999

Broadband Biconical Antenna (20 MHz to 200 MHz): EMCO 3110, Serial Number 1115, Calibrated: 29 June 1999, Calibration due Date: 29 June 2000

Broadband Log Periodic Antenna (200 MHz to 1000 MHz): EMCO 3146, Serial Number 2853, Calibrated: 29 June 1999, Calibration due Date: 29 June 2000

EUT Turntable Position Controller: EMCO 1061-3M 9003-1441, No Calibration Required

Antenna Mast: EMCO 1051 9002-1457, No Calibration Required

2 GHz to 10 GHz Low Noise Preamplifier: Milliwave 593-2898, Serial Number 2494, Calibrated: 31 December 1998, Calibration due Date: 31 December 1999

Double Ridge Guide Horn Antenna: EMCO 3115, Serial Number 5534, Calibrated: 28 December 1998, Calibration due Date: 28 December 1999

12.3 Test Procedures

For tabletop equipment, the EUT is placed on a 1 meter by 1.5 meters wide and 0.8 meter high nonconductive table that sits on a flush mounted metal turntable. Floor standing equipment is placed directly on the flush mounted metal turntable. The EUT is connected to its associated peripherals with any excess I/O cabling bundled to approximately 1 meter.

Preview tests are performed to determine the “worst case” mode of operation. With the EUT operating in “worst case” mode, emissions from the unit are maximized by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable. Manipulating the system cables also maximizes EUT emissions.

Radiated Emissions Test Characteristics

Frequency range	30 MHz - 4000 MHz
Test distance	3 m
Test instrumentation resolution bandwidth	120 kHz (30 MHz - 1000 MHz) 1 MHz (1000 MHz - 4000 MHz)
Receive antenna scan height	1 m - 4 m
Receive antenna polarization	Vertical/Horizontal

12.4 Calculation of Field Strength Limits

Fundamental field strength limits for the band 260 – 470 MHz, uV/m at 3 meters = 41.6667(F) – 7083.3333 = 41.6667* 390.1 – 7083.3 = 9,170.8 uV = 79.2 dBuV/m.

The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level = 59.2 dBuV/m.

12.5 Calculation of Average Correction Factor

The average correction factor is computed by analyzing the “worst case” on time in **any** 100 mSec time period and using the formula:

$$\text{Corrections Factor (dB)} + 20 * \log (\text{worst case on time}/100 \text{ mSec})$$

Analysis of the remote transmitter worst case on time in any 100 mSec time period is an on time of 41 mSec, therefore the correction factor is $20 * \log (41/100) = -7.7 \text{ dB}$.

The maximum correction factor to be applied is 20 dB per section 15.35 of the FCC rules.

12.6 Test Results

PEAK DATA SINGLE ENCODER PRODUCT EMISSIONS

No	EMISSION FREQUENCY MHz	SPEC LIMIT dBuV/m	MEASUREMENTS			SITE HGT cm	CORR FACTOR dB		
			ABS dB	dLIM dB	MODE				
1	390.112	86.9	84.6	-2.3	PK	H	100	24	18.7
2	390.117	86.9	69.8	-17.1	PK	V	107	358	18.7
3	780.246	66.9	55.5	-11.4	PK	H	100	75	26.3
4	780.248	66.9	48.7	-18.2	PK	V	107	59	26.3
5	1170.39	66.9	55.0	-11.9	PK	H	100	120	30.7
6	1170.41	66.9	49.9	-17.0	PK	V	107	169	30.7

AVERAGE DATA
SINGLE ENCODER PRODUCT EMISSIONS

No	EMISSION FREQUENCY	SPEC LIMIT	MEASUREMENTS	SITE	CORR				
	MHz	dBuV/m	ABS	dLIM	MODE	POL	HGT	AZM	FACTOR
1	390.112	79.2	76.9	-2.3	PK	H	100	24	18.7
2	390.117	79.2	62.1	-17.1	PK	V	107	358	18.7
3	780.246	59.2	47.8	-11.4	PK	H	100	75	26.3
4	780.248	59.2	41.0	-18.2	PK	V	107	59	26.3
5	1170.39	59.2	47.9	-11.9	PK	H	100	120	30.7
6	1170.41	59.2	42.2	-17.0	PK	V	107	169	30.7

PEAK DATA
DUAL ENCODER PRODUCT EMISSIONS

No	EMISSION FREQUENCY	SPEC LIMIT	MEASUREMENTS	SITE	CORR				
	MHz	dBuV/m	ABS	dLIM	MODE	POL	HGT	AZM	FACTOR
1	389.979	86.9	84.4	-2.5	PK	H	100	47	18.7
2	389.981	86.9	68.2	-18.7	PK	V	107	10	18.7
3	779.981	66.9	54.3	-12.6	PK	H	100	76	26.3
4	779.981	66.9	46.3	-20.6	PK	V	107	54	26.3
5	1169.96	66.9	53.9	-13.0	PK	H	100	120	30.7
6	1169.98	66.9	47.5	-19.4	PK	V	107	129	30.7

AVERAGE DATA
DUAL ENCODER PRODUCT EMISSIONS

No	EMISSION FREQUENCY	SPEC LIMIT	MEASUREMENTS	SITE	CORR				
	MHz	dBuV/m	ABS	dLIM	MODE	POL	HGT	AZM	FACTOR
1	389.979	79.2	76.7	-2.5	PK	H	100	47	18.7
2	389.981	79.2	60.5	-18.7	PK	V	107	10	18.7
3	779.981	59.2	46.6	-12.6	PK	H	100	76	26.3
4	779.981	59.2	38.6	-20.6	PK	V	107	54	26.3
5	1169.96	59.2	46.2	-13.0	PK	H	100	120	30.7
6	1169.98	59.2	39.8	-19.4	PK	V	107	129	30.7

13. 20 dB Bandwidth

Test Requirement: FCC CFR47, Part 15C

Test Procedure: ANSI C63.4:1992

13.1 Regulation

15.231(c) The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

13.2 Test Equipment

Spectrum Analyzer: Hewlett-Packard 8566B, Serial Number 2747A-05662, Calibrated: 9 September 1998, Calibration due Date: 9 September 1999

RF Preselector: Hewlett-Packard 85685A, Serial Number 2510A-00106, Calibrated: 9 September 1998, Calibration due Date: 9 September 1999

Quasi Peak Adapter: Hewlett-Packard 85650A, Serial Number 2521A-00931, Calibrated: 9 September 1998, Calibration due Date: 9 September 1999

Broadband Biconical Antenna (20 MHz to 200 MHz): EMCO 3110, Serial Number 1115, Calibrated: 29 June 1999, Calibration due Date: 29 June 2000

Broadband Log Periodic Antenna (200 MHz to 1000 MHz): EMCO 3146, Serial Number 2853, Calibrated: 29 June 1999, Calibration due Date: 29 June 2000

13.3 Calculation of 20 dB Bandwidth and Result

The 20 dB bandwidth limit = $0.0025 * 390 \text{ MHz}$
0.975 MHz

The Measured 20 dB bandwidth is 51.7 kHz.

For a detailed plot, please refer to the accompanying data in the list of attachments.

14. Miscellaneous Comments and Notes

1. None.

15. List of Attachments

1. Temperature Testing Data. (1)
2. 20 dB Bandwidth Plot. (1)
3. Photographs of test set-ups. (6)

FREQUENCY AND LEVEL vs. VOLTAGE @ 22.7 DEGREES CELSIUS

VOLTAGE (Vdc)	FREQUENCY (MHz)	LEVEL (dBm)
6.0	393.06356	-27.63
5.8	393.02670	-28.53
5.6	392.98954	-29.26
5.4	392.94016	-30.31
5.2	392.89591	-30.53
5.0	392.83416	-31.86
4.8	392.76841	-33.66
4.6	392.70179	-34.94
4.4	392.61616	-37.00
4.2	392.55004	-40.63
4.0	392.44016	-44.61
3.8	392.32966	-49.64

* SIGNAL WAS LOST @ APPROXIMATELY 3.65 VDC