# **FCC Test Report**

| Product Name | V2X DSRC Module |
|--------------|-----------------|
| Model No     | VTX-301         |
| FCC ID       | NUK-VTX3012     |

| Applicant | Unex Technology Corporation                           |
|-----------|-------------------------------------------------------|
| Address   | 7F-2, No. 100, Sec. 1, Jiafeng 11th Rd., Zhubei City, |
|           | Hsinchu County 30273, Taiwan, R.O.C.                  |

| Date of Receipt | Feb. 05, 2020        |
|-----------------|----------------------|
| Issued Date     | Apr. 09, 2020        |
| Report No.      | 2020046R-E3032110123 |
| Report Version  | V1.0                 |



The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.



# Test Report

Issued Date: Apr. 09, 2020 Report No.: 2020046R-E3032110123



| Product Name        | V2X DSRC Module                                                                                     |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------|--|--|
| Applicant           | Unex Technology Corporation                                                                         |  |  |
| Address             | 7F-2, No. 100, Sec. 1, Jiafeng 11th Rd., Zhubei City, Hsinchu Count<br>30273, Taiwan, R.O.C.        |  |  |
| Manufacturer        | Unex Technology Corporation                                                                         |  |  |
| Model No.           | VTX-301                                                                                             |  |  |
| FCC ID.             | NUK-VTX3012                                                                                         |  |  |
| EUT Rated Voltage   | DC 5V                                                                                               |  |  |
| EUT Test Voltage    | DC 5V by Test Fixture                                                                               |  |  |
| Trade Name          | Unex                                                                                                |  |  |
| Applicable Standard | FCC CFR Title 47 Part 15 Subpart E<br>ANSI C63.4: 2014, ANSI C63.10: 2013<br>KDB Publication 789033 |  |  |
| Test Result         | Complied                                                                                            |  |  |

Documented By :

Jinn Chen

(Senior Adm. Specialist / Jinn Chen)

Tested By :

Ivan Chuang

(Senior Engineer / Ivan Chuang)

Approved By :

(Director / Vincent Lin)



# TABLE OF CONTENTS

|    | Desc | ription                                       | Page |  |  |  |
|----|------|-----------------------------------------------|------|--|--|--|
| 1. | GEN  | NERAL INFORMATION                             | 5    |  |  |  |
|    | 1.1. | EUT Description                               | 5    |  |  |  |
|    | 1.2. | Operational Description                       | 7    |  |  |  |
|    | 1.3. | Tested System Datails                         | 8    |  |  |  |
|    | 1.4. | Configuration of tested System                | 8    |  |  |  |
|    | 1.5. | EUT Exercise Software                         | 8    |  |  |  |
|    | 1.6. | Test Facility                                 | 9    |  |  |  |
|    | 1.7. | List of Test Equipment                        | 10   |  |  |  |
|    | 1.8. | Uncertainty                                   |      |  |  |  |
| 2. | Con  | ducted Emission                               |      |  |  |  |
|    | 2.1. | Test Setup                                    |      |  |  |  |
|    | 2.2. | Limits                                        |      |  |  |  |
|    | 2.3. | Test Procedure                                |      |  |  |  |
|    | 2.4. | Uncertainty                                   | 13   |  |  |  |
|    | 2.5. | Test Result of Conducted Emission             | 14   |  |  |  |
| 3. | Max  | Maximun conducted output power                |      |  |  |  |
|    | 3.1. | Test Setup                                    | 16   |  |  |  |
|    | 3.2. | Limits                                        | 17   |  |  |  |
|    | 3.3. | Test Procedure                                |      |  |  |  |
|    | 3.4. | Uncertainty                                   |      |  |  |  |
|    | 3.5. | Test Result of Maximum conducted output power |      |  |  |  |
| 4. | Peal | Peak Power Spectral Density                   |      |  |  |  |
|    | 4.1. | Test Setup                                    | 20   |  |  |  |
|    | 4.2. | Limits                                        | 20   |  |  |  |
|    | 4.3. | Test Procedure                                | 21   |  |  |  |
|    | 4.4. | Uncertainty                                   | 21   |  |  |  |
|    | 4.5. | Test Result of Peak Power Spectral Density    |      |  |  |  |
| 5. | Rad  | iated Emission                                | 24   |  |  |  |
|    | 5.1. | Test Setup                                    | 24   |  |  |  |
|    | 5.2. | Limits                                        | 25   |  |  |  |
|    | 5.3. | Test Procedure                                |      |  |  |  |
|    | 5.4. | Uncertainty                                   | 27   |  |  |  |
|    | 5.5. | Test Result of Radiated Emission              |      |  |  |  |
| 6. | Ban  | d Edge                                        | 42   |  |  |  |
|    | 6.1. | Test Setup                                    |      |  |  |  |
|    | 6.2. | Limits                                        |      |  |  |  |
|    |      |                                               |      |  |  |  |

# DEKRA

|    | 6.3.                                             | Test Procedure                    | 43 |
|----|--------------------------------------------------|-----------------------------------|----|
|    | 6.4.                                             | Uncertainty                       | 44 |
|    | 6.5.                                             | Test Result of Band Edge          | 45 |
| 7. | Occu                                             | ıpied Bandwidth                   | 49 |
|    | 7.1.                                             | Test Setup                        | 49 |
|    | 7.2.                                             | Limits                            | 49 |
|    | 7.3.                                             | .Test Procedure                   | 49 |
|    | 7.4.                                             | Uncertainty                       | 49 |
|    | 7.5.                                             | Test Result of Occupied Bandwidth | 50 |
| 8. | Duty                                             | 7 Cycle                           | 52 |
|    |                                                  |                                   |    |
|    | 8.1.                                             | Test Setup                        |    |
|    | 8.1.<br>8.2.                                     | Test Setup<br>Test Procedure      |    |
|    |                                                  |                                   | 52 |
|    | 8.2.                                             | Test Procedure                    |    |
| 9. | <ul><li>8.2.</li><li>8.3.</li><li>8.4.</li></ul> | Test Procedure<br>Uncertainty     |    |

Attachment 2: EUT Detailed Photographs



# 1. GENERAL INFORMATION

# **1.1. EUT Description**

| Product Name       | V2X DSRC Module                   |
|--------------------|-----------------------------------|
| Trade Name         | Unex                              |
| FCC ID.            | NUK-VTX3012                       |
| Model No.          | VTX-301                           |
| Frequency Range    | 5745-5825MHz                      |
| Number of Channels | 10MHz Bandwidth:9CH               |
| Data Rate          | 6 Mbps                            |
| Channel Control    | Auto                              |
| Type of Modulation | OFDM                              |
| Antenna type       | OMNI Antenna                      |
| Antenna Gain       | Refer to the table "Antenna List" |

#### Antenna List

| No. | Manufacturer                | Part No. | Antenna Type | Peak Gain with Antenna cable loss |
|-----|-----------------------------|----------|--------------|-----------------------------------|
| 1   | Unex Technology Corporation | EX-30    | OMNI Antenna | 3.73dBi                           |

Note:

1. The antenna of EUT is conforming to FCC 15.203.

2. Antenna cable loss is 1.4dBi

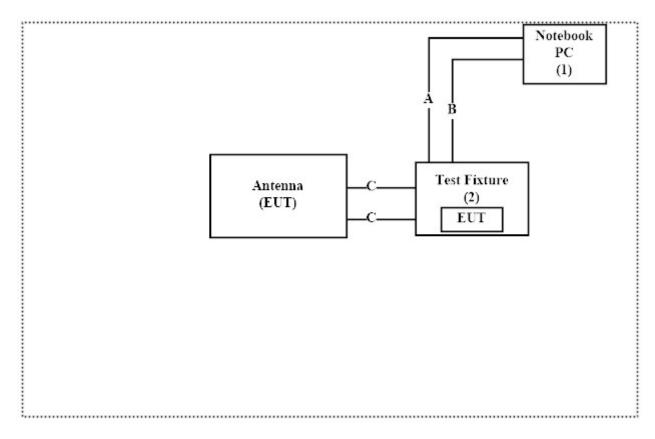


Center Working Frequency of Each Channel: (10MHz Bandwidth)

Channel Frequency Channel Channel Channel Frequency Frequency Frequency Channel 149: 5745 MHz Channel 151: 5755 MHz Channel 153: 5765 MHz Channel 155: 5775 MHz Channel 157: 5785 MHz Channel 159: 5795 MHz Channel 161: 5805 MHz Channel 163: 5815 MHz Channel 165: 5825 MHz

- 1. This device is a V2X DSRC Module with a built-in 5GHz wireless transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance of transmitter with Part 15 Subpart E for Unlicensed National Information Infrastructure devices.

| Test Mode Mode 1: Transmit (10MHz Bandwidth) |
|----------------------------------------------|
|----------------------------------------------|


# **1.3.** Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

| Pro | oduct        | Manufacturer | Model No. | Serial No. | Power Cord |
|-----|--------------|--------------|-----------|------------|------------|
| 1   | Notebook PC  | DELL         | P62G      | CY9FJC2    | N/A        |
| 2   | Test Fixture | Unex         | N/A       | N/A        | N/A        |
| _   | ·            | ·            | •         | ·          |            |

| Signal Cable Type     |               | Signal cable Description     |
|-----------------------|---------------|------------------------------|
| A USB Cable Non-shiel |               | Non-shielded, 0.8m           |
| В                     | USB Cable     | Shielded, 0.9m               |
| С                     | Antenna Cable | Non-shielded, 0.2m, two PCS. |

#### **1.4.** Configuration of tested System



# **1.5.** EUT Exercise Software

- 1. Setup the EUT as shown in Section 1.4.
- 2. Execute software "PuTTY V0.63" on the Notebook PC.
- 3. Configure the test mode, the test channel, and the data rate.
- 4. Press "OK" to start the continuous Transmit.
- 5. Verify that the EUT works properly.



# **1.6.** Test Facility

Ambient conditions in the laboratory:

| Performed Item       | Items            | Required | Actual |
|----------------------|------------------|----------|--------|
| Cardanta I Daviasian | Temperature (°C) | 10~40 °C | 23.5°C |
| Conducted Emission   | Humidity (%RH)   | 10~90 %  | 53.5%  |
|                      | Temperature (°C) | 10~40 °C | 22.8°C |
| Radiated Emission    | Humidity (%RH)   | 10~90 %  | 61.2%  |
| Can tant'an          | Temperature (°C) | 10~40 °C | 22°C   |
| Conductive           | Humidity (%RH)   | 10~90 %  | 55%    |

| USA    | : | FCC Registration Number: TW0023 |
|--------|---|---------------------------------|
| Canada | : | IC Registration Number: 4075A   |

| Site Description           | : | Accredited by TAF<br>Accredited Number: 3023                                                                                       |
|----------------------------|---|------------------------------------------------------------------------------------------------------------------------------------|
| Test Laboratory<br>Address |   | DEKRA Testing and Certification Co., Ltd<br>No.159, Sec. 2, Wenhua 1st Rd., Linkou Dist.,<br>New Taipei City 24457, Taiwan, R.O.C. |
| Phone number               | : | 886-2-2602-7968                                                                                                                    |
| Fax number                 | : | 866-2-2602-3286                                                                                                                    |
| Email address              | : | info.tw@dekra.com                                                                                                                  |
| Website                    | : | http://www.dekra.com.tw                                                                                                            |
|                            |   |                                                                                                                                    |

# **1.7.** List of Test Equipment

#### For Conduction measurements /ASR1

|   | Equipment          | Manufacturer | Model No. | Serial No. | Cali. Data | Due. Data  |
|---|--------------------|--------------|-----------|------------|------------|------------|
| Х | EMI Test Receiver  | R&S          | ESR7      | 101601     | 2019.05.13 | 2020.05.12 |
| Х | Two-Line V-Network | R&S          | ENV216    | 101306     | 2020.03.25 | 2021.03.24 |
| Х | Two-Line V-Network | R&S          | ENV216    | 101307     | 2019.04.03 | 2020.04.02 |
| Χ | Coaxial Cable      | Quietek      | RG400_BNC | RF001      | 2019.05.24 | 2020.05.23 |

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version : DEKRA Testing System V1.1

#### For Conducted measurements /ASR2

|   | Equipment           | Manufacturer | Model No. | Serial No. | Cali. Data | Due. Data  |
|---|---------------------|--------------|-----------|------------|------------|------------|
| Χ | Spectrum Analyzer   | R&S          | FSV40     | 101149     | 2019.12.16 | 2020.12.15 |
| Х | Peak Power Analyzer | KEYSIGHT     | 8900B     | MY51000539 | 2019.05.06 | 2020.05.05 |
| Х | Power Sensor        | KEYSIGHT     | N1923A    | MY59240002 | 2019.06.12 | 2020.06.11 |
| Х | Power Sensor        | KEYSIGHT     | N1923A    | MY59240003 | 2019.06.13 | 2020.06.12 |

Note:

1. All equipments are calibrated every one year.

2. The test instruments marked with "X" are used to measure the final test results.

3. Test Software version : DEKRA Conduction Test System V9.0.5.

#### For Radiated measurements /ACB1

|   | Equipment         | Manufacturer  | Model No.    | Serial No. | Cali. Data | Due. Data  |
|---|-------------------|---------------|--------------|------------|------------|------------|
| Х | Loop Antenna      | AMETEK        | HLA6121      | 49611      | 2020.03.16 | 2021.03.15 |
| Х | Bi-Log Antenna    | SCHWARZBECK   | VULB9168     | 9168-675   | 2019.07.01 | 2020.06.30 |
| Х | Horn Antenna      | ETS-Lindgren  | 3117         | 00203761   | 2019.10.31 | 2020.10.30 |
| Х | Horn Antenna      | Com-Power     | AH-840       | 101087     | 2019.05.30 | 2020.05.29 |
| Х | Pre-Amplifier     | EMCI          | EMC001330    | 980301     | 2019.05.20 | 2020.05.19 |
| Х | Pre-Amplifier     | EMCI          | EMC051835SE  | 980312     | 2019.06.03 | 2020.06.02 |
| Х | Pre-Amplifier     | EMCI          | EMC05820SE   | 980308     | 2019.09.02 | 2020.09.01 |
| Х | Pre-Amplifier     | EMCI          | EMC184045SE  | 980314     | 2019.05.28 | 2020.05.27 |
|   | Filter            | MICRO TRONICS | BRM50702     | G251       | 2019.09.03 | 2020.09.02 |
| Х | Filter            | MICRO TRONICS | BRM50716     | G188       | 2019.09.03 | 2020.09.02 |
| Х | EMI Test Receiver | R&S           | ESR7         | 101602     | 2019.12.16 | 2020.12.15 |
| Х | Spectrum Analyzer | R&S           | FSV40        | 101148     | 2020.03.16 | 2021.03.15 |
| Х | Coaxial Cable     | SUHNER        | SUCOFLEX 106 | RF002      | 2019.07.03 | 2020.07.02 |
| Х | Mircoflex Cable   | HUBER SUHNER  | SUCOFLEX 102 | MY3381/2   | 2019.05.28 | 2020.05.27 |

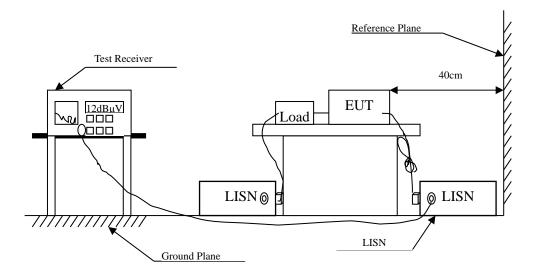
Note:

1. All equipments are calibrated every one year.

- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. Test Software version : DEKRA Testing System V1.1

# 1.8. Uncertainty

Uncertainties have been calculated according to the DEKRA internal document, and is described in each test chapter of this report.


The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.



# 2. Conducted Emission

# 2.1. Test Setup



## 2.2. Limits

| FCC Part 15 Subpart C Paragraph 15.207 (dBµV) Limit |        |       |  |  |  |
|-----------------------------------------------------|--------|-------|--|--|--|
| Frequency                                           | Limits |       |  |  |  |
| MHz                                                 | QP     | AV    |  |  |  |
| 0.15 - 0.50                                         | 66-56  | 56-46 |  |  |  |
| 0.50-5.0                                            | 56     | 46    |  |  |  |
| 5.0 - 30                                            | 60     | 50    |  |  |  |

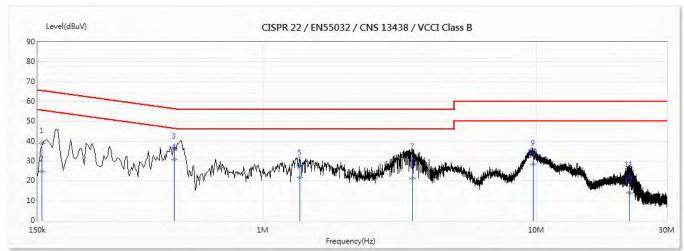
Remarks : In the above table, the tighter limit applies at the band edges.

# 2.3. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4:2014 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.


# 2.4. Uncertainty

±2.35dB



# 2.5. Test Result of Conducted Emission

| Product    | : | V2X DSRC Module                                        |
|------------|---|--------------------------------------------------------|
| Test Item  | : | Conducted Emission Test                                |
| Power Line | : | L 1                                                    |
| Test Mode  | : | Mode 1: Transmit (10MHz Bandwidth) (5745MHz) _ Chain 1 |
| Test Date  | : | 2020/03/27                                             |



| No | Frequency | Emission | Limit  | Margin | Reading Level | Correct Factor | Detector |
|----|-----------|----------|--------|--------|---------------|----------------|----------|
|    | (MHz)     | Level    | (dBuV) | (dB)   | (dBuV)        | (dB)           | Туре     |
|    |           | (dBuV)   |        |        |               |                |          |
| 1  | 0.156     | 39.02    | 65.68  | -26.66 | 29.38         | 9.64           | QP       |
| 2  | 0.156     | 24.89    | 55.68  | -30.80 | 15.25         | 9.64           | AV       |
| 3  | 0.474     | 36.13    | 56.45  | -20.32 | 26.48         | 9.65           | QP       |
| *4 | 0.474     | 30.84    | 46.45  | -15.60 | 21.19         | 9.65           | AV       |
| 5  | 1.364     | 27.76    | 56.00  | -28.24 | 18.08         | 9.68           | QP       |
| 6  | 1.364     | 21.76    | 46.00  | -24.24 | 12.08         | 9.68           | AV       |
| 7  | 3.519     | 30.96    | 56.00  | -25.04 | 21.22         | 9.75           | QP       |
| 8  | 3.519     | 21.40    | 46.00  | -24.60 | 11.66         | 9.75           | AV       |
| 9  | 9.735     | 32.83    | 60.00  | -27.17 | 22.96         | 9.88           | QP       |
| 10 | 9.735     | 28.31    | 50.00  | -21.69 | 18.43         | 9.88           | AV       |
| 11 | 21.912    | 21.84    | 60.00  | -38.16 | 11.88         | 9.96           | QP       |
| 12 | 21.912    | 13.77    | 50.00  | -36.23 | 3.80          | 9.96           | AV       |

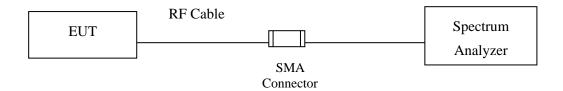
- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "\*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor



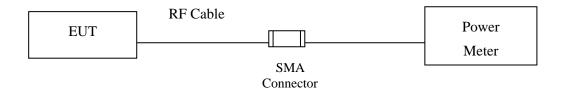
| Product    | : | V2X DSRC Module                                        |
|------------|---|--------------------------------------------------------|
| Test Item  | : | Conducted Emission Test                                |
| Power Line | : | Ν                                                      |
| Test Mode  | : | Mode 1: Transmit (10MHz Bandwidth) (5745MHz) _ Chain 1 |
| Test Date  | : | 2020/03/27                                             |



| No | Frequency | Emission | Limit  | Margin | Reading Level | Correct Factor | Detector |
|----|-----------|----------|--------|--------|---------------|----------------|----------|
|    | (MHz)     | Level    | (dBuV) | (dB)   | (dBuV)        | (dB)           | Туре     |
|    |           | (dBuV)   |        |        |               |                |          |
| 1  | 0.159     | 42.39    | 65.54  | -23.15 | 32.74         | 9.65           | QP       |
| 2  | 0.159     | 33.89    | 55.54  | -21.65 | 24.24         | 9.65           | AV       |
| 3  | 0.479     | 39.24    | 56.36  | -17.12 | 29.58         | 9.66           | QP       |
| *4 | 0.479     | 32.78    | 46.36  | -13.58 | 23.12         | 9.66           | AV       |
| 5  | 1.397     | 28.40    | 56.00  | -27.60 | 18.71         | 9.69           | QP       |
| 6  | 1.397     | 22.59    | 46.00  | -23.41 | 12.90         | 9.69           | AV       |
| 7  | 3.438     | 31.98    | 56.00  | -24.02 | 22.23         | 9.75           | QP       |
| 8  | 3.438     | 22.41    | 46.00  | -23.59 | 12.65         | 9.75           | AV       |
| 9  | 9.951     | 25.31    | 60.00  | -34.69 | 15.41         | 9.90           | QP       |
| 10 | 9.951     | 20.96    | 50.00  | -29.04 | 11.06         | 9.90           | AV       |
| 11 | 21.785    | 21.58    | 60.00  | -38.42 | 11.52         | 10.06          | QP       |
| 12 | 21.785    | 16.05    | 50.00  | -33.95 | 5.99          | 10.06          | AV       |


- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "\*" means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor




# 3. Maximun conducted output power

# 3.1. Test Setup

# **Occupied Bandwidth**



#### **Conduction Power Measurement**





# 3.2. Limits

For the band 5.15-5.25 GHz,

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-topoint U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point UNII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

# **3.3.** Test Procedure

As an alternative to FCC KDB-789033, the EUT maximum conducted output power was measured with an average power meter employing a video bandwidth greater the 6dB BW of the emission under test. Maximum conducted output power was read directly from the meter across all data rates, and across three channels within each sub-band. Special care was used to make sure that the EUT was transmitting in continuous mode. This method exceeds the limitations of FCC KDB-789033, and provides more accurate measurements.

# 3.4. Uncertainty

±0.95dB

# 3.5. Test Result of Maximum conducted output power

| Product   | : | V2X DSRC Module                    |
|-----------|---|------------------------------------|
| Test Item | : | Maximum conducted output power     |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) |
| Test Date | : | 2020/03/13                         |

#### Chain 0

| Cat         | ole loss=1dB    | Maximum conducted output power |
|-------------|-----------------|--------------------------------|
|             |                 | Data Rate (Mbps)               |
| Channel No. | Frequency (MHz) | 6                              |
|             |                 | Measurement Level (dBm)        |
| 149         | 5745            | 19.87                          |
| 157         | 5785            | 19.91                          |
| 165         | 5825            | 19.95                          |

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

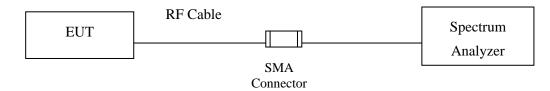
#### Maximum conducted output power Measurement:

| Channel No | Frequency<br>Range |       |       | Output Power Limit |               |  |
|------------|--------------------|-------|-------|--------------------|---------------|--|
|            | (MHz)              | (MHz) | (dBm) | (dBm)              | dBm+10log(BW) |  |
| 149        | 5745               |       | 19.87 | 30                 |               |  |
| 157        | 5785               |       | 19.91 | 30                 |               |  |
| 165        | 5825               |       | 19.95 | 30                 |               |  |

#### Chain 1

| Cal         | ole loss=1dB    | Maximum conducted output power |
|-------------|-----------------|--------------------------------|
|             |                 | Data Rate (Mbps)               |
| Channel No. | Frequency (MHz) | 6                              |
|             |                 | Measurement Level (dBm)        |
| 149         | 5745            | 19.98                          |
| 157         | 5785            | 19.96                          |
| 165         | 5825            | 19.97                          |

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss


#### Maximum conducted output power Measurement:

| Channel No | Frequency<br>Range | 26dB<br>Bandwidth | Output<br>Power | Output Po | ower Limit    |
|------------|--------------------|-------------------|-----------------|-----------|---------------|
|            | (MHz)              | (MHz)             | (dBm)           | (dBm)     | dBm+10log(BW) |
| 149        | 5745               |                   | 19.98           | 30        |               |
| 157        | 5785               |                   | 19.96           | 30        |               |
| 165        | 5825               |                   | 19.97           | 30        |               |



# 4. Peak Power Spectral Density

## 4.1. Test Setup



#### 4.2. Limits

#### For the band 5.15-5.25 GHz,

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-topoint U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.+

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point UNII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

# 4.3. Test Procedure

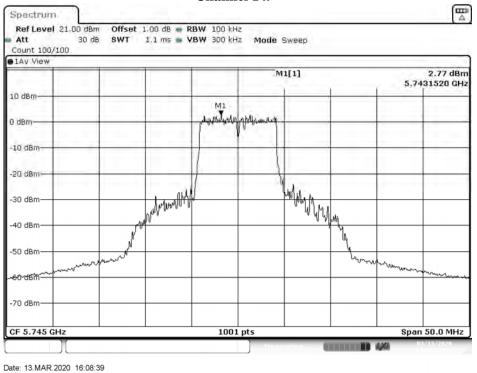
The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

The Peak Power Spectral Density using KDB 789033 section F) procedure, Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer.

SA-1 method is selected to run the test.

For the band 5.725-5.85 GHz, Scale the observed power level to an equivalent value in 500 kHz by adjusting (increase) the measured power by a bandwidth correction factor (BWCF) where  $BWCF = 10\log (500 \text{ kHz}/100 \text{ kHz}) = 6.98 \text{ dB}.$ 

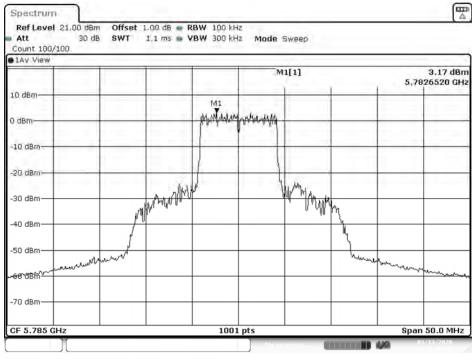
# 4.4. Uncertainty


±1.30dB

# 4.5. Test Result of Peak Power Spectral Density

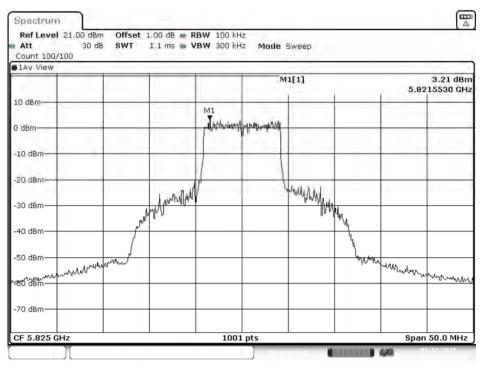
| Product   | : | V2X DSRC Module                    |
|-----------|---|------------------------------------|
| Test Item | : | Peak Power Spectral Density        |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) |
| Test Date | : | 2020/03/13                         |

#### Chain 1


| Channel<br>Number | Frequency<br>(MHz) | Data Rata<br>(Mbps) | PPSD<br>(dBm) | BWCF<br>(dB) | Total<br>PPSD<br>(dBm) | Required<br>Limit<br>(dBm) | Result |
|-------------------|--------------------|---------------------|---------------|--------------|------------------------|----------------------------|--------|
| 149               | 5745               | 6                   | 2.77          | 6.98         | 9.75                   | <30                        | Pass   |
| 157               | 5785               | 6                   | 3.17          | 6.98         | 10.15                  | <30                        | Pass   |
| 165               | 5825               | 6                   | 3.21          | 6.98         | 10.19                  | <30                        | Pass   |



#### Channel 149



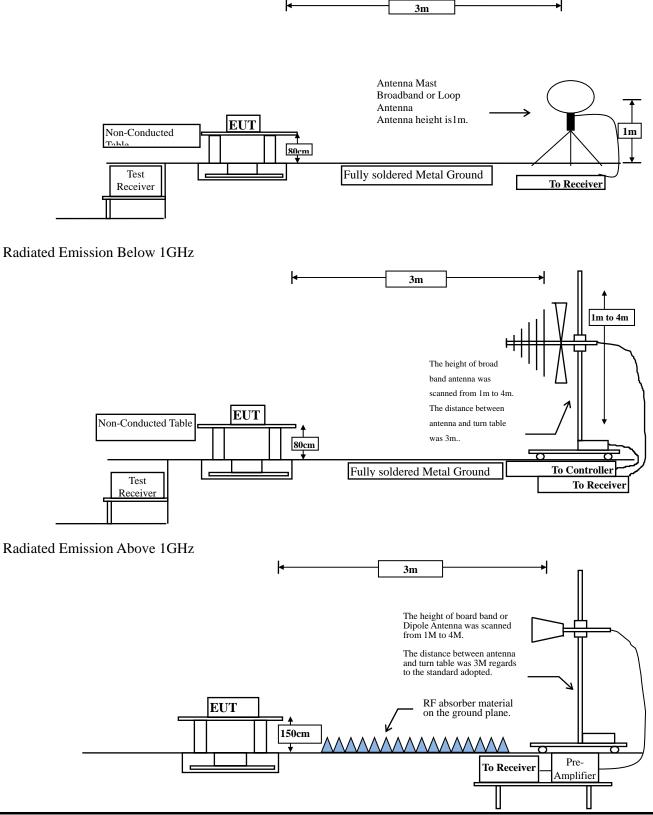

Channel 157



Date: 13.MAR.2020 16:10:40

#### Channel 165




Date: 13.MAR.2020 16:14:14



# 5. Radiated Emission

## 5.1. Test Setup

Radiated Emission Under 30MHz



# 5.2. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

| FCC Part 15 Subpart C Paragraph 15.209(a) Limits |                    |                      |  |  |  |
|--------------------------------------------------|--------------------|----------------------|--|--|--|
| Frequency<br>MHz                                 | Field strength     | Measurement distance |  |  |  |
|                                                  | (microvolts/meter) | (meter)              |  |  |  |
| 0.009-0.490                                      | 2400/F(kHz)        | 300                  |  |  |  |
| 0.490-1.705                                      | 24000/F(kHz)       | 30                   |  |  |  |
| 1.705-30                                         | 30                 | 30                   |  |  |  |
| 30-88                                            | 100                | 3                    |  |  |  |
| 88-216                                           | 150                | 3                    |  |  |  |
| 216-960                                          | 200                | 3                    |  |  |  |
| Above 960                                        | 500                | 3                    |  |  |  |

Remarks: E field strength  $(dB\mu V/m) = 20 \log E$  field strength (uV/m)

# 5.3. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to FCC KDB-789033 test procedure for compliance to FCC 47CFR 15.407 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

#### **RBW and VBW Parameter setting:**

According to KDB 789033 section II.G.5 Procedure for Unwanted Maximum Emissions Measurements above 1000 MHz.

RBW = 1MHz. $VBW \ge 3MHz.$ 

According to KDB 789033 section II.G.6 Procedures for Average Unwanted Emissions Measurements above 1000 MHz.

RBW = 1MHz.

VBW = 10Hz, when duty cycle  $\ge$  98 %

VBW  $\geq 1/T$ , when duty cycle < 98 %

( T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

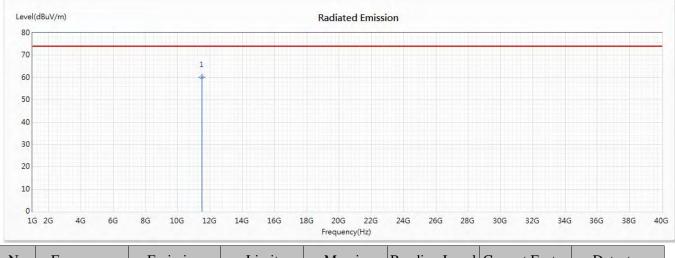
| 5GHz band     | Duty Cycle | Т    | 1/T  | VBW  |
|---------------|------------|------|------|------|
|               | (%)        | (ms) | (Hz) | (Hz) |
| 5GHz wireless | 100.00     |      |      | 10   |

Note: Duty Cycle Refer to Section 8

# 5.4. Uncertainty

Horizontal polarization :

30-300MHz: ±4.08dB ; 300M-1GHz: ±3.86dB ; 1-18GHz: ±3.77dB ; 18-40GHz: ±3.98dB Vertical polarization :


30-300MHz: ±4.81dB; 300M-1GHz: ±3.87dB; 1-18GHz: ±3.83dB; 18-40GHz: ±3.98dB

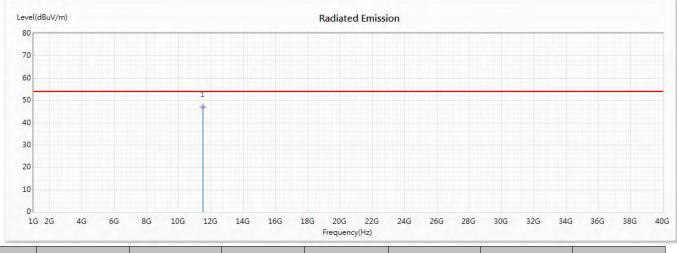


### 5.5. Test Result of Radiated Emission

| Product   | : | V2X DSRC Module                                       |
|-----------|---|-------------------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data                       |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) (5745MHz)_ Chain 1 |
| Test Date | : | 2020/03/19                                            |

#### Horizontal




| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| * 1 | 11490     | 60.33    | 74.00    | -13.67 | 55.89         | 4.44           | РК       |

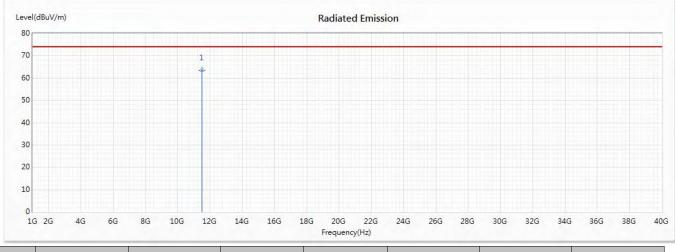
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product   | : | V2X DSRC Module                                       |
|-----------|---|-------------------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data                       |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) (5745MHz)_ Chain 1 |
| Test Date | : | 2020/03/19                                            |

#### Horizontal




| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| * 1 | 11490     | 47.04    | 54.00    | -6.96  | 42.60         | 4.44           | AV       |

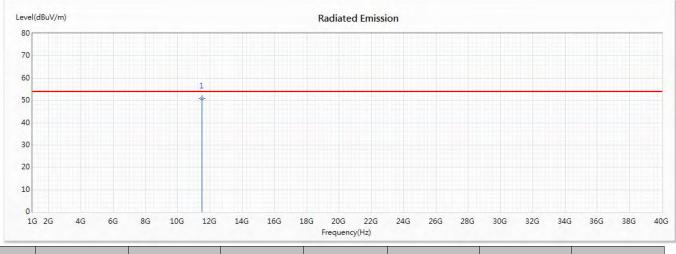
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product   | : | V2X DSRC Module                                        |
|-----------|---|--------------------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data                        |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) (5745MHz) _ Chain 1 |
| Test Date | : | 2020/03/19                                             |

#### Vertical




| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| * 1 | 11490     | 63.50    | 74.00    | -10.50 | 59.06         | 4.44           | РК       |

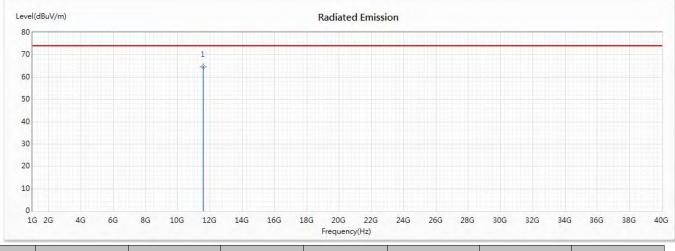
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product   | : | V2X DSRC Module                                        |
|-----------|---|--------------------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data                        |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) (5745MHz) _ Chain 1 |
| Test Date | : | 2020/03/19                                             |

#### Vertical




| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| * 1 | 11490     | 50.78    | 54.00    | -3.22  | 46.34         | 4.44           | AV       |

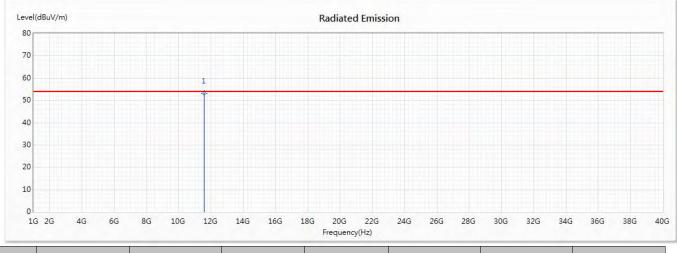
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product   | : | V2X DSRC Module                                        |
|-----------|---|--------------------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data                        |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) (5785MHz) _ Chain 1 |
| Test Date | : | 2020/03/19                                             |

#### Horizontal




| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| * 1 | 11570     | 64.58    | 74.00    | -9.42  | 59.88         | 4.70           | РК       |

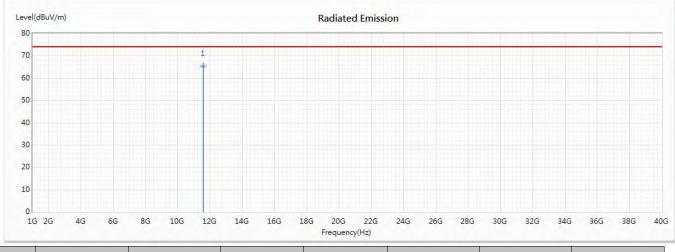
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product   | : | V2X DSRC Module                                        |
|-----------|---|--------------------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data                        |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) (5785MHz) _ Chain 1 |
| Test Date | : | 2020/03/19                                             |

#### Horizontal




| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| * 1 | 11570     | 53.10    | 54.00    | -0.90  | 48.40         | 4.70           | AV       |

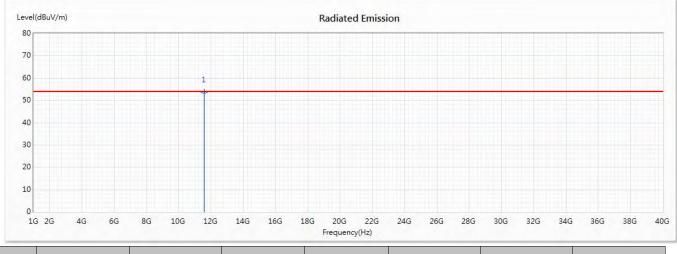
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product   | : | V2X DSRC Module                                        |
|-----------|---|--------------------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data                        |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) (5785MHz) _ Chain 1 |
| Test Date | : | 2020/03/19                                             |

#### Vertical




| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| * 1 | 11570     | 65.56    | 74.00    | -8.44  | 60.86         | 4.70           | РК       |

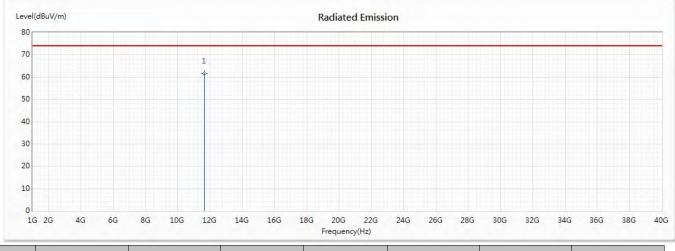
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product   | : | V2X DSRC Module                                        |
|-----------|---|--------------------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data                        |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) (5785MHz) _ Chain 1 |
| Test Date | : | 2020/03/19                                             |

#### Vertical




| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| * 1 | 11570     | 53.67    | 54.00    | -0.33  | 48.97         | 4.70           | AV       |

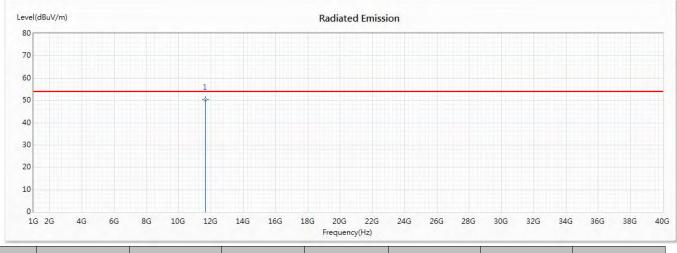
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product   | : | V2X DSRC Module                                        |
|-----------|---|--------------------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data                        |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) (5825MHz) _ Chain 1 |
| Test Date | : | 2020/03/19                                             |

#### Horizontal




| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| * 1 | 11650     | 61.64    | 74.00    | -12.36 | 56.97         | 4.67           | РК       |

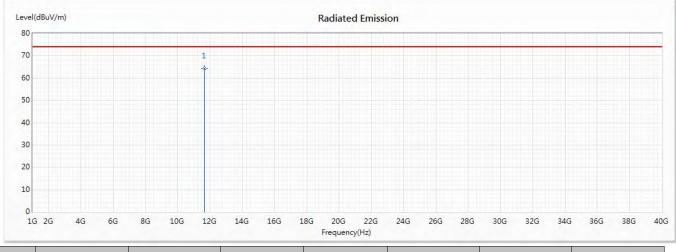
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product   | : | V2X DSRC Module                                        |
|-----------|---|--------------------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data                        |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) (5825MHz) _ Chain 1 |
| Test Date | : | 2020/03/19                                             |

#### Horizontal




| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| * 1 | 11650     | 50.38    | 54.00    | -3.62  | 45.71         | 4.67           | AV       |

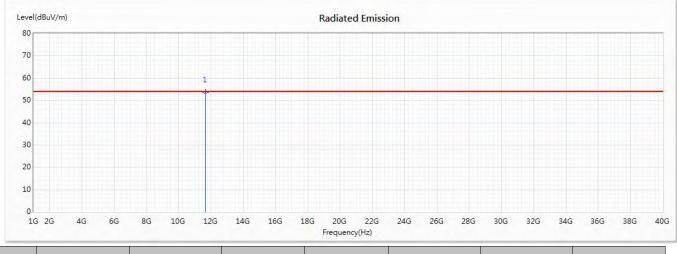
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product   | : | V2X DSRC Module                                        |
|-----------|---|--------------------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data                        |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) (5825MHz) _ Chain 1 |
| Test Date | : | 2020/03/19                                             |

### Vertical




| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| * 1 | 11650     | 64.40    | 74.00    | -9.60  | 59.73         | 4.67           | РК       |

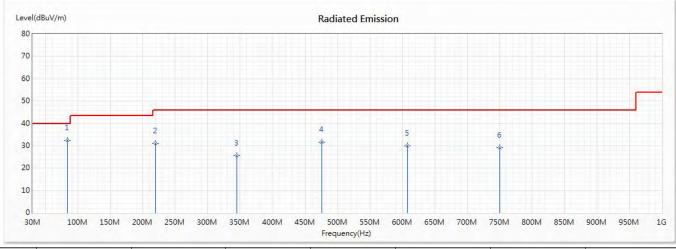
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product   | : | V2X DSRC Module                                        |
|-----------|---|--------------------------------------------------------|
| Test Item | : | Harmonic Radiated Emission Data                        |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) (5825MHz) _ Chain 1 |
| Test Date | : | 2020/03/19                                             |

### Vertical




| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| * 1 | 11650     | 53.60    | 54.00    | -0.40  | 48.93         | 4.67           | AV       |

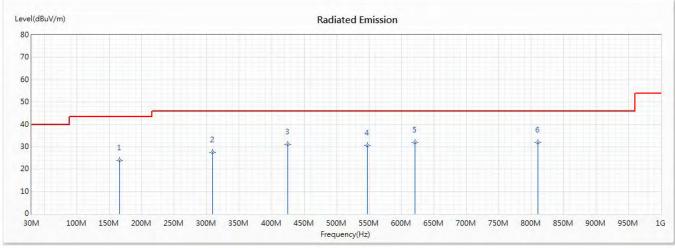
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection.
- 5. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Product   | : | V2X DSRC Module                                        |
|-----------|---|--------------------------------------------------------|
| Test Item | : | General Radiated Emission                              |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) (5745MHz) _ Chain 1 |
| Test Date | : | 2020/03/19                                             |

### Horizontal




| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| * 1 | 83.35     | 32.41    | 40.00    | -7.59  | 48.99         | -16.58         | QP       |
| 2   | 219.15    | 31.20    | 46.00    | -14.80 | 43.71         | -12.51         | QP       |
| 3   | 345.25    | 25.55    | 46.00    | -20.45 | 34.18         | -8.63          | QP       |
| 4   | 476.2     | 31.75    | 46.00    | -14.25 | 37.38         | -5.63          | QP       |
| 5   | 608.12    | 29.98    | 46.00    | -16.02 | 33.08         | -3.10          | QP       |
| 6   | 749.74    | 29.22    | 46.00    | -16.78 | 30.27         | -1.05          | QP       |

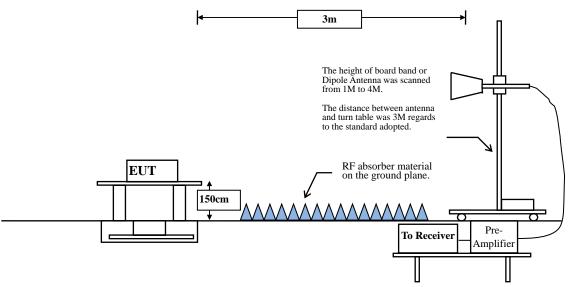
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.



| Product   | : | V2X DSRC Module                                        |
|-----------|---|--------------------------------------------------------|
| Test Item | : | General Radiated Emission                              |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) (5745MHz) _ Chain 1 |
| Test Date | : | 2020/03/19                                             |

### Vertical




| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| 1   | 165.8     | 23.93    | 43.50    | -19.57 | 34.80         | -10.87         | QP       |
| 2   | 309.36    | 27.54    | 46.00    | -18.46 | 37.15         | -9.61          | QP       |
| 3   | 424.79    | 31.10    | 46.00    | -14.90 | 37.94         | -6.84          | QP       |
| 4   | 547.98    | 30.49    | 46.00    | -15.51 | 34.86         | -4.37          | QP       |
| 5   | 620.73    | 31.82    | 46.00    | -14.18 | 34.89         | -3.07          | QP       |
| * 6 | 810.85    | 31.93    | 46.00    | -14.07 | 32.34         | -0.41          | QP       |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Measurement Level = Reading Level + Correct Factor.
- 3. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. No emission found between lowest internal used/generated frequency to 30MHz.



## 6. Band Edge

## 6.1. Test Setup



## 6.2. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

| FCC Part 15 Subpart C Paragraph 15.209 Limits |          |           |  |  |  |  |  |
|-----------------------------------------------|----------|-----------|--|--|--|--|--|
| Frequency<br>MHz                              | uV/m @3m | dBµV/m@3m |  |  |  |  |  |
| 30-88                                         | 100      | 40        |  |  |  |  |  |
| 88-216                                        | 150      | 43.5      |  |  |  |  |  |
| 216-960                                       | 200      | 46        |  |  |  |  |  |
| Above 960                                     | 500      | 54        |  |  |  |  |  |

Remarks : 1. RF Voltage  $(dB\mu V) = 20 \log RF$  Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system. Undesirable emission limits. Except as the provisions of §15.205 apply to intentional radiators operating under this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of - 27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of - 27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of - 27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band:

(i) All emissions shall be limited to a level of - 27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

## 6.3. Test Procedure

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10:2013 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.



#### **RBW and VBW Parameter setting:**

According to KDB 789033 section II.G.5 Procedure for Unwanted Maximum Emissions Measurements above 1000 MHz.

RBW = 1MHz. $VBW \ge 3MHz.$ 

According to KDB 789033 section II.G.6 Procedures for Average Unwanted Emissions Measurements above 1000 MHz.

RBW = 1MHz.

VBW = 10Hz, when duty cycle  $\ge$  98 %

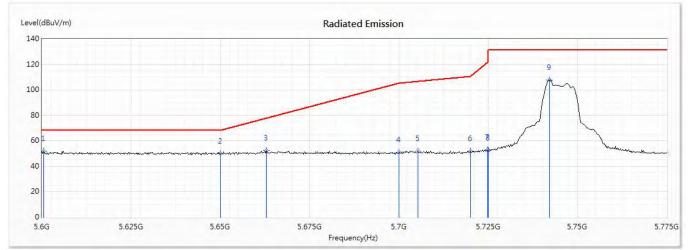
VBW  $\geq$  1/T, when duty cycle < 98 %

( T refers to the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.)

| 5GHz band     | Duty Cycle | Т    | 1/T  | VBW  |  |
|---------------|------------|------|------|------|--|
|               | (%)        | (ms) | (Hz) | (Hz) |  |
| 5GHz wireless | 100.00     |      |      | 10   |  |

Note: Duty Cycle Refer to Section 8

#### 6.4. Uncertainty

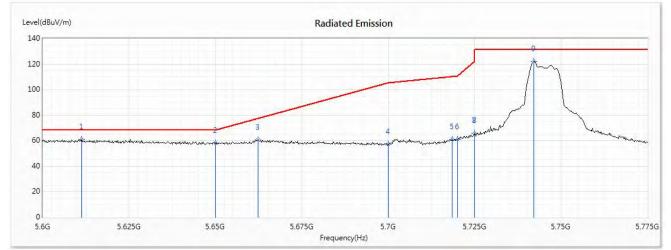

Horizontal polarization : 1-18GHz: ±3.77dB Vertical polarization : 1-18GHz : ±3.83dB



# 6.5. Test Result of Band Edge

| Product   | : | V2X DSRC Module                                        |
|-----------|---|--------------------------------------------------------|
| Test Item | : | Band Edge Data                                         |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) (5745MHz) _ Chain 1 |
| Test Date | : | 2020/03/19                                             |

## Horizontal

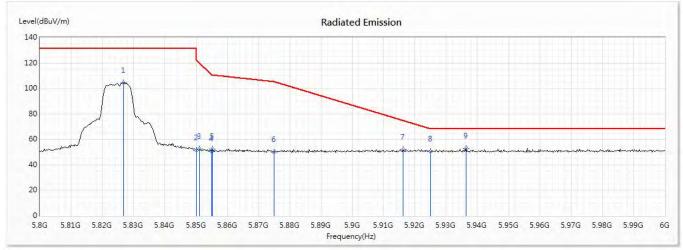



| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| * 1 | 5600.525  | 51.89    | 68.22    | -16.33 | 34.75         | 17.14          | РК       |
| 2   | 5650      | 50.10    | 68.22    | -18.12 | 32.86         | 17.24          | РК       |
| 3   | 5662.825  | 52.30    | 77.74    | -25.44 | 34.96         | 17.34          | РК       |
| 4   | 5700      | 50.84    | 105.20   | -54.36 | 33.41         | 17.43          | РК       |
| 5   | 5705.35   | 52.03    | 106.70   | -54.67 | 34.63         | 17.40          | РК       |
| 6   | 5720      | 51.99    | 110.80   | -58.81 | 34.60         | 17.39          | РК       |
| 7   | 5724.775  | 53.07    | 121.69   | -68.62 | 35.68         | 17.39          | РК       |
| 8   | 5725      | 52.23    | 122.20   | -69.97 | 34.84         | 17.39          | РК       |
| 9   | 5742.1    | 107.92   | 131.20   | -23.28 | 90.46         | 17.46          | РК       |



Product:V2X DSRC ModuleTest Item:Band Edge DataTest Mode:Mode 1: Transmit (10MHz Bandwidth) (5745MHz) \_ Chain 1Test Date:2020/03/19

## Vertical

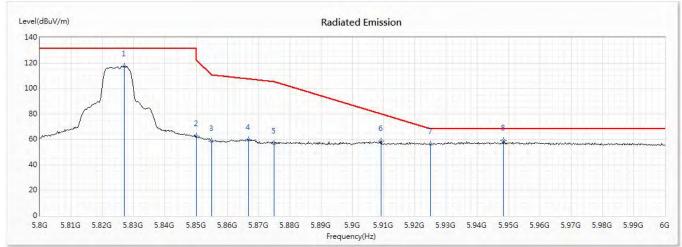



| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| * 1 | 5611.375  | 61.06    | 68.22    | -7.16  | 43.91         | 17.15          | РК       |
| 2   | 5650      | 58.20    | 68.22    | -10.02 | 40.96         | 17.24          | РК       |
| 3   | 5662.3    | 60.62    | 77.35    | -16.72 | 43.29         | 17.33          | РК       |
| 4   | 5700      | 57.17    | 105.20   | -48.03 | 39.74         | 17.43          | РК       |
| 5   | 5718.475  | 61.25    | 110.37   | -49.12 | 43.86         | 17.39          | РК       |
| 6   | 5720      | 60.90    | 110.80   | -49.90 | 43.51         | 17.39          | РК       |
| 7   | 5724.95   | 66.05    | 122.09   | -56.03 | 48.66         | 17.39          | РК       |
| 8   | 5725      | 65.68    | 122.20   | -56.52 | 48.29         | 17.39          | РК       |
| 9   | 5742.1    | 121.99   | 131.20   | -9.21  | 104.53        | 17.46          | РК       |



| : | V2X DSRC Module                                        |
|---|--------------------------------------------------------|
| : | Band Edge Data                                         |
| : | Mode 1: Transmit (10MHz Bandwidth) (5825MHz) _ Chain 1 |
| : | 2020/03/19                                             |
|   | :                                                      |

## Horizontal

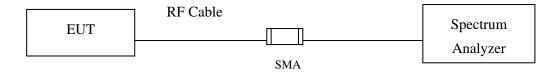



| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| 1   | 5826.8    | 104.49   | 131.20   | -26.71 | 86.72         | 17.77          | РК       |
| 2   | 5850      | 51.59    | 122.20   | -70.61 | 33.73         | 17.86          | РК       |
| 3   | 5851      | 52.41    | 119.92   | -67.51 | 34.54         | 17.87          | РК       |
| 4   | 5855      | 50.56    | 110.80   | -60.24 | 32.70         | 17.86          | РК       |
| 5   | 5855.2    | 52.46    | 110.74   | -58.28 | 34.60         | 17.86          | РК       |
| 6   | 5875      | 50.27    | 105.20   | -54.93 | 32.47         | 17.80          | РК       |
| 7   | 5916.2    | 52.19    | 74.71    | -22.52 | 34.22         | 17.97          | РК       |
| 8   | 5925      | 50.41    | 68.22    | -17.81 | 32.38         | 18.03          | РК       |
| * 9 | 5936.4    | 52.80    | 68.22    | -15.42 | 34.74         | 18.06          | РК       |



Product:V2X DSRC ModuleTest Item:Band Edge DataTest Mode:Mode 1: Transmit (10MHz Bandwidth) (5825MHz) \_ Chain 1Test Date:2020/03/19

## Vertical




| No  | Frequency | Emission | Limit    | Margin | Reading Level | Correct Factor | Detector |
|-----|-----------|----------|----------|--------|---------------|----------------|----------|
|     | (MHz)     | Level    | (dBuV/m) | (dB)   | (dBuV)        | (dB/m)         | Туре     |
|     |           | (dBuV/m) |          |        |               |                |          |
| 1   | 5827      | 117.47   | 131.20   | -13.73 | 99.71         | 17.76          | РК       |
| 2   | 5850      | 62.47    | 122.20   | -59.73 | 44.61         | 17.86          | РК       |
| 3   | 5855      | 58.61    | 110.80   | -52.19 | 40.75         | 17.86          | РК       |
| 4   | 5866.8    | 59.85    | 107.49   | -47.64 | 42.05         | 17.80          | РК       |
| 5   | 5875      | 56.96    | 105.20   | -48.24 | 39.16         | 17.80          | РК       |
| 6   | 5909.2    | 58.53    | 79.87    | -21.34 | 40.62         | 17.91          | РК       |
| 7   | 5925      | 56.44    | 68.22    | -11.78 | 38.41         | 18.03          | РК       |
| * 8 | 5948.4    | 59.08    | 68.22    | -9.14  | 41.00         | 18.08          | РК       |



## 7. Occupied Bandwidth

## 7.1. Test Setup



## 7.2. Limits

For the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz

## 7.3. .Test Procedure

The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

## 7.4. Uncertainty

±671.83Hz



# 7.5. Test Result of Occupied Bandwidth

| Product   | : | V2X DSRC Module                    |
|-----------|---|------------------------------------|
| Test Item | : | Occupied Bandwidth Data            |
| Test Mode | : | Mode 1: Transmit (10MHz Bandwidth) |
| Test Date | : | 2020/03/13                         |

#### Chain 1

| Channel No. | Frequency<br>(MHz) | Measurement Level<br>(kHz) | Required Limit<br>(kHz) | Result |
|-------------|--------------------|----------------------------|-------------------------|--------|
| 149         | 5745               | 8400                       | >500                    | Pass   |
| 157         | 5785               | 8300                       | >500                    | Pass   |
| 165         | 5825               | 8350                       | >500                    | Pass   |

| Att            |           | 30 d    | 18 SWT 1.1 ms 🖷 | VBW 300 kHz    | Mode Sweep     |       |                                                      |
|----------------|-----------|---------|-----------------|----------------|----------------|-------|------------------------------------------------------|
| 1Pk Vi         | ew        |         |                 |                |                |       | 2744 64                                              |
| 10 dBm         | - 13      | and a   |                 | MI<br>MZMUNUMM | M1[1]<br>M2[1] |       | 7.83 dBr<br>5,7442010 GH<br>0.23 dBr<br>5.7408000 GH |
| 0 dBm-         | =10       | 1 1.830 | met met         | 1              | *              | 1     |                                                      |
| -10 dBn        |           | -       | -               |                |                | _     |                                                      |
| -20 dBn        |           | _       | A auril         | w              | and and a      |       |                                                      |
| -30 dBn        | 1         | -       | rundhurun       |                | - W            | yeym  |                                                      |
| -40 dBn        | also here | wyster  | when a part     |                |                | Munu  | My mar all and a few of the                          |
| -60 dBn        |           |         |                 |                |                |       |                                                      |
| -70 dBn        |           |         |                 |                |                |       |                                                      |
|                |           |         |                 |                |                |       |                                                      |
| CF 5.7         | 45 GH     | z       |                 | 1001 pt        | s              |       | Span 50.0 MHz                                        |
| 1arker<br>Type | Ref       | Trc     | X-value         | Y-value        | Function       | Funct | tion Result                                          |
| M1             |           | 1       | 5.744201 GHz    | 7.83 dBm       | . unstion      | T uno |                                                      |
| M2             |           | 1       | 5.7408 GHz      | 0.23 dBm       |                |       |                                                      |
| M3             |           | 1       | 5.7492 GHz      | -1.27 dBm      |                |       |                                                      |

## Figure Channel 149:

Date: 13.MAR.2020 16:08:15

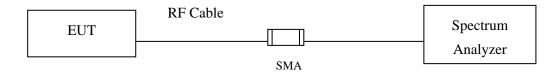




Figure Channel 157:

Date: 13.MAR.2020 16:10:17

#### Figure Channel 165:


| Att                  |       | 30 d       | B SWT 1.1 ms            | VBW 300 kHz         | Mode Sweep |        |                                                      |
|----------------------|-------|------------|-------------------------|---------------------|------------|--------|------------------------------------------------------|
| 1Pk Vie              | ₽₩    |            |                         |                     |            |        |                                                      |
| 10 dBm-              |       |            |                         | MI<br>Mannahuran    | M1[1]      |        | 7.81 dBn<br>5,8226520 GH<br>1.31 dBn<br>5.8208500 GH |
| 0 dBm-               | =0    | 1 1.810    | 19m                     | 1                   | +          |        |                                                      |
| -10 dBm              | +     |            |                         |                     |            |        |                                                      |
| -20 dBm              | -     | _          | million                 | autorit             | Marillan   | MMMM   |                                                      |
| -30 dBm              | -     |            | Mallanny                | ×                   |            | man    |                                                      |
| -40 dBm              |       |            | when                    | -                   |            | Newrow | Maria .                                              |
| 156 <sup>1</sup> 481 | mon   | wy the way | ward                    |                     |            |        | and any anger any                                    |
| -60 dBm              |       |            |                         |                     |            |        |                                                      |
| -70 dBm              | -     |            |                         | _                   |            |        |                                                      |
| CF 5.82              | 25 GH | z          |                         | 1001 pt             | ts         |        | Span 50.0 MHz                                        |
| Aarker               |       | ~ 1        |                         |                     |            |        |                                                      |
| Type<br>M1           | Ref   | 1<br>1     | X-value<br>5.822652 GHz | Y-value<br>7.81 dBm | Function   | Fun    | ction Result                                         |
| M2                   |       | 1          | 5.82085 GHz             | 1.31 dBm            |            |        |                                                      |
| M3                   |       | 1          | 5.8292 GHz              | -1.31 dBm           |            |        |                                                      |

Date: 13.MAR.2020 16:13:50



## 8. Duty Cycle

## 8.1. Test Setup



## 8.2. Test Procedure

The EUT was setup according to ANSI C63.10 2013; tested according to U-NII test procedure of KDB789033 for compliance to FCC 47CFR 15.407 requirements.

## 8.3. Uncertainty

± 2.31msec



## 8.4. Test Result of Duty Cycle

| Product   | : | V2X DSRC Module            |
|-----------|---|----------------------------|
| Test Item | : | Duty Cycle                 |
| Test Mode | : | Transmit (10MHz Bandwidth) |

Duty Cycle Formula: Duty Cycle = Ton / (Ton + Toff) Duty Factor = 10 Log (1/Duty Cycle)

Results:

#### Chain 1

| 5GHz band     | Ton  | Ton + Toff | Duty Cycle | Duty Factor |
|---------------|------|------------|------------|-------------|
|               | (ms) | (ms)       | (%)        | (dB)        |
| 5GHz wireless |      |            | 100.00     | 0.00        |

| Att 10 dB = SWT 100 ms<br>SGL<br>1Pk Cirw | s 🗰 VBW 1 MHz |                        |
|-------------------------------------------|---------------|------------------------|
|                                           | M1[1]         | -28.18 dBn<br>95.507 m |
| -20 dBm                                   |               | MI                     |
| -30 dBm                                   |               |                        |
| -40 dBm                                   |               |                        |
| -50 d8m                                   |               |                        |
| -60 dBm                                   |               |                        |
| -70 dBm                                   |               |                        |
| -80 dBm                                   |               |                        |
| -90 dBm                                   |               |                        |
| -100 dBm                                  |               |                        |
| CF 5.745 GHz                              | 691 pts       | 10.0 ms/               |

Date: 8.APR.2020 13:47:34



# 9. EMI Reduction Method During Compliance Testing

No modification was made during testing.