

L.S. Compliance, Inc.
W66 N220 Commerce Court
Cedarburg, WI 53012
Phone: 262.375.4400 Fax: 262.375.4248

Compliance Testing of:

Wavepoint Wand

Prepared For:

Brady Worldwide, Inc.
2221 W. Camden Road
Milwaukee, WI 53201

Test Report Number:

304294

Test Date(s):

June 30th and July 1st, 2004

All results of this report relate only to the items that were tested. This report may not be reproduced, except in full, without written approval of L.S. Compliance, Inc.

Table of Contents

Section	Description	Page
Index		2
1	L.S. Compliance in Review	3
2	A2LA Certificate of Accreditation	4
3	A2LA Scope of Accreditation	5
4	Signatures	6
5	Product and General Information	7
6	Product Description	7
7	Test Requirements	7
8	Summary of Test Report	8
9	Introduction	8
10	Purpose	8
11	Radiated Emissions Test	9-16
12	Conducted Emissions Test (at AC Mains)	17-21
13	Frequency Stability (Title 47 CFR, FCC Part 15.225(e) and 15.32(e))	22
Appendix		
A	Test Equipment List	23

1. L.S. Compliance in Review

L.S. Compliance - Accreditations and Listing's

As an EMC Testing Laboratory, our Accreditation and Assessments are recognized through the following:

A2LA – American Association for Laboratory Accreditation

Accreditation based on ISO/IEC 17025 : 1999

with Electrical (EMC) Scope of Accreditation

A2LA Certificate Number: **1255.01**

Federal Communications Commission (FCC) – USA

Listing of 3 Meter Semi-Anechoic Chamber based on Title 47 CFR – Part 2.948

FCC Registration Number: **90756**

Listing of 3 and 10 meter OATS based on Title 47CFR – Part 2.948

FCC Registration Number: **90757**

Industry Canada

On file, 3 Meter Semi-Anechoic Chamber based on RSS-212 – Issue 1

File Number: **IC 3088-A**

On file, 3 and 10 Meter OATS based on RSS-212 – Issue 1

File Number: **IC 3088**

U. S. Conformity Assessment Body (CAB) Validation

Validated by the European Commission as a **U. S. Competent Body** operating under the U. S. /EU, Mutual Recognition Agreement (MRA) operating under the European Union Electromagnetic Compatibility –Council Directive 89/336/EEC, Article 10.2.

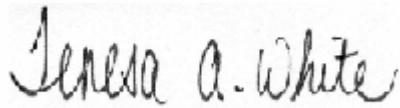
Date of Validation: **January 16, 2001**

Validated by the European Commission as a **U.S. Notified Body** operating under the U.S./EU, Mutual Recognition Agreement (MRA) operating under the European Union Telecommunication Equipment – Council Directive 99/5/EC, Annex V.

Date of Validation: **November 20, 2002**

Notified Body Identification Number: **1243**

2. A2LA Certificate



3. A2LA Scope

American Association for Laboratory Accreditation	
<u>SCOPE OF ACCREDITATION TO ISO/IEC 17025-1999</u>	
L.S. COMPLIANCE, INC. W66 N220 Commerce Court Cedarburg, WI 53012 James Blaha Phone: 262 375 4400	
ELECTRICAL (EMC)	
Valid to: January 31, 2005	Certificate Number: 1255-01
In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following tests:	
<u>Test</u>	<u>Test Method(s)</u>
Emissions	
Conducted	
Continuous/Discontinuous	Code of Federal Regulations (CFR) 47, FCC Method Parts 15, 18 using ANSI C63.4; EN: 55011, 55022, 50081-1, 50081-2; CISPR: 11, 12, 14-1, 22; CNS 13438
Radiated	Code of Federal Regulations (CFR) 47, FCC Method Parts 15, 18 using ANSI C63.4; EN: 55011, 55022, 50081-1, 50081-2; CISPR: 11, 12, 14-1, 22; CNS 13438
Current Harmonics	IEC 61000-3-2; EN 61000-3-2
Voltage Fluctuations & Flicker	IEC 61000-3-3; EN 61000-3-3
Immunity	EN: 50082-1, 50082-2 EN 61000-6-2 CISPR: 14-2, 24
Conducted Immunity	
Fast Transients/Burst	IEC 61000-4-4; EN 61000-4-4
Surge	IEC: 61000-4-5; ENV 50142; EN 61000-4-5
RF Fields	IEC: 61000-4-6; ENV 50141; EN 61000-4-6
Voltage Dips/Interruptions	IEC 61000-4-11; EN 61000-4-11
(A2LA Cert. No. 1255-01) 05/13/03	
5301 Buckeystown Pike, Suite 350 • Frederick, MD 21704-8373 • Phone: 301-644 3248 • Fax: 301-662 2974	
Page 1 of 2	

4. Signatures

Prepared By:

September 1, 2004

Teresa A. White, Document Coordinator

Date

**Tested and
Approved By:**

September 1, 2004

Kenneth L. Boston, EMC Lab Manager

Date

PE # 31926 Licensed Professional Engineer

Registered in the State of Wisconsin, United States

5. Product and General Information

Manufacturer:	Brady Worldwide, Inc.			
Date(s) of Test:	June 30 th and July 1 st , 2004			
Test Engineer(s):	Tom Smith		Abtin Spantman	✓
Model #:	WPW 1356			
Serial #:	Engineering Sample			
Voltage:	115 VAC supplied to a wall supply, delivering 9 VDC to the Wand.			
Operation Mode:	Ready to perform a card reading operation			

6. Product Description

The RF Wand Reader is a micro-controller based transceiver designed to read from and write to passive RF transponders, or tags. It is controlled by a host PC via an RS232 serial connector.

7. Test Requirements

The EUT was tested for Conducted and Radiated Emissions to establish compliance with the limits set forth in Title 47 CFR, Parts 15.207, 15.209 and 15.225, for a low power transmitter.

8. Summary of Test Report

DECLARATION OF CONFORMITY

The Wavepoint Wand was found to **MEET** the requirements as described within the specification of Title 47, CFR FCC, Parts 15.207, 15.209 and 15.225 for a low power transmitter, and Industry Canada RSS-210, Section 6.2.2 (e) for an intentional radiator.

The enclosed test results pertain to the sample(s) of the test item listed, and only for the tests performed per the data sheets. Any subsequent modification or changes to the test item could invalidate the data contained herein, and could therefore invalidate the findings of this report.

9. Introduction

On June 30th and July 1st, 2004, a series of Conducted and Radiated Emission tests were performed on one sample of the Wavepoint Wand, Model Number WPW 1356 here forth referred to as the "Equipment Under Test" or "EUT". These tests were performed using the procedures outlined in ANSI C63.4-2001 for unintentional radiators, and in accordance with the limits set forth in FCC Parts 15.207, 15.209 and 15.225, as well as Industry Canada RSS-210, Section 6.2.2 (e) for a transmitter or digital device.

All tests were performed at L.S. Compliance, in Cedarburg, Wisconsin, unless otherwise noted.

The tests were performed by Kenneth L. Boston, EMC Laboratory Lab Manager of L.S. Compliance, and witnessed by Peter Scharpf of Brady Worldwide, Inc..

10. Purpose

The above-mentioned tests were performed in order to determine the compliance of the equipment under test (EUT) with limits contained in Title 47 CFR, FCC Parts 15.207, 15.209 and 15.225. All Radiated Emission tests were performed to measure the emissions in the frequency bands described in this report, and to determine whether said emissions are below the limits established by the above sections.

The tests were performed in accordance with the procedure described in the American National Standard for methods of measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz (ANSI C63.4-2001). Another document used a reference for the EMI Receiver specification is the Comite International Special des Perturbations Radioelectriques (CISPR) Number 16-1, 2002.

11. Radiated Emissions Test

Test Setup

The test setup was assembled in accordance with Title 47 CFR, FCC Part 15 and ANSI C63.4-2001. The EUT was placed on an 80 cm high non-conductive wooden table centered on a flush mounted 2 meter diameter turntable, inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in a continuous transmit mode, using AC power of 115 volts. The applicable limits, applied at a 3 meter distance, are found in the Calculation of Radiated Emissions Limits page of this report. The EUT was operated in an active card reading mode, using power supplied by a wall transformer.

The applicable limits, as given, are meant to be measured at a 30 meter separation distance. The limits are extrapolated by a factor of 20 dB/decade, for a reading at 3 meters, taken in the Semi-Anechoic Chamber, and at 10 meters on the OATS. The calculations determining these limits are detailed in the following pages of this report. Measurement of the fundamental frequency, and the lower harmonics, was performed at a distance of 10 meters, using extrapolated limits.

Test Procedure

Final radiation measurements were performed on the EUT in a 3 meter Semi-Anechoic Chamber. A frequency range from 30 MHz to 1000 MHz was scanned, and levels were manually noted at various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive wooden table in a 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the test object.

A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. The maximum radiated emissions were found by raising and lowering the antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities. An active Loop Antenna was used for the measurements below 30 MHz.

The EUT was operated in a continuous transmit mode during the test. For the fundamental frequency, measurements were repeated on an FCC listed 10 meter Open Area Test Site (OATS). The EUT was scanned for emissions at 13.56 MHz to establish compliance in accordance with FCC Part 15.225 (I.C. RSS-210). A Loop Antenna was used as the sensing antenna. The EUT was positioned on an 80 cm high wooden table, in the center of a flush-mounted 2 meter diameter turntable. The EUT was rotated, and the Loop Antenna was oriented to obtain a maximum signal level.

Test Equipment Utilized

A complete list of test equipment (including antennas) utilized can be found in Appendix A. The list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All antenna calibrations were performed at a N.I.S.T. traceable site.

The connecting cables were measured for losses, using a calibrated Signal Generator and an EMI Receiver. The resulting correction and cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with a bandwidth of 120 kHz for measurements between 30 MHz and 1000 MHz, and a bandwidth of 9 kHz was used below 30 MHz.

The Quasi-Peak detector function was utilized.

Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Parts 15.209 and 15.225 for a low power radiator (I.C. RSS-210). The frequencies with significant signals were recorded and plotted as shown in the data charts and graphs in this report.

CALCULATION OF RADIATED EMISSIONS LIMITS

The following table depicts the general spurious limits for a low power device. These limits are obtained from Title 47 CFR, Part 15.209(a), for radiated emissions measurements, and were used for spurious signal measurements, in the 3 meter Chamber.

Frequency (MHz)	3 m Limit (μ V/m)	3 m Limit (dB μ V/m)
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-10,000	500	54.0

Sample conversion from field strength μ V/m to dB μ V/m:

$$\text{dB}\mu\text{V/m} = 20 \log_{10} (\text{3m limit})$$

from 30-88 MHz for example: $\text{dB}\mu\text{V/m} = 20 \log_{10} (100)$

$$40.0 \text{ dB}\mu\text{V/m} = 20 \log_{10} (100)$$

Note: Limits are rounded to the nearest tenth of a dB.

CALCULATION OF RADIATED EMISSIONS LIMITS (continued)

Calculation of Radiated Emissions limits for FCC Part 15.209; general limits for intentional radiators, plus limits for a 15.225 transmitter.

Field Strength of Transmitter Fundamental and Harmonic Frequencies:

For the frequency range of **1705 kHz to 30 MHz**, the spurious signal limit (at 10 meters) is found by:

$$\text{LIMIT (dB}\mu\text{V/m)} = 20 \log (30) + 19.08 \text{ (except for Table 2 below)}$$

Above 30 MHz, the limits on the previous page apply.

Where the measurement distance was specified to be 30 meters, a correction factor was applied in order to permit measurement to be performed at a separation distance of 10 meters. In accordance with FCC Part 15.31 (f)(2), the scaling factor used was the 40 dB per decade that is presented in the part.

From 30 meters down to 10 meters: FACTOR (dB) = $40 \log (30/10) = 19.08 \text{ dB}$

Table 1: Limits for Readings Taken at 10 Meters; spurious signals

Frequency (MHz)	FCC Limit ($\mu\text{V/m}$) 15.209	FCC Limit (dB $\mu\text{V/m}$)	Scaling Factor	Adjusted Limit (dB $\mu\text{V/m}$)
1.705-30.0	30.00 @ 30 m	29.54	19.08	48.6

Table 2: Limits for Readings Taken at 10 meters; 15.225 (a,b,c) emission mask

Frequency (MHz)	FCC Limit ($\mu\text{V/m}$) 15.225	FCC Limit (dB $\mu\text{V/m}$)	Scaling Factor	Adjusted Limit (dB $\mu\text{V/m}$)
13.553 – 13.567	15.848 @ 30m	84.00	19.08	103.1
13.41 – 13.553	334 @ 30m	50.47	19.08	69.6
13.567 – 13.710				
13.110 – 13.410	106 @ 30m	40.5	19.08	59.6
13.710 – 14.010				

Note: Limits are rounded to the nearest tenth of a dB.

Measurement of Electromagnetic Radiated Emissions

Upon a 10 meter FCC listed Site and in the 3 meter FCC listed Chamber

Test Standard: Title 47 CFR, FCC Parts 15.209 and 15.225

Frequency Range Inspected: 30 MHz to 1000 MHz, and 1 MHz to 30 MHz

Manufacturer:	Brady Worldwide, Inc.				
Date(s) of Test:	June 30 th and July 1 st , 2004				
Test Engineer(s):	Tom Smith		Abtin Spantman	✓	Ken Boston
Model #:	WPW 1356				
Serial #:	Engineering Unit				
Voltage:	115 VAC to supply				
Operation Mode:	Continuous Transmit (card read)				
Distance:	✓	3 Meters	✓	10 Meters	
Configuration:	0.8 m height				
Detectors Used:		Peak	✓	Quasi-Peak	Average

Environmental Conditions in the Lab:

Temperature: 20 – 25°C

Relative Humidity: 30 – 60 %

Test Equipment Used:

EMI Measurement Instrument: HP8546A and Agilent E4407B

Log Periodic Antenna: EMCO #93146

Horn Antenna: EMCO #3115

Biconical Antenna:

Loop Antenna:

**OATS: Level of significant radiated emissions found at 10 meters,
frequencies below 30 MHz**

Frequency (MHz)	Antenna Polarity	Height (meters)	Azimuth (0° - 360 °)	EMI Meter Reading (dB μ V/m)	15.209; 15.225 Limit (dB μ V/m)	Margin (dB)
13.56	Note 2	1.0	-	51.2	103.1	51.9
27.12	Note 2	1.0	-	23.9	48.6	24.7

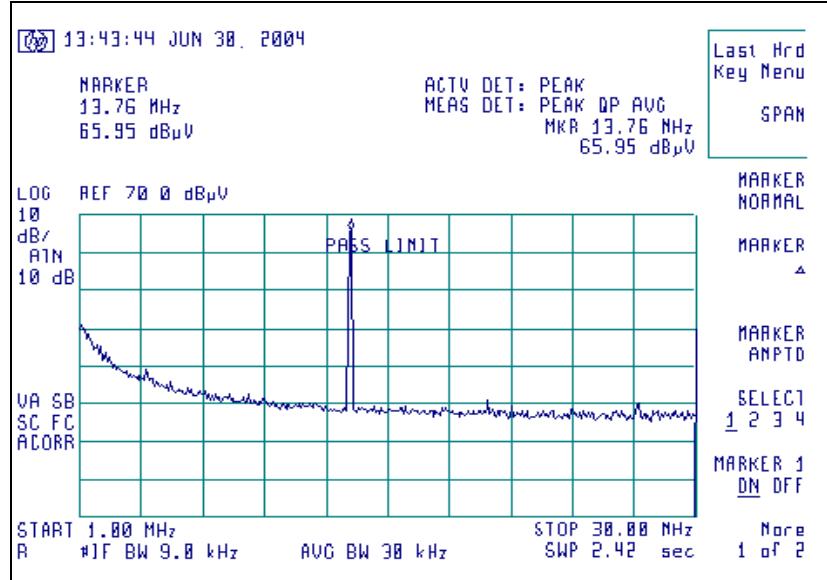
Chamber: Level of significant radiated emissions found at 3 meters, frequencies above 30 MHz

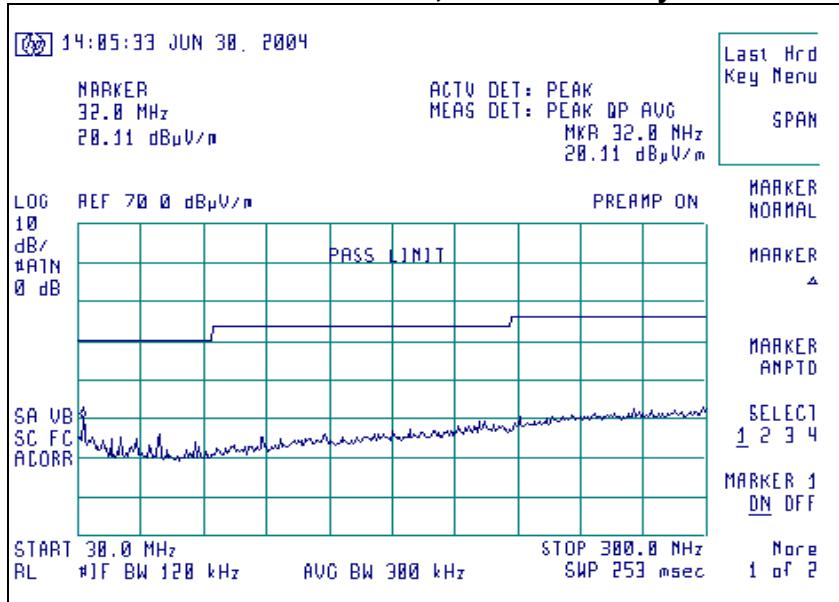
Frequency (MHz)	Antenna Polarity	Height (meters)	Azimuth (0° - 360 °)	EMI Meter Reading (dB μ V/m)	15.209; 15.225 Limit (dB μ V/m)	Margin (dB)
32.0	V	1.0	0	18.4	40.0	21.6
54.24	V	1.0	300	14.1	40.0	25.9
64.0	V	1.0	325	14.4	40.0	25.6
408.0	H	2.3	260	26.1	46.0	19.9
434.0	H	2.1	240	28.0	46.0	18.0

Note 1: A Quasi-peak Detector was used in measurements below 1 GHz. All other emissions seen, other than the noise floor, were greater than 20 dB below the limits.

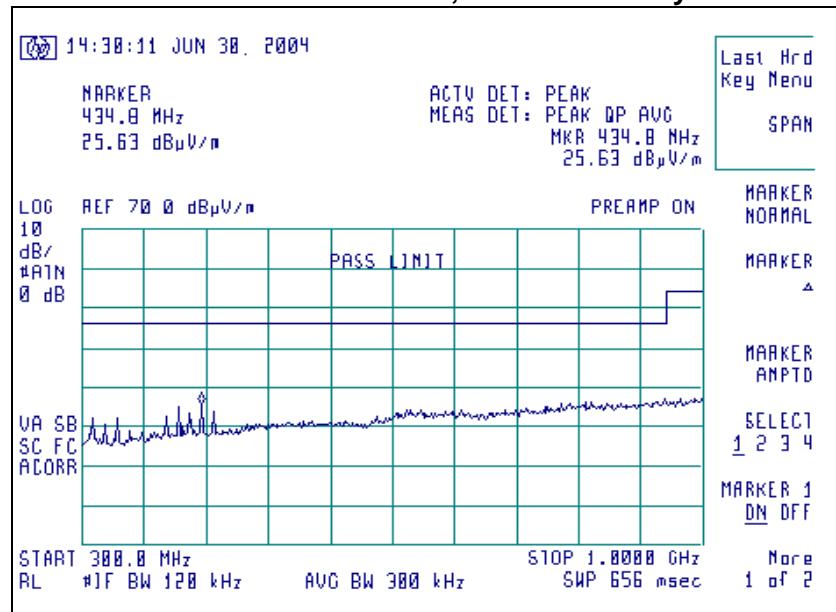
Note 2: Readings taken with a Loop Antenna oriented for maximum readings.

Note 3: Signal levels in the 15.225(b) and (c) emission mask bands were greater than 20 dB below these limits.


Photo(s) of Setup for Radiated Emissions Test


Views of the EUT during Radiated Emissions testing.

Graphs made during Radiated Emissions Testing


Signature Scan of Radiated Emissions at 3 Meters 1 MHz – 30 MHz, in the 3 Meter Chamber

Signature Scan of Radiated Emissions 30 MHz - 300 MHz, Vertical Polarity

**Signature Scan of Radiated Emissions at 3 Meters
300 MHz – 1000 MHz, Vertical Polarity**

12. Conducted Emissions Test (at AC Mains)

Test Setup

The Conducted Emissions tests were performed within a Shielded Room. The EUT was placed on a non-conductive wooden table, with a height of 80 cm above the reference ground plane. The EUT's power supply was plugged into a 50Ω (ohm), 50/250 μ H Line Impedance Stabilization Network (LISN). The test area and setup are in accordance with ANSI C63.4-2001 and IEC CISPR 22 (EN 55022). The AC power source to the LISN was connected to inside the Shielded Room via an appropriate broadband EMI filter.

Test Procedure

After the EUT was setup in the Shielded Room and connected to the LISN, the RF sampling port of the LISN was connected to a 10 dB Attenuator-Limiter, and then to the EMI Receiver. The LISN used has the ability to terminate the unused port with a 50Ω load, when switched to either L1 (line) or L2 (neutral). The appropriate frequency range and bandwidths were entered into the EMI Receiver, and measurements were recorded. The bandwidth used for these measurements is 9 kHz, as specified in CISPR 16-1 (2001), Section 1, Table 1 for Quasi-Peak and Average detectors in the frequency range of 150 kHz to 30 MHz. Readings were taken and recorded.

The limits for Conducted Emissions can be found in Title 47 CFR, FCC Part 15.207, and are presented later in this report.

Test Equipment Utilized

A complete list of test equipment can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals provided by the manufacturers. Calibrations of the LISN and Limiter are traceable to a N.I.S.T. site. All cables are calibrated and checked periodically for conformance. The emissions are measured on the EMI Receiver, which has automatic correction for all factors stored in memory, and allows direct readings to be taken.

Test Results

The EUT was found to **MEET** the Conducted Emissions AC Mains requirements of FCC Part 15.207 for an intentional radiator. Tests were repeated with a dummy load substitution for the Loop Antenna. Detailed test results can be found in the data charts and graphs of this report.

CALCULATION OF CONDUCTED EMISSIONS LIMITS

The following table depicts the general emission limits for an intentional radiator. These limits are obtained from Title 47 CFR, Part 15.207, for radiated emissions measurements.

Frequency (MHz)	Quasi-Peak Limit (dB μ V)	Average Limit (dB μ V)
0.15 – 0.5	66 to 56 *	56 to 46 *
0.5 – 5.0	56	46
5.0 - 30	60	50

* Decreases with logarithm of the frequency.

Sample conversion in the 0.15 MHz to 0.5 MHz range:

$$Limit|_F = \left[-19.12 \left(\frac{dB}{Hz} \right) x \left(\log \frac{freq(MHz)}{0.15} \right) \right] + 66$$

For 200 kHz for example (F=0.20 MHz):

$$Limit|_{F=200kHz} = \left[-19.12 \left(\frac{dB}{Hz} \right) x \left(\log \frac{0.20}{0.15} \right) \right] + 66$$

$$Limit|_{F=200kHz} = 63.61(dB\mu V)$$

Note: Limits are rounded to the nearest whole number.

Measurement of Electromagnetic Conducted Emission

Frequency Range Inspected: 0.15 MHz – 30.0 MHz

Test Requirements: CISPR 22 (EN 55022) Title 47CFR 15.107

Manufacturer:	Brady Worldwide, Inc.				
Date(s) of Test:	June 30 th and July 1 st , 2004				
Test Engineer:	Tom Smith	Abtin Spantman	✓	Ken Boston	
Model #:	WPW 1356				
Serial #:	Engineering Unit				
Voltage:	115 VAC to a 9 VDC supply				
Operation Mode:	Ready to perform a card reading operation				
Test Location:	✓	Shielded Room			Chamber
EUT Placed On:	✓	40cm from Vertical Ground Plane			10cm Spacers
	✓	80cm above Ground Plane			Other:
Measurements:	Pre-Compliance	Preliminary	✓	Final	
Detectors Used:	Peak	✓	Quasi-Peak	✓	Average

Environmental Conditions in the Lab:

Temperature: 20 – 25° C

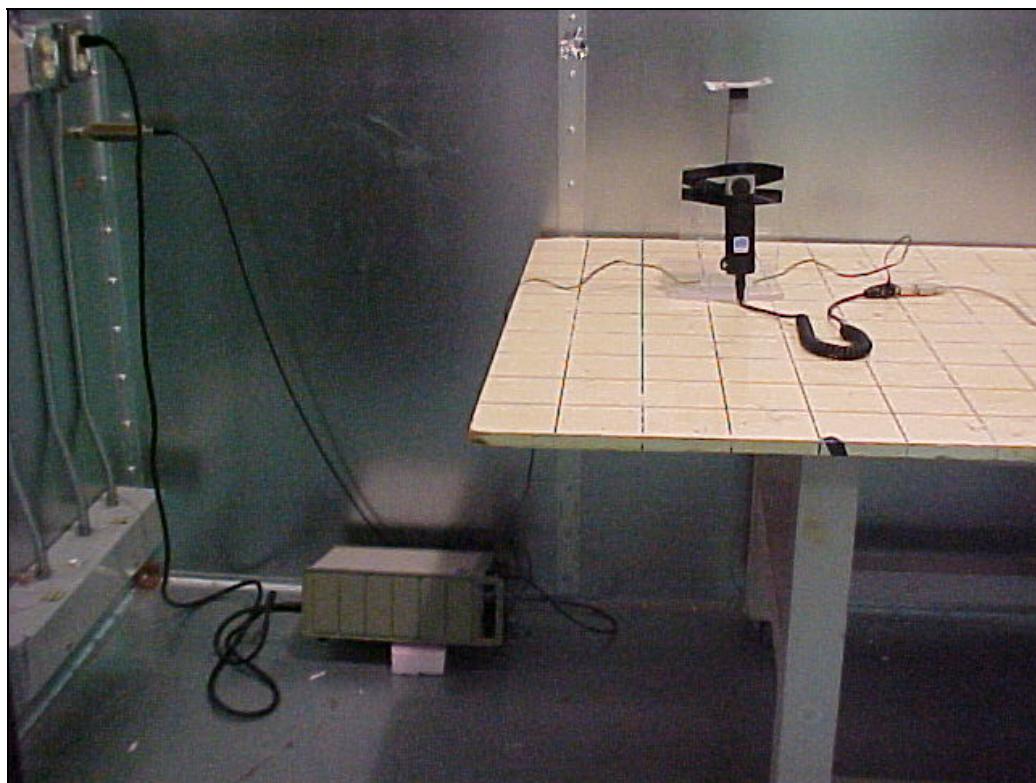
Atmospheric Pressure: 86 kPa – 106 kPa

Relative Humidity: 30 – 60%

Test Equipment Utilized:

EMI Receiver: HP 8546A

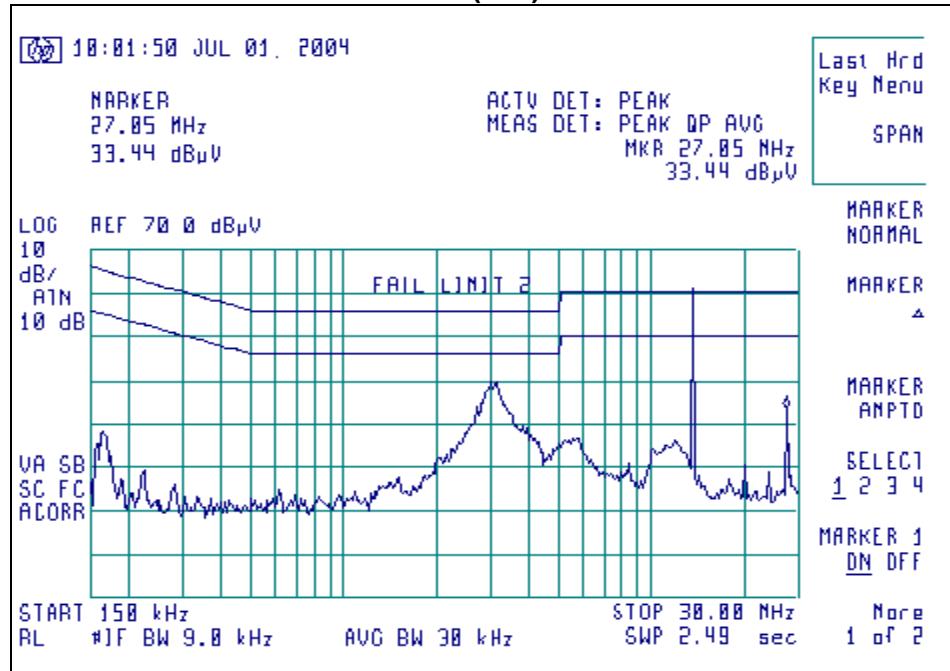
LISN: EMCO 3816/2NM

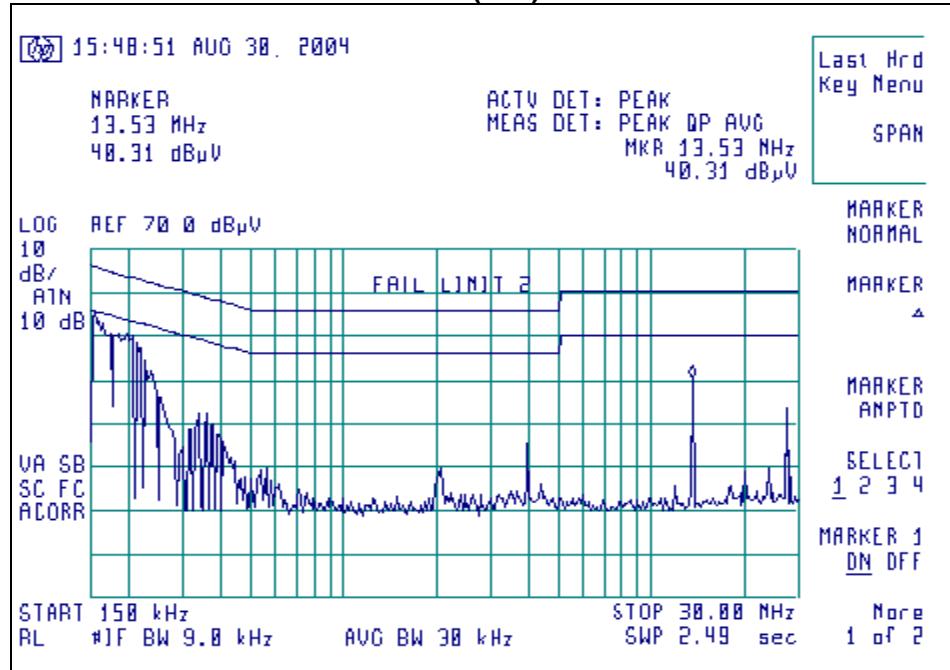

Transient Limiter: HP 119474A

Frequency (MHz)	Line	<u>QUASI-PEAK</u>			<u>AVERAGE</u>		
		Q-Peak Reading (dB μ V/m)	Q-Peak Limit (dB μ V/m)	Quasi-Peak Margin (dB)	Average Reading (dB μ V/m)	Average Limit (dB μ V/m)	Average Margin (dB)
3.02	L1	38.3	56.0	17.7	33.0	46.0	13.0
3.14	L1	39.0	56.0	17.0	33.7	46.0	12.3
13.56	L1	61.7	60.0	(1.7)	61.7	50.0	(11.7)
27.12	L1	34.1	60.0	25.9	33.9	50.0	16.1
13.56	L1 _{Note 1}	40.6	60.0	19.4	40.6	50.0	9.4

Note 1: Sample re-tested with dummy load present.

Note 2: L2 levels were seen to be lower.


Photo(s) of Setup for Conducted Emissions (AC Mains)Test


View of the EUT during Conducted Emissions testing.

Graphs made during Conducted Emissions (AC Mains) Testing

Signature Scan of Conducted Emissions (AC Mains) L1 (line)

Signature Scan of Conducted Emissions (AC Mains); dummy load present L1 (line)



16. Frequency Stability (Title 47 CFR, FCC Part 15.225(e) and 15.31(e))

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency (1.356 kHz) over a temperature variation of -20 degrees to + 50 degrees C at normal supply voltage and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the tests shall be performed using a new battery.

Temperature (°C)	Voltage (VAC)	Frequency (MHz)	Frequency Delta (kHz)
+20.0	115	13,560,546	Ref. #1
-20.0	115	13,560,639	+0.093 kHz
+50.0	115	13,560,483	-0.063 kHz
+20.0	115	13,560,546	Ref. #2
+20.0	132	13,560,546	0.0
+20.0	98	13,560,546	0.0

Note: No variation in power output level was seen during the voltage variation test.

View of the EUT during Frequency Stability Testing

APPENDIX A

Test Equipment List

Asset #	Manufacturer	Model #	Serial #	Description	Date	Due
AA960008	EMCO	3816/2NM	9701-1057	Line Impedance Stabilization Network	9/03/03	9/03/04
AA960031	HP	119474A	3107A01708	Transient Limiter	Note 1	Note 1
AA960077	EMCO	93110B	9702-2918	Biconical Antenna	9/02/03	9/02/04
AA960078	EMCO	93146	9701-4855	Log-Periodic Antenna	9/02/03	9/02/04
AA960081	EMCO	3115	6907	Double Ridge Horn Antenna	11/14/03	11/14/04
CC00221C	Agilent	E4407B	US39160256	Spectrum Analyzer	11/04/03	11/04/04
EE960004	EMCO	2090	9607-1164	Device Controller	N/A	N/A
EE960013	HP	8546A	3617A00320	Receiver RF Section	9/04/03	9/04/04
EE960014	HP	85460A	3448A00296	Receiver Pre-Selector	9/04/03	9/04/04
N/A	LSC	Cable	0011	3 Meter ½" Armored Cable	6/29/04	6/29/05
N/A	LSC	Cable	0038	1 Meter RG 214 Cable	6/29/04	6/29/05
N/A	LSC	Cable	0067	10 Meter Semflex	6/29/04	6/29/05
N/A	Pasternack	Attenuator	N/A	10 dB Attenuator	Note 1	Note 1

Note 1 - Equipment calibrated within a traceable system.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.24 dB
Radiated Emissions	3-Meter Chamber, Log Periodic Antenna	4.8 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.18 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.92 dB
Conducted Emissions	Shielded Room/EMCO LISN	1.60 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	1.128 Volts/Meter
Conducted Immunity	3 Volts level	1.0 V