

Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel Tel. +972 4628 8001 Fax. +972 4628 8277 E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC 47 CFR Part 90, subpart I, and RSS-119 Issue 12:2015

FOR:

Telematics Wireless Ltd Light Control Unit Model: LCUN3HG FCC ID: NTAN3G IC: 4732A-N3G

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	3
2	Equipment under test attributes	
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Test configuration	5
6.3	Changes made in EUT	5
6.4	Transmitter characteristics	6
7	Transmitter tests according to 47CFR part 90 and RSS-119 requirements	7
7.1	Peak output power test	7
7.2	Occupied bandwidth test	10
7.3	Emission mask test	13
7.4	Radiated spurious emission measurements	16
7.5	Frequency stability test	24
7.6	Transient frequency behaviour test	
8	APPENDIX A Test equipment and ancillaries used for tests	31
9	APPENDIX B Test equipment correction factors	33
10	APPENDIX C Test laboratory description	39
11	APPENDIX D Measurement uncertainties	40
12	APPENDIX E Specification references	41
13	APPENDIX F Abbreviations and acronyms	42

1 Applicant information

Client name:	Telematics Wireless Ltd
Address:	26 Hamelacha street, POB 1911, Holon, 5811801, Israel
Telephone:	+972 3557 5700
Fax:	+972 3557 5703
E-mail:	itsikk@tlmw.com
Contact name:	Mr. Itsik Kanner

2 Equipment under test attributes

Product name:	LCU NEMA
Product type:	Transceiver
Model(s):	LCUN3HG
Serial number:	9200118
Hardware version:	Rev. C
Software release:	AU2B6
Receipt date	18-Jul-19

3 Manufacturer information

Manufacturer name:	Telematics Wireless Ltd
Address:	26 Hamelacha street, POB 1911, Holon, 5811801, Israel
Telephone:	+972 3557 5700
Fax:	+972 3557 5703
E-Mail:	itsikk@tlmw.com
Contact name:	Mr. Itsik Kanner

4 Test details

Project ID:	33822
Location:	Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel
Test started:	18-Jul-19
Test completed:	15-Oct-19
Test specification(s):	FCC 47 CFR Part 90, subpart I, and RSS-119 Issue 12:2015

5 Tests summary

Test	Status
Transmitter characteristics	
FCC Section 90.267 / RSS-119 Section 5.4, Maximum output power	Pass
FCC Section 90.209 / RSS-119 Section 5.5, Occupied bandwidth	Pass
FCC Section 90.210 / RSS-119 Section 5.8.4, Emission mask	Pass
FCC Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions	Pass
FCC Section 90.213 / RSS-119 Section 5.3, Frequency stability	Pass
FCC Section 90.214 / RSS-119 Section 5.9, Transient frequency behaviour	Pass
FCC Section 2.1091 / RSS-102 section 2.5, RF radiation exposure evaluation	Pass, Exhibit in application for certification provided

This test report supersedes the previously issued test report identified by Doc ID: TELRAD_FCC.33822_Rev1

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mr. V. Dorofeyev test engineer EMC & Radio	18 Jul 19 – 15 Oct 19	180 pupul
Reviewed by:	Mrs. S. Peysahov Sheynin test engineer EMC & Radio	20 Oct 19 – 28 Oct 19	-
Approved by:	Mr. S. Samokha, technical manager, EMC and Radio	28 Oct 19	Can

6 EUT description

Note: The following data in this clause is provided by the customer and represents his sole responsibility

6.1 General information

LCU NEMA is a luminaire control unit, installed on top of the luminaire utilizing a standard (twist and lock) NEMA socket.

The LCU NEMA is powered by 347-480V AC

The operating frequency band is 450 to 470MHz. Output RF power 0.6 Watt

6.2 Test configuration

6.3 Changes made in EUT

No changes were implemented in the EUT during testing.

6.4 Transmitter characteristics

Type of equipment											
Х	Stand-alone (Equipment with or without its own control provisions)										
	Combined equipment (Equipment where the radio part is fully integrated within another type of equipment)										
	Plug-in card (Equipment intended for a variety of host systems)										
Intende	Intended use Condition of use										
	fixed		ays at a di								
Х	mobile	Alw	ays at a di	stance m	nore than	20 cm fro	m all people				
	portable	May	y operate a	t a dista	nce close	er than 20	cm to human	body			
Assign	ed frequency ran	nges		450- 47	'0 MHz						
Maximum rated output power At transmitte				smitter 50	Ω RF out	out connector			27.96 dBm		
X No					No						
							continuous v	ontinuous variable			
Is trans	mitter output po	wer varia	ble?				stepped vari	able w	ith stepsize	dB	
					Yes	minimum	RF power		•	dBm	
						maximun	n RF power			dBm	
Antenn	a connection										
	unique coupling		stan	idard cor	nnector	Х	integral			ary RF connector	
-			_								
Antenn	a/s technical cha	aracteristi	ics								
Туре			Manufac	turer		Model	number		Gain	l	
Printed			Telemati	cs Wirele	ess	NA -1 dBi Max					
Transmitter aggregate data rate/s 4.8 kb					kbps						
Type of modulation 4GFS					-sk						
Modulating test signal (baseband)				PR	BS						
Transm	nitter power sour	се									
	Battery Nominal rated voltage					Battery ty	pe				
	DC Nominal rated voltage										
Х	AC mains	Nominal	rated volt	age	347	-480 VAC	Frequence	;y	60 Hz		

Test specification: Section 90.267 / RSS-119 Section 5.4, Maximum output power						
Test procedure:	lure: 47 CFR, Section 2.1046					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	31-Jul-19	verdict: PASS				
Temperature: 25.1 °C	Relative Humidity: 46 %	Air Pressure: 1005 hPa	Power: 480 VAC, 60 Hz			
Remarks:						

7 Transmitter tests according to 47CFR part 90 and RSS-119 requirements

7.1 Peak output power test

7.1.1 General

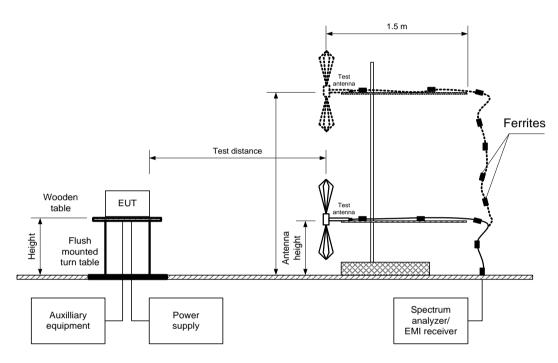
This test was performed to measure effective radiated power emanated by transmitter at carrier frequency. Specification test limits are given in Table 7.1.1.

Table 7.1.1 Effective radiated power limit

Assigned frequency band,	EF	RP	Equivalent field strength limit @ 3m,			
MHz	W	dBm	dB(µV/m)*			
FCC						
450.0 - 470.0	2	33.01	130.39			
RSS-119 Table 2						
450.0 – 470.0	60	47.78	145.16			

* - Equivalent field strength limit was calculated from maximum allowed ERP as follows: E=sqrt(30×P×1.64)/r, where P is ERP in Watts, 1.64 is numeric gain of ideal dipole and r is antenna to EUT distance in meters

7.1.2 Test procedure for field strength measurements


7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and the performance check was conducted.

- **7.1.2.2** The field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360°, the measuring antenna height was swept throughout the range, specified in Table 7.1.2 in both vertical and horizontal polarizations.
- 7.1.2.3 The worst test results (the lowest margins) were recorded in Table 7.1.2 and shown in the associated plots.

Test specification: Section 90.267 / RSS-119 Section 5.4, Maximum output power							
Test procedure:	47 CFR, Section 2.1046						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	31-Jul-19	verdict.	FA33				
Temperature: 25.1 °C	Relative Humidity: 46 %	Air Pressure: 1005 hPa	Power: 480 VAC, 60 Hz				
Remarks:							

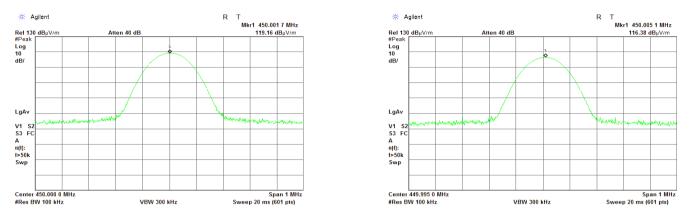
Figure 7.1.1 Setup for carrier field strength measurements

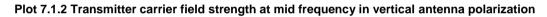
	TEST SITE: TEST DISTA EUT HEIGH TEST ANTE	T: NNA HEIGHTS			450 - 470 MHz Semi anechoic chamber 3 m 0.8 m 1.0 - 4.0 m					
DETECTOR USED: VIDEO BANDWIDTH:					Peak > Resolution b	andwidth				
TEST ANTENNA TYPE:					Log periodic					
MODULATION: TRANSMITTER OUTPUT POWER SETTINGS:					4GFSK					
1					Maximum			8		
	Frequency, MHz	Field strength, dB(µV/m)	Antenna polarization	Azimuth, degrees	EUT antenna gain, dBi	Peak output power, dBm*	Limit, dBm	Margin, dB**	Verdict	
	450.0017	119.16	Vertical	0	-4	27.96	33.01	-5.05	Pass	
	460.0000	121.81	Vertical	0	-1	27.61	33.01	-5.40	Pass	

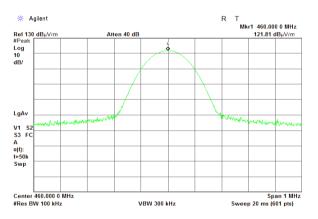
469.9983120.59Vertical0-227.3933.01-5.62Pass*- Peak output power was calculated from the field strength of carrier as follows: $P = (E \times d)^2 / (30 \times G)$,
where P is the peak output power in W, E is the field strength in V/m, d is the test distance in meters and G is the transmitter
numeric antenna gain over an isotropic radiator. The above equation was converted in logarithmic units for 3 m test distance:
Peak output power in dBm = Field strength in dB(μ V/m) - Transmitter antenna gain in dBi - 95.2 dB

**- Margin = Peak output power - specification limit.

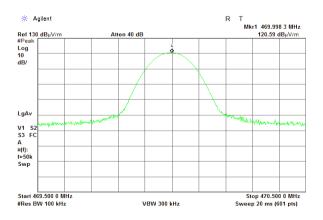
Reference numbers of test equipment used


HL 0415 HL 3903 HL 0604 HL 5084 HL 5404	1
---	---


Full description is given in Appendix A.



Test specification:	est specification: Section 90.267 / RSS-119 Section 5.4, Maximum output power				
Test procedure:	47 CFR, Section 2.1046				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	31-Jul-19	verdict: PASS			
Temperature: 25.1 °C	Relative Humidity: 46 %	Air Pressure: 1005 hPa	Power: 480 VAC, 60 Hz		
Remarks:					


Plot 7.1.1 Transmitter carrier field strength at low frequency in vertical and horizontal antenna polarization

Plot 7.1.3 Transmitter carrier field strength at high frequency in vertical antenna polarization

Test specification:	est specification: Section 90.209 / RSS-119 Section 5.5, Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049				
Test mode:	Compliance	- Verdict: PASS			
Date(s):	15-Oct-19				
Temperature: 24.3 °C	Relative Humidity: 46 %	Air Pressure: 1009 hPa	Power: 480 VAC, 60 Hz		
Remarks:					

7.2 Occupied bandwidth test

7.2.1 General

This test was performed to measure transmitter occupied bandwidth. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Occupied bandwidth limits

Assigned frequency,		Maximum restricted bandwidth,
MHz dBc		kHz
450.0 - 470.0	26	6

* - Modulation envelope reference points are provided in terms of attenuation below the unmodulated carrier.

7.2.2 Test procedure

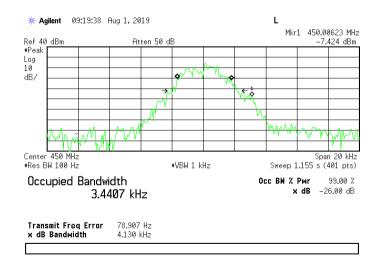
- **7.2.2.1** The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.
- 7.2.2.2 The EUT was set to transmit the unmodulated carrier and the reference peak power level was measured.
- **7.2.2.3** The EUT was set to transmit the normally modulated carrier.
- **7.2.2.4** The transmitter occupied bandwidth was measured with spectrum analyzer as a frequency delta between the reference points on modulation envelope and provided in Table 7.2.2 and the associated plots.

Figure 7.2.1 Occupied bandwidth test setup

Test specification: Section 90.209 / RSS-119 Section 5.5, Occupied bandwidth					
Test procedure:	47 CFR, Section 2.1049				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	15-Oct-19	Verdict: PASS			
Temperature: 24.3 °C	Relative Humidity: 46 %	Air Pressure: 1009 hPa	Power: 480 VAC, 60 Hz		
Remarks:					

Table 7.2.2 Occupied bandwidth test results

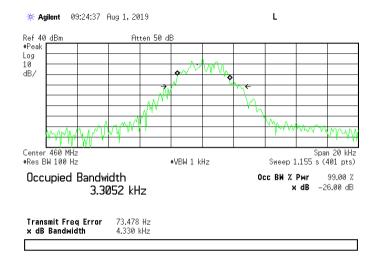
DETECTOR USED: RESOLUTION BANDWIDTH:	Peak hold 100 Hz
VIDEO BANDWIDTH:	1 kHz
MODULATION:	4GFSK
MODULATING SIGNAL:	ID code
BIT RATE:	4.8 kbps

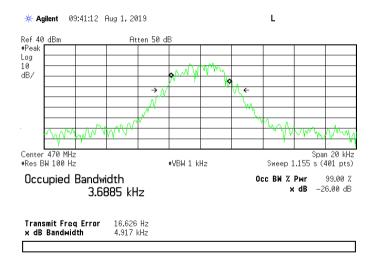

Carrier frequency, MHz	Occupied bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict	
MODULATION ENVELOPE REFERENCE POINTS: 99%					
450.000	3.440	6	-2.560	Pass	
460.000	3.305	6	-2.695	Pass	
470.000	3.688	6	-2.312	Pass	
MODULATION ENVELOPE REFERENCE POINTS: 26 dBc					
450.000	4.130	6	-1.870	Pass	
460.000	4.330	6	-1.670	Pass	
470.000	4.917	6	-1.083788	Pass	

Reference numbers of test equipment used

HL 2909 HL 1809 HL 4135

Full description is given in Appendix A.


Plot 7.2.1 Occupied bandwidth test result at low frequency



Fest specification: Section 90.209 / RSS-119 Section 5.5, Occupied bandwidth				
Test procedure:	47 CFR, Section 2.1049			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	15-Oct-19	verdict.	FA33	
Temperature: 24.3 °C	Relative Humidity: 46 %	Air Pressure: 1009 hPa	Power: 480 VAC, 60 Hz	
Remarks:	-			

Plot 7.2.2 Occupied bandwidth test result at mid frequency

Plot 7.2.3 Occupied bandwidth test result at high frequency

Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Emission mask				
Test procedure:	47 CFR, Sections 2.1051, 2.1047 and 90.210(e); TIA/EIA-603-E, Section 2.2.13				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	15 Oct-19	veraici.	FA35		
Temperature: 24.3 °C	Relative Humidity: 46 %	Air Pressure: 1009 hPa	Power: 480 VAC, 60 Hz		
Remarks:					

7.3 Emission mask test

7.3.1 General

This test was performed to measure emission mask at RF antenna connector. Specification test limits are given in Table 7.3.1. The test results are provided in the associated plots.

Table 7.3.1 Emission mask limits

Frequency displacement from carrier	Attenuation below carrier, dBc
Emission mask E (Channel bandwidth 6.25 kHz	z, authorized bandwidth 6.0 kHz) without audio low pass filter)
0 – 3.0 kHz	0
3.0 – 4.6 kHz	$30 + 16.67(f_d^{**} - 3 \text{ kHz}) \text{ or}$
	55+10logP(W) or 65 whichever is the lesser (FCC)
More than 4.6 kHz	55+10logP(W) or 57 whichever is the lesser (RSS-119)
	55+10logP(W) or 65 whichever is the lesser (FCC)

* - linearly increase with frequency

** - displacement frequency

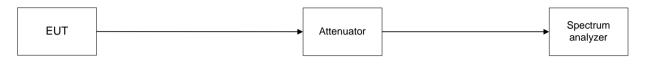
7.3.2 Test procedure

- 7.3.2.1 The EUT was set up as shown in Figure 7.3.1 energized and its proper operation was checked.
- **7.3.2.2** The emission mask was measured with spectrum analyzer as provided in the associated plots.
- **7.3.2.3** The test results are provided in Table 7.3.2 and the the associated plots.

Table 7.3.2 Emission mask test results

Carrier frequency, MHz	Limit	Verdict
450.000		
460.000	Emission mask E	Pass
470.000		

Reference numbers of test equipment used


	HL 2909	HL 5175	HL 1809					
F	Full description is given in Appendix A							

Full description is given in Appendix A.

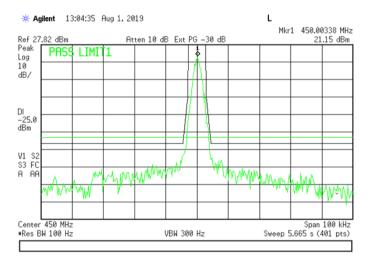
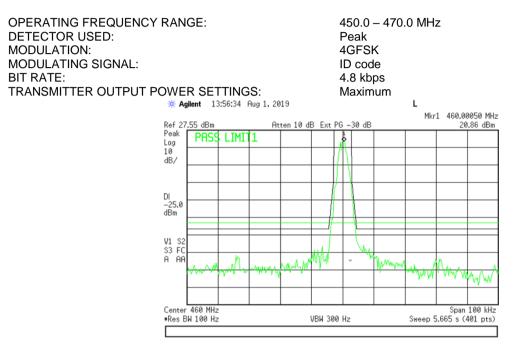
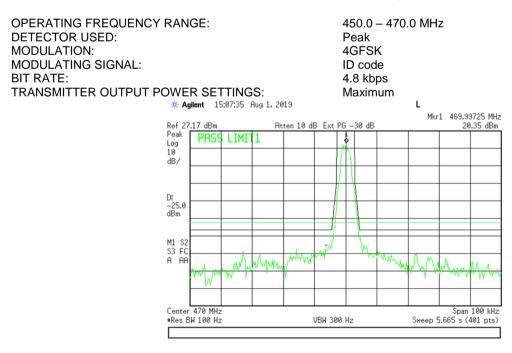

Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Emission mask			
Test procedure:	47 CFR, Sections 2.1051, 2.1047 and 90.210(e); TIA/EIA-603-E, Section 2.2.13			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	15 Oct-19	verdict.	FA33	
Temperature: 24.3 °C	Relative Humidity: 46 %	Air Pressure: 1009 hPa	Power: 480 VAC, 60 Hz	
Remarks:				

Figure 7.3.1 Emission mask test setup

Plot 7.3.1 Emission mask test results at low carrier frequency


OPERATING FREQUENCY RANGE: DETECTOR USED: MODULATION: MODULATING SIGNAL: BIT RATE: TRANSMITTER OUTPUT POWER SETTINGS: 450.0 – 470.0 MHz Peak 4GFSK ID code 4.8 kbps Maximum





Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Emission mask				
Test procedure:	47 CFR, Sections 2.1051, 2.1047 and 90.210(e); TIA/EIA-603-E, Section 2.2.13				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	15 Oct-19	verdict.	FA33		
Temperature: 24.3 °C	Relative Humidity: 46 %	Air Pressure: 1009 hPa	Power: 480 VAC, 60 Hz		
Remarks:	-				

Plot 7.3.2 Emission mask test results at mid carrier frequency

Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions			
Test procedure:	47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12			
Test mode:	Compliance	Verdict: PASS		
Date(s):	30-Jul-19			
Temperature: 24.8 °C	Relative Humidity: 46 %	Air Pressure: 1006 hPa	Power: 480 VAC, 60 Hz	
Remarks:				

7.4 Radiated spurious emission measurements

7.4.1 General

This test was performed to measure radiated spurious emissions from the EUT. Specification test limits are given in Table 7.4.1.

Table 7.4.1 Radiated spurious emission test limits

Frequency,	Attenuation below carrier,	ERP of spurious,	Equivalent field strength limit @ 3m,
MHz	dBc	dBm	dB(μV/m)***
0.009 – 10th harmonic*	55+10logP**	-25	72.4

 \star - Excluding the in band emission within ± 250 % of the authorized bandwidth from the carrier

** - P is transmitter output power in Watts

*** - Equivalent field strength limit was calculated from maximum allowed ERP of spurious as follows: E=sqrt(30xPx1.64)/r, where P is ERP in Watts, 1.64 is numeric gain of ideal dipole and r is antenna to EUT distance in meters

7.4.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- **7.4.2.1** The EUT was set up as shown in Figure 7.4.1, energized and the performance check was conducted.
- **7.4.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360^o and the measuring antenna was rotated around its vertical axis.
- **7.4.2.3** The worst test results (the lowest margins) were recorded in Table 7.4.2 and shown in the associated plots.

7.4.3 Test procedure for spurious emission field strength measurements above 30 MHz

- 7.4.3.1 The EUT was set up as shown in Figure 7.4.2, energized and the performance check was conducted.
- **7.4.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360^o and the measuring antenna height was swept from 1 to 4 m in both, vertical and horizontal, polarizations.
- 7.4.3.3 The worst test results (the lowest margins) were recorded in Table 7.4.2 and shown in the associated plots.

Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions				
Test procedure:	47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	30-Jul-19	verdict: PASS			
Temperature: 24.8 °C	Relative Humidity: 46 %	Air Pressure: 1006 hPa	Power: 480 VAC, 60 Hz		
Remarks:	· · ·				

Figure 7.4.1 Setup for spurious emission field strength measurements in 9 kHz to 30 MHz band

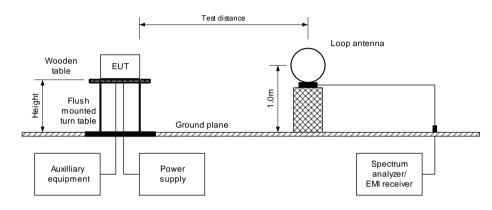
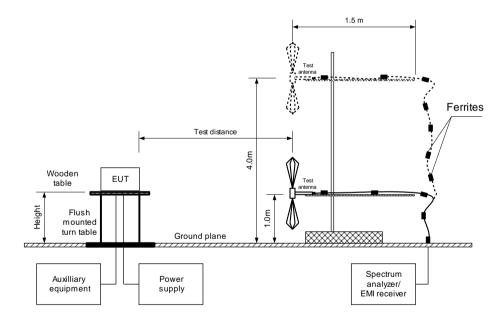



Figure 7.4.2 Setup for spurious emission field strength measurements above 30 MHz

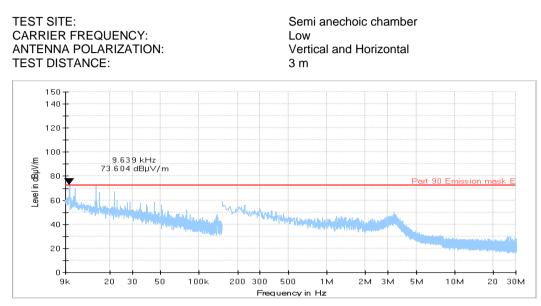
Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions				
Test procedure:	47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12				
Test mode:	Compliance	Verdict: PASS			
Date(s):	30-Jul-19	verdict.	FA33		
Temperature: 24.8 °C	Relative Humidity: 46 %	Air Pressure: 1006 hPa	Power: 480 VAC, 60 Hz		
Remarks:	•				

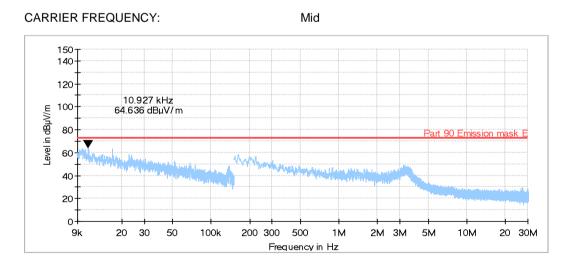
Table 7.4.2 Spurious emission field strength test results

TEST DISTAN TEST SITE: INVESTIGATE DETECTOR U VIDEO BANDA TEST ANTENI MODULATION BIT RATE:	ED FREQUENCY I SED: WIDTH: NA TYPE:	RANGE:	3 m Sem 0.00 Peal > Re Activ Bico Dout 4GF 4.8 k	9 – 5000 solution l re loop (9 nilog (30 ble ridged SK bps	c chamber	, Hz)		
	R OUTPUT POW			mum		1		
Frequency, MHz	Field strength, dB(μV/m)	Limit, dB(µV/m)	Margin, dB*	RBW, kHz	Antenna polarization	Antenna height, m	Turn-table position**, degrees	Verdict
Low carrier fre	equency 450MHz							
899.993500	899.993500 67.04 72.4		-5.36	100	Vertical	1.02	73.0	Pass
Mid carrier fre	quency 460MHz							
920.026833	68.79	72.4	-3.61	100	Horizontal	1.54	132.0	Pass
High carrier fr	equency 470MHz							
939.969833	68.15	72.4	-4.25	100	Horizontal	1.54	139.0	Pass

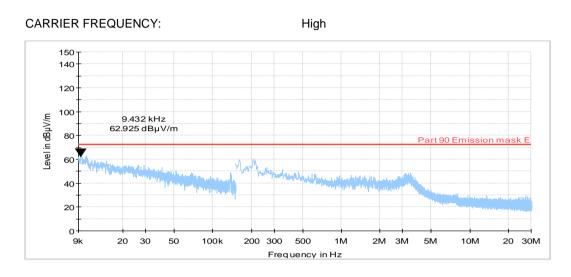
*- Margin = Field strength of spurious – calculated field strength limit. **- EUT front panel refers to 0 degrees position of turntable.

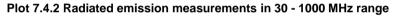
Reference numbers of test equipment used

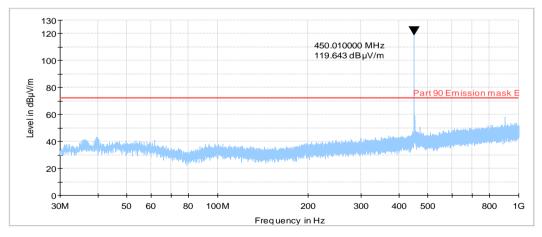

HL 4360	HL 3903	HL 4011	HL 3047	HL 5311	HL 5309	HL 5288	HL 5085
HL 5405	HL 4933	HL 0446	HL 3818				

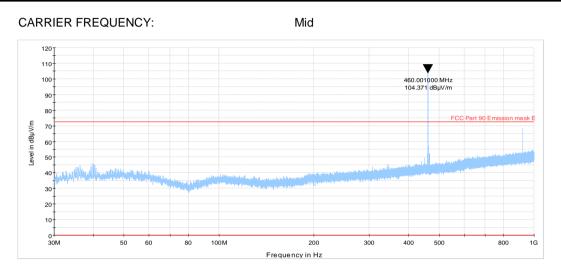

Full description is given in Appendix A.

Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions			
Test procedure:	47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12			
Test mode:	Compliance	Verdict: PASS		
Date(s):	30-Jul-19	Verdict: PASS		
Temperature: 24.8 °C	Relative Humidity: 46 %	Air Pressure: 1006 hPa	Power: 480 VAC, 60 Hz	
Remarks:				

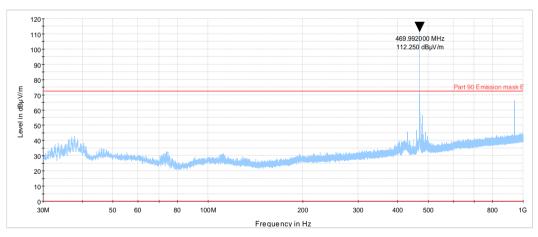





Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions				
Test procedure:	47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12				
Test mode:	Compliance	Verdict: PASS			
Date(s):	30-Jul-19	verdict.	FA33		
Temperature: 24.8 °C	Relative Humidity: 46 %	Air Pressure: 1006 hPa	Power: 480 VAC, 60 Hz		
Remarks:					

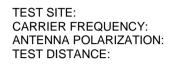

TEST SITE: CARRIER FREQUENCY: ANTENNA POLARIZATION: TEST DISTANCE:

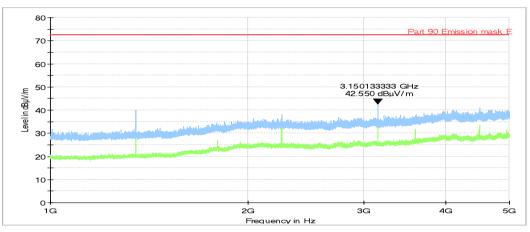
Semi anechoic chamber Low Vertical and Horizontal 3 m



Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions				
Test procedure:	47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12				
Test mode:	Compliance	Verdict: PASS			
Date(s):	30-Jul-19	Verdict: PASS			
Temperature: 24.8 °C	Relative Humidity: 46 %	Air Pressure: 1006 hPa	Power: 480 VAC, 60 Hz		
Remarks:	· · · · ·		•		

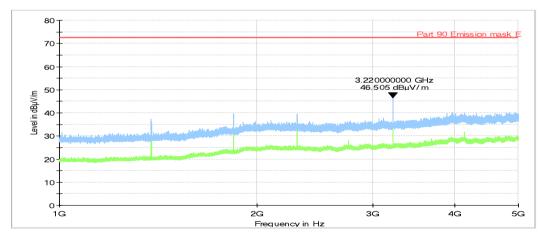
CARRIER FREQUENCY:


High



Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions			
Test procedure:	47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12			
Test mode:	Compliance	Verdict: PASS		
Date(s):	30-Jul-19	Verdict: PASS		
Temperature: 24.8 °C	Relative Humidity: 46 %	Air Pressure: 1006 hPa	Power: 480 VAC, 60 Hz	
Remarks:				

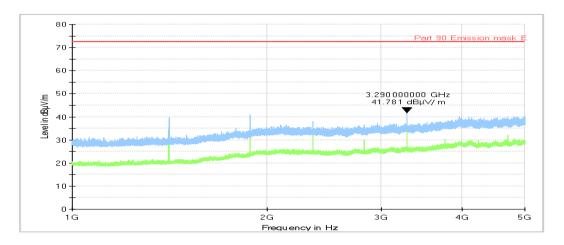
Plot 7.4.3 Radiated emission measurements in 1000 - 5000 MHz range



Semi anechoic chamber Low Vertical and Horizontal 3 m

CARRIER FREQUENCY:

Mid



Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions					
Test procedure:	47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	30-Jul-19	verdict: PASS				
Temperature: 24.8 °C	Relative Humidity: 46 %	Air Pressure: 1006 hPa	Power: 480 VAC, 60 Hz			
Remarks:						

CARRIER FREQUENCY:

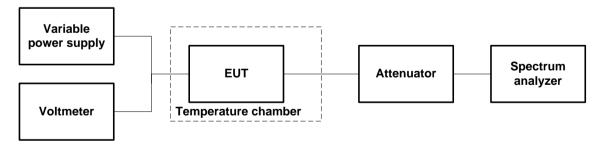
High

Test specification:	Section 90.213 / RSS-119 Section 5.3, Frequency stability					
Test procedure:	47 CFR, Section 2.1055; TIA/EIA-603-E, Section 2.2.2					
Test mode:	Compliance	Verdict: PASS				
Date(s):	18-Jul-19	verdict: PASS				
Temperature: 24 °C	Relative Humidity: 45 %	Air Pressure: 1006 hPa	Power: 480 VAC, 60 Hz			
Remarks:						

7.5 Frequency stability test

7.5.1 General

This test was performed to measure frequency stability of transmitter RF carrier. Specification test limits are given in Table 7.5.1.


Table 7.5.1	Frequency	stability	/ limits
	ricqueriey	Stubility	,

Assigned frequency MUT	Maximum allowed frequency displacement			
Assigned frequency, MHz	ppm	Hz		
450.003100		450		
460.000000	1	460		
469.996900		470		

7.5.2 Test procedure

- 7.5.2.1 The EUT was set up as shown in Figure 7.5.1, energized and its proper operation was checked.
- **7.5.2.2** The EUT power was turned off. Temperature within test chamber was set to +30°C and a period of time sufficient to stabilize all of the oscillator circuit components was allowed.
- **7.5.2.3** The EUT was powered on and carrier frequency was measured at start up moment and then every minute until frequency had been stabilized or 10 minutes elapsed whichever reached the last. The EUT was powered off.
- **7.5.2.4** The above procedure was repeated at 0°C and at the lowest test temperature.
- **7.5.2.5** The EUT was powered on and carrier frequency was measured at start up moment and at the end of stabilization period at the rest of test temperatures and voltages. The EUT was powered off.
- **7.5.2.6** Frequency displacement was calculated and compared with the limit as provided in Table 7.5.2.

Figure 7.5.1 Frequency stability test setup

Test specification:	Section 90.213 / RSS-119 Section 5.3, Frequency stability					
Test procedure:	47 CFR, Section 2.1055; TIA/E	47 CFR, Section 2.1055; TIA/EIA-603-E, Section 2.2.2				
Test mode:	Compliance	Verdict: PASS				
Date(s):	18-Jul-19	veraici.	FA33			
Temperature: 24 °C	Relative Humidity: 45 %	Air Pressure: 1006 hPa	Power: 480 VAC, 60 Hz			
Remarks:		·				

Table 7.5.2 Frequency stability test results

NOMIN TEMPE POWE SPECT RESOL VIDEO		/ER VOL E STABI IG TEMF IALYZEF BANDWI IDTH:	TAGE: LIZATIO PERATUI R MODE:		D: NSITION:		480 20 m Off Cou 10 H 30 H	nter Iz	MHz				
т, ⁰С	Voltage, V		Frequency, MHz Max frequency drift, Hz					Limit, Hz	Margin, Hz	Verdict			
		Start up	1 st min	2 nd min	3 rd min	4 th min	5 th min	10 th min	Positive	Negative			
Low f	requency												
-30	nominal	450.002991	450.002992	450.002992	450.002993	450.002993	450.002993	450.002994	0	-107		-343	Pass
-20	nominal	450.002969	NA	NA	NA	NA	NA	450.002978	0	-129		-321	Pass
-10	nominal	450.003026	NA	NA	NA	NA	NA	450.003051	0	-72		-378	Pass
0	nominal	450.003075	450.003092	450.003093	450.003106	450.003107	450.003118	450.003119	21	-23		-427	Pass
10	nominal	450.003086	NA	NA	NA	NA	NA	450.00309	0	-12		-438	Pass
20	+15%	450.003096	NA	NA	NA	NA	NA	450.003097	0	-2	450	-448	Pass
20	nominal	450.003097	NA	NA	NA	NA	NA	*450.003098	0	-1		-449	Pass
20	-15%	450.003095	NA	NA	NA	NA	NA	450.003096	0	-3		-447	Pass
30	nominal	450.003101	450.003101	450.003101	450.003101	450.003101	450.003101	450.003101	3	0		-447	Pass
40	nominal	450.003104	NA	NA	NA	NA	NA	450.003114	16	0		-434	Pass
50	nominal	450.003117	NA	NA	NA	NA	NA	450.003153	55	0		-395	Pass
Mid free	quency												
-30	nominal	459.99988	459.99989	459.99989	459.99989	459.99989	459.99989	459.99989	0	-110		-350	Pass
-20	nominal	459.99987	NA	NA	NA	NA	NA	459.99988	0	-128		-332	Pass
-10	nominal	459.99992	NA	NA	NA	NA	NA	459.99995	0	-73		-387	Pass
0	nominal	460.00001	460.00001	460.00001	460.00001	460.00002	460.00002	460.00002	25	0		-435	Pass
10	nominal	459.99998	NA	NA	NA	NA	NA	459.99999	0	-11		-449	Pass
20	+15%	459.99999	NA	NA	NA	NA	NA	459.99999	1	0	460	-459	Pass
20	nominal	459.99999	NA	NA	NA	NA	NA	*459.99999	0	-1		-459	Pass
20	-15%	459.99999	NA	NA	NA	NA	NA	459.99999	0	-4		-456	Pass
30	nominal	460.00000	460.00000	460.00000	460.00000	460.00000	460.00000	460.00000	5	0		-455	Pass
40	nominal	460.00001	NA	NA	NA	NA	NA	460.00021	212	0		-248	Pass
50	nominal	460.00004	NA	NA	NA	NA	NA	460.00006	70	0		-390	Pass
High fre	equency												
-30	nominal	469.996787	469.996792	469.996793	469.996794	469.996794	469.996794	469.996794	0	-111		-359	Pass
-20	nominal	469.99677	NA	NA	NA	NA	NA	469.996789	0	-128		-342	Pass
-10	nominal	469.996838	NA	NA	NA	NA	NA	469.99687	0	-60		-410	Pass
0	nominal	469.996914	469.996915	469.996923	469.996923	469.996926	469.996926	469.996926	28	0		-442	Pass
10	nominal	469.996886	NA	NA	NA	NA	NA	469.996891	0	-12		-458	Pass
20	+15%	469.996898	NA	NA	NA	NA	NA	469.996898	0	0	470	-470	Pass
20	nominal	469.996898	NA	NA	NA	NA	NA	*469.996898	0	0		-470	Pass
20	-15%	469.996899	NA	NA	NA	NA	NA	469.99689	1	-8		-462	Pass
30	nominal	469.996898	469.996899	469.996899	469.9969	469.9969	469.9969	469.9969	2	0		-468	Pass
40	nominal	469.996914	NA	NA	NA	NA	NA	469.996927	29	0		-441	Pass
50	nominal	469.996964	NA	NA	NA	NA	NA	469.996987	89	0		-381	Pass
Defer	ence fred												

* - Reference frequency

Reference numbers of test equipment used

HL 3901 HL 4070 HL 4343

Full description is given in Appendix A.

Test specification:	Section 90.214 / RSS-119 Section 5.9, Transient frequency behaviour				
Test procedure:	TIA/EIA-603-E, Section 2.2.19				
Test mode:	Compliance	Verdict: PASS			
Date(s):	18-Jul-19	verdict.	FA33		
Temperature: 24 °C	Relative Humidity: 45 %	Air Pressure: 1006 hPa	Power: 480 VAC, 60 Hz		
Remarks:					

7.6 Transient frequency behaviour test

7.6.1 General

This test was performed to measure carrier frequency drift as function of time during transmitter start up and shut down. Specification test limits are given in Table 7.6.1. The test results are provided in the associated plots.

Table 7.6.1	Transient freq	uency limits
10010	in an oron in o o	

Channel bandwidth, kHz	nnel bandwidth, kHz Carrier frequency tolerance, kHz Duration, ms						
	421.0 – 512.0 MHz band						
	± 6.25	10.0	t ₁				
6.25	± 3.125	25.0	t ₂				
	± 6.25	10.0	t3				

* - ton is the instant when a 1 kHz test signal is completely suppressed;

t1 is the time period immediately following ton;

t₂ is the time period immediately following t₁;

t₃ is the time period from the instant when the transmitter is turned off until toff;

toff is the instant when the 1 kHz test signal starts to rise.

7.6.2 Test procedure

- **7.6.2.1** The EUT was set up as shown in Figure 7.6.1, energized and its proper operation was checked. Variable attenuator was adjusted to provide signal level approximately 40 dB below the FM receiver maximum allowed level as measured with RF power meter. The EUT was turned off.
- **7.6.2.2** The signal generator was set to the assigned transmitter frequency modulated with 1 kHz tone at 25 kHz deviation and the output power was adjusted to provide the same as the EUT signal level at the FM receiver input as measured with power meter.
- **7.6.2.3** The storage oscilloscope was set to provide horizontal sweep rate 10 milliseconds per division. Amplitude control of the storage oscilloscope was adjusted to obtain 1 kHz sinusoidal signal vertically centered with ± 4 divisions amplitude.
- **7.6.2.4** The variable attenuator was adjusted to increase RF level supplied to splitter by 30 dB and the EUT was consequently turned on and off. Transient frequency during power switching was captured and shown in the associated plots.

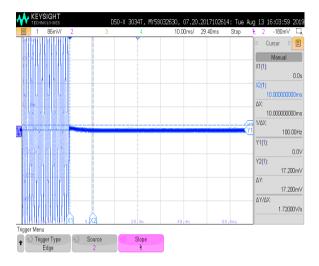
Test specification:	Section 90.214 / RSS-119 Section 5.9, Transient frequency behaviour				
Test procedure:	TIA/EIA-603-E, Section 2.2.19				
Test mode:	Compliance	Verdict: PASS			
Date(s):	18-Jul-19	verdict.	FA35		
Temperature: 24 °C	Relative Humidity: 45 %	Air Pressure: 1006 hPa	Power: 480 VAC, 60 Hz		
Remarks:					

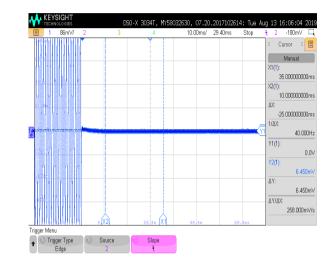
Figure 7.6.1 Transient frequency test setup

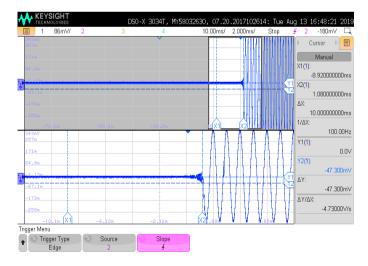
Table 7.6.2 Transient frequency behaviour test results

Carrier frequency, MHz	Time interval	Duration, ms	Frequency tolerance, kHz	Limit, kHz	Margin, kHz	Verdict		
Channel bandwidth 6.	Channel bandwidth 6.25 kHz							
450.0031	t1	10.0	1.250	± 6.25	-5.000			
	t2	25.0	0.469	± 3.125	-2.656	Pass		
	t3	10.0	3.438	± 6.25	-2.812			
	t1	10.0	0.860	± 6.25	-5.390			
460.0000	t ₂	25.0	0.391	± 3.125	-2.734	Pass		
	t3	10.0	4.375	± 6.25	-1.875			
469.9969	t ₁	10.0	1.641	± 6.25	-4.609			
	t2	25.0	0.541	± 3.125	-2.578	Pass		
	t3	10.0	3.906	± 6.25	-2.343			

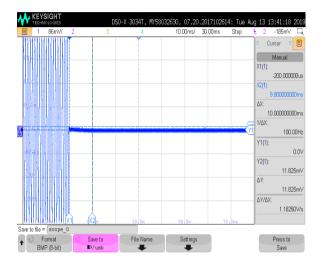
Reference numbers of test equipment used

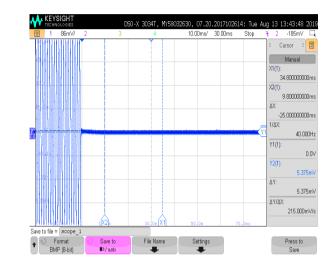

[HL 3047	HL 5369	HL 2227	HL 2017	HL 2016	HL 0788	HL 4227	HL 0911
Ī	HL 5372	HL 0539	HL 3301	HL 4938	HL 5278	HL 1809		
F	Ill description is	aiven in Annen	dix A					

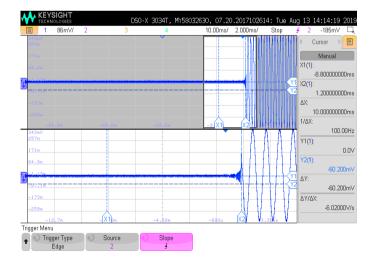

Full description is given in Appendix A.


Test specification:	Section 90.214 / RSS-119 Section 5.9, Transient frequency behaviour				
Test procedure:	TIA/EIA-603-E, Section 2.2.19				
Test mode:	Compliance	Verdict: PASS			
Date(s):	18-Jul-19	verdict.	FA33		
Temperature: 24 °C	Relative Humidity: 45 %	Air Pressure: 1006 hPa	Power: 480 VAC, 60 Hz		
Remarks:					

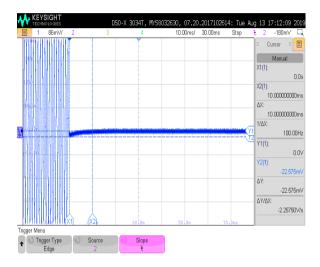
Plot 7.6.1 Transient frequency during power ON test results at low carrier frequency

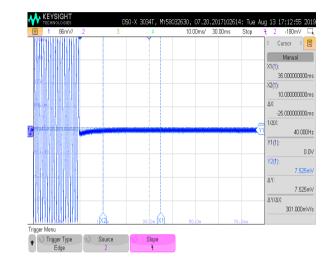

Plot 7.6.2 Transient frequency during power OFF test results at low carrier frequency

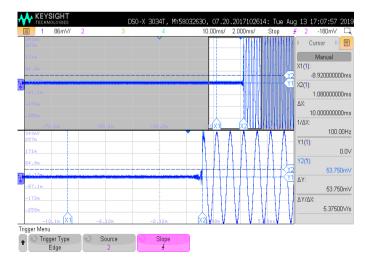



Test specification:	Section 90.214 / RSS-119 Section 5.9, Transient frequency behaviour				
Test procedure:	TIA/EIA-603-E, Section 2.2.19				
Test mode:	Compliance	Verdict: PASS			
Date(s):	18-Jul-19	verdict.	FA33		
Temperature: 24 °C	Relative Humidity: 45 %	Air Pressure: 1006 hPa	Power: 480 VAC, 60 Hz		
Remarks:					

Plot 7.6.3 Transient frequency during power ON test results at mid carrier frequency


Plot 7.6.4 Transient frequency during power OFF test results at mid carrier frequency




Test specification:	Section 90.214 / RSS-119 Section 5.9, Transient frequency behaviour				
Test procedure:	TIA/EIA-603-E, Section 2.2.19				
Test mode:	Compliance	Verdict: PASS			
Date(s):	18-Jul-19	verdict.	FA33		
Temperature: 24 °C	Relative Humidity: 45 %	Air Pressure: 1006 hPa	Power: 480 VAC, 60 Hz		
Remarks:					

Plot 7.6.5 Transient frequency during power ON test results at high carrier frequency

Plot 7.6.6 Transient frequency during power OFF test results at high carrier frequency

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0415	Cable, Coax, RF, RG-214, 12.3 m	Hermon Laboratories	CC-3	056	07-Aug-19	07-Aug-20
0446	Antenna, Loop, Active, 10 (9) kHz - 30 MHz	EMCO	6502	2857	24-Feb-19	24-Feb-20
0539	Generator Signal, 10 kHz - 1.2 GHz	Marconi Instruments	2023	112121/04 1	09-Jul-19	09-Jul-20
0604	Antenna BiconiLog Log-Periodic/T Bow- TIE, 26 - 2000 MHz	EMCO	3141	9611-1011	03-Jun-18	03-Jun-20
0788	Power Splitter / Combiner 5-500 MHz	Mini-Circuits	ZFSC-2-1	923705	24-Jun-19	24-Jun-21
0911	Coupler Dual Directional, 20 dB, 0.1 - 2.0 GHz	Hewlett Packard	778D	1144A078 27	13-Mar-19	13-Mar-22
1623	Attenuator, 50 Ohm, 2W, 0-18 GHz, 3.0 dB	Midwest Microwave	219	1623	18-Nov-18	18-Nov-19
1809	HygroThermometer, Min/Max Memory	Delta TRAK	13301	NA	11-Aug-19	11-Aug-20
2016	Attenuator, Manual Step, 0-9/1 dB, 0-8 GHz, 2 W	Midwest Microwave	1072	1315	05-Mar-19	05-Mar-20
2017	Attenuator, Manual Step, 0-60/10 dB, 0- 8.0 GHz	Midwest Microwave	1071	2017	05-Mar-19	05-Mar-20
2227	Crystal Detector 0.01-18 GHz, 100 mW	Hewlett Packard Co	8472A	NA	19-Sep-17	19-Sep-19
2909	Spectrum analyzer, ESA-E, 100 Hz to 26.5 GHz	Agilent Technologies	E4407B	MY414447 62	04-Apr-19	04-Apr-20
3047	AC Power Supply, 0 - 130 & 260v, 45 - 2000 Hz	BEHLMAN	150-C- 202	5033	03-Oct-18	03-Oct-19
3301	Power Meter, P-series, 50 MHz to 40 GHz	Agilent Technologies	N1911A	MY451010 57	28-Apr-19	28-Apr-20
3339	High Pass Filter, 50 Ohm, 600 to 3000 MHz.	Mini-Circuits	SHP- 600+	NA	05-Jun-19	05-Jun-20
3350	Low Pass Filter, 50 Ohm, DC to 270 MHz.	Mini-Circuits	NLP-300+	NA	05-Jun-19	05-Jun-20
3818	PSA Series Spectrum Analyzer, 3 Hz- 44 GHz	Agilent Technologies	E4446A	MY482502 88	24-Apr-19	24-Apr-20
3901	Microwave Cable Assembly, 40.0 GHz, 3.5 m, SMA/SMA	Huber-Suhner	SUCOFL EX 102A	1225/2A	07-Apr-19	07-Apr-20
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFL EX 102A	1226/2A	07-Apr-19	07-Apr-20
4011	Temp. & Humidity Meter, (-50 - +70) deg, (20 - 99)% RH	Mad Electronics	HTC-1	NA	11-Aug-19	11-Aug-20
4070	Attenuator, SMA, 30 dB, DC to 18 GHz, 5 W	Weinschel	WA7	NA	12-Aug-19	12-Aug-20
4135	Shield Box	TESCOM CO., LTD	TC-5916A	5916A000 136	24-Apr-19	24-Apr-20
4227	Precision Fixed Attenuator, 50 Ohm, 5W, 10dB, DC to 18000 MHz	Mini-Circuits	BW- N10W5+	NA	04-Mar-19	04-Mar-20

8 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
4339	High pass Filter, 50 Ohm, 1000 to 18000 MHz, SMA-FM / SMA-M	Micro-Tronics	HPM5011 5-02	001	05-Jun-19	05-Jun-20
4343	Signal Generator, 100 kHz to 40 GHz	Rohde & Schwarz	SMB 100A	175291	04-Apr-19	04-Apr-20
4360	EMI Test Receiver, 20 Hz to 40 GHz.	Rohde & Schwarz	ESU40	100322	31-Dec-18	31-Dec-19
4646	LISN, 3 phase, 4X25 A, 50 Ohm/50 uH + 5 Ohm, STD CISPR 16-1, 9-150 kHz (30MHz)	Rohde & Schwarz	ESH2-Z5	NA	21-Mar-19	21-Mar-20
4778	EMI Receiver, 9 kHz - 2.9 GHz, System: HL1431, HL4777	Hewlett Packard	8542E	30807A00 262, 3427A001 23	28-Oct-18	28-Oct-19
4933	Active Horn Antenna, 1 GHz to 18 GHz	COM-POWER CORPORATI ON	AHA-118	701046	06-Jan-19	06-Jan-20
4938	Test Cable, 50Ω , 1.8 m, DC to 18 GHz	Mini-Circuits	CBL-6FT- SMNM+	NA	15-Apr-19	15-Apr-20
5084	Attenuator, 4 dB, DC - 6 GHz, 1 W	Mini-Circuits	UNAT-4+	NA	05-Jun-18	05-Jun-20
5085	Attenuator, 4 dB, DC - 6 GHz, 1 W	Mini-Circuits	UNAT-4+	NA	08-Feb-19	08-Feb-20
5175	Medium Power Fixed Coaxial Attenuator DC to 40 GHz, 20 dB, 5 W	API Weinschel, Inc	75A-20- 12	TE289	07-Apr-19	07-Apr-20
5278	Cable RF, 4.2 m, BNC/BNC	Hermon Laboratories	M17/167 MIL-C-17	NA	02-Sep-18	02-Sep-19
5288	Trilog Antenna, 25 MHz - 8 GHz, 100W	Frankonia	ALX- 8000E	00809	08-Feb-19	08-Feb-22
5309	Antenna Mast, 1-4 meter, Pneumatic polarization	Dolev Ltd	FMB 1-4	NA	24-Apr-19	24-Apr-20
5311	Controller	Dolev Ltd	FC-06	FC06.1- 2016-024	24-Apr-19	24-Apr-20
5369	Digital storage oscilloscope, 350 MHz	Keysight Technologies	DSOX303 4T	MY580326 30	28-May-19	28-May-20
5372	MXE EMI receiver, 3 Hz to 44 GHz	Keysight Technologies	N9038A	MY572901 55	18-Jun-19	18-Jun-20
5376	EXA Signal Analyzer, 10 Hz - 32 GHz	Keysight Technologies	N9010B	MY574704 04	18-Mar-19	18-Mar-20
5404	RF cable, 18 GHz, N-N, 6 m	Huber-Suhner	SF118/11 N(x2)	500024/18	11-Aug-19	11-Aug-20
5405	RF cable, 18 GHz, N-N, 6 m	Huber-Suhner	SF118/11 N(x2)	500023/11 8	11-Aug-19	11-Aug-20
5476	Cable, BNC/BNC, 10.5 m	Western wire	MIL-C- 17G	NA	30-Jan-19	30-Jan-20

9 APPENDIX B Test equipment correction factors

Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
10	-33.4	±1.0
20	-37.8	±1.0
50	-40.5	±1.0
75	-41.0	±1.0
100	-41.2	±1.0
150	-41.2	±1.0
250	-41.1	±1.0
500	-41.2	±1.0
750	-41.3	±1.0
1000	-41.3	±1.0

HL 0446: Active Loop Antenna EMCO, model: 6502, s/n 2857

Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
2000	-41.4	±1.0
3000	-41.4	±1.0
4000	-41.5	±1.0
5000	-41.5	±1.0
10000	-41.7	±1.0
15000	-42.1	±1.0
20000	-42.7	±1.0
25000	-44.2	±1.0
30000	-45.8	±1.0

The antenna factor shall be added to receiver reading in $dB\mu V$ to obtain field strength in $dB\mu A/m$.

HL 0604: Antenna BiconiLog Log-Periodic/T Bow-TIE EMCO, model 3141, serial number 9611-1011

		Antenna factor, dB/m		
Frequency, MHz	Measured	Last	Deviation	
30	12.1	12.6	-0.5	
35	9.1	9.5	-0.4	
40	8.0	8.3	-0.3	
45	8.3	8.6	-0.3	
50	9.0	9.1	-0.1	
60	10.5	10.7	-0.2	
70	11.4	11.3	0.1	
80	12.3	12.2	0.1	
90	13.4	13.2	0.2	
100	13.0	13.0	0.0	
120	11.4	11.4	0.0	
140	12.5	12.4	0.1	
160	14.9	14.8	0.1	
180	14.4	14.0	0.4	
200	13.7	13.9	-0.2	
250	16.3	16.4	-0.1	
300	17.2	17.5	-0.3	
400	19.8	20.2	-0.4	
500	22.0	22.4	-0.4	
600	24.3	24.5	-0.2	
700	25.8	25.6	0.2	
800	26.9	26.6	0.3	
900	27.3	28.0	-0.7	
1000	28.5	29.3	-0.8	

The antenna factor shall be added to receiver reading in dBµV to obtain field strength in dBµV/m.

Frequency	R1,	60	T2	N	Uncertainty,
Frequency, kHz	dB	S2, dB	T3, dB	N, dB	dB
10	0.10	0.08	0.09	0.10	±0.12
15	0.10	0.10	0.03	0.10	±0.12
20	0.11	0.10	0.11	0.11	±0.12
25	0.11	0.13	0.12	0.12	±0.12
30	0.11	0.13	0.12	0.12	±0.08
40	0.11	0.14	0.12	0.12	±0.08
50	0.11	0.14	0.12	0.12	±0.08
60	0.12	0.14	0.11	0.12	±0.08
70	0.12	0.15	0.12	0.12	±0.09
80	0.11	0.15	0.12	0.12	±0.09 ±0.09
90	0.11		0.13	0.12	
	-	0.16	-	-	±0.09
100	0.12	0.16	0.13	0.13	±0.09
150	0.13	0.16	0.13	0.13	±0.09
170	0.13	0.16	0.14	0.14	±0.09
200	0.14	0.16	0.14	0.14	±0.09
250	0.14	0.17	0.14	0.15	±0.09
300	0.15	0.17	0.15	0.16	±0.09
350	0.16	0.18	0.16	0.16	±0.09
400	0.16	0.19	0.16	0.17	±0.09
500	0.18	0.20	0.17	0.18	±0.09
600	0.19	0.21	0.18	0.19	±0.09
700	0.20	0.22	0.19	0.19	±0.09
800	0.21	0.23	0.19	0.21	±0.09
900	0.22	0.23	0.20	0.21	±0.09
1000	0.23	0.24	0.21	0.21	±0.09
1200	0.26	0.26	0.22	0.22	±0.16
1500	0.29	0.30	0.24	0.24	±0.16
2000	0.35	0.30	0.26	0.26	±0.16
2500	0.40	0.32	0.27	0.28	±0.16
3000	0.46	0.34	0.29	0.30	±0.16
4000	0.59	0.37	0.32	0.33	±0.16
5000	0.68	0.40	0.34	0.35	±0.16
7000	0.91	0.44	0.38	0.40	±0.16
10000	1.13	0.48	0.40	0.41	±0.16
15000	1.33	0.44	0.44	0.41	±0.16
20000	1.35	0.52	0.48	0.41	±0.16
30000	1.29	0.73	0.48	0.30	±0.32

HL 4646 LISN 3 phase, 4X25 A, 50 Ohm/50 uH + 5 Ohm, STD CISPR 16-1, 9-150 (30MHz)

COM-POWER CORPORATION AHA-118, s/n 70104				
y, MHz	Measured antenna factor, dB/m	Frequency, M		
0	-16.1	3200		
0	-16.0	3250		
0	-15.1	3300		

HL 4933 Active Horn Antenna, 1 GHz to 18 GHz COM-POWER CORPORATION AHA-118 , s/n 701046 HL 4933

Frequency, MHz	Measured antenna factor, dB/m
1000	-16.1
1050	-16.0
1100	-15.1
1150	-16.4
1200	-16.0
1250	-15.6
1300	-15.1
1350	-14.8
1400	-15.1
1450	-15.1
1500	-15.5
1550	-15.2
1600	-14.7
1650	-14.4
1700	-14.4
1750	-14.0
1800	-13.6
1850	-12.7
1900	-11.9
1950	-11.9
2000	-11.8
2050	-11.3
2100	-11.3
2150	-11.7
2200	-12.3
2250	-12.3
2300	-12.4
2350	-12.2
2400	-11.7
2450	-11.5
2500	-11.5
2550	-11.5
2600	-11.5
2650	-11.3
2700	-11.3
2750	-11.1
2800	-11.1
2850	-11.3
2900	-11.1
2950	-11.0
3000	-11.1
3050	-10.9
3100	-10.7
3150	-10.6
	-

Frequency, MHz	Measured antenna factor, dB/m
0000	
3200	-11.2
3250	-10.8
3300	-10.8
3350	-10.7
3400	-10.3
3450	-10.2
3500	-10.1
3550	-10.4
3600	-10.5
3650	-10.4
3700	-10.4
3750	-10.3
3800	-10.1
3850	-10.0
3900	-9.9
3950	-9.8
4000	-9.7
4050	-9.3
4100	-8.6
4150	-8.2
4200	-8.3
4250	-8.5
4300	-8.5
4350	-8.3
4400	-8.0
4450	-7.7
4500	-7.6
4550	-7.4
4600	-7.5
4650	-7.8
4700	-7.6
4750	-6.8
4800	-6.1
4850	-5.7
4900	-5.8
4950	-5.8
5000	-6.0
5050	-5.7
5100	-5.4
5150	-5.1
5200	-4.6
5250	-4.6
5300	-4.8
5350	-5.1

Frequency, MHz	Measured antenna factor, dB/m
5400	-5.1
5450	-4.6
5500	-4.0
5550	-3.5
5600	-3.1
5650	-3.3
5700	-3.8
5750	-4.3
5800	-4.3
5850	-4.0
5900	-3.5
5950	-3.2
6000	-3.2
6050	-3.2
6100	-3.3
6150	-3.3
6200	-3.1
6250	-3.1
6300 6350	-2.8 -3.0
6400	-3.2
6450	-3.4
6500	-3.7
6550	-3.6
6600	-3.4
6650	-2.9
6700	-2.6
6750	-2.5
6800	-2.6
6850	-2.8
6900	-2.7
6950	-2.3
7000	-2.0
7050	-1.9
7100	-1.8
7150	-1.8
7200	-1.7
7250	-1.7
7300	-1.6
7350	-1.5
7400	-1.5
7450	-1.3
7500	-1.4
7550	-1.3
7600	-1.0
7650	-1.0
7700	-0.7 -0.3
7750	0.1
7800	0.3
7850	0.4
7900	0.2
7950	0.1
8000	0.2
8050	0.3
8100	0.8
8150	1.1
8200	1.1
8250	1.0
12400	2.1
12500	1.2
12600	1.2
12600	
	<u>2.4</u> 1.8
12800	1.0

Frequency, MHz	Measured antenna factor, dB/m
8300	0.8
8350	0.5
8400	0.3
8450	0.5
8500	0.8
8550	0.9
8600	0.9
8650	0.6
8700	0.0
8750	-0.3
8800	0.0
8850	0.5
8900	0.6
8950	0.4
9000	-0.3
9050	-1.0
9100	-1.2
9150	-0.6
9200	-0.1
9250	0.0
9300	-0.1
9350	-0.5
9400	-0.7
9450	-0.4
9500	0.2
9550	0.5
9600	0.5
9650	0.3
9700	0.0
9750	0.0
9800	0.6
9850	1.4
9900	1.8
9950	1.7
10000	1.4
10100	0.8
10200	1.2
10300	1.5
10400	1.1
10500	1.6
10600	3.0
10700	2.9
10800	1.3
10900	1.0
11000	1.1
11100	0.7
11200	1.1
11300	1.5
11400	1.4
11500	0.6
11600	1.0
11700	1.4
11800	0.7
11900	0.9
12000	2.1
12100	2.1
12100	0.9
12200	1.6
12300	1.0

12900	0.6
13000	0.9
13100	1.1
13200	0.7
13300	0.9
13400	1.8
13500	2.1
13600	1.2
13700	0.8
13800	1.2
13900	1.5
14000	1.7
14100	2.2
14200	2.8
14300	3.0
14400	3.0
14500	3.3
14600	4.0
14700	5.4
14800	5.4
14900	4.7
15000	3.1
15100	2.0
15200	1.5
15300	1.4
15400	1.7
15500	1.9
15600	1.2
15700	0.2
15800	0.2
15900	1.2
16000	0.6
16100	0.6
16200	1.9
16300	2.2
16300	0.9
	0.9
16500	1.7
16600 16700	1.7
16800	1.0
16900	2.0 2.4
17000	
17100	1.8
17200	1.8
17300	2.5
17400	2.7
17500	3.1
17600	3.7
17700	4.3
17800	4.8
17900	5.7
18000	5.1

HL 5288: Trilog Antenna Frankonia, model: ALX-8000E, s/n: 00809 30-1000 MHz

-	
Frequency, MHz	Antenna factor, dB/m
30	14.96
35	15.33
40	16.37
45	17.56
50	17.95
60	16.87
70	13.22
80	10.56
90	13.61
100	15.46
120	14.03
140	12.23

Frequency, MHz	Antenna factor, dB/m
160	12.67
180	13.34
200	15.40
250	16.42
300	17.28
400	19.98
500	21.11
600	22.90
700	24.13
800	25.25
900	26.35
1000	27.18

The antenna factor shall be added to receiver reading in dB μ V to obtain field strength in dB μ V/m. ЛНz

|--|

Frequency, MHz	Antenna factor, dB/m
1000	26.9
1100	28.1
1200	28.4
1300	29.6
1400	29.1
1500	30.4
1600	30.7
1700	31.5
1800	32.3
1900	32.6
2000	32.5
2100	32.9
2200	33.5
2300	33.2
2400	33.7
2500	34.6
2600	34.7
2700	34.6
2800	35.0
2900	35.5
3000	36.2
3100	36.8
3200	36.8
3300	37.0
3400	37.5
3500	38.2

Frequency, MHz	Antenna factor, dB/m
3600	38.9
3700	39.4
3800	39.4
3900	39.6
4000	39.7
4100	39.8
4200	40.5
4300	40.9
4400	41.1
4500	41.4
4600	41.3
4700	41.6
4800	41.9
4900	42.3
5000	42.7
5100	43.0
5200	42.9
5300	43.5
5400	43.6
5500	44.3
5600	44.7
5700	45.0
5800	45.0
5900	45.3
6000	45.9

The antenna factor shall be added to receiver reading in $dB_{\mu}V$ to obtain field strength in $dB_{\mu}V/m$.

10 APPENDIX C Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, Radio, Safety, Environmental and Telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for 1, 2, 15, 18 parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; registered by Industry Canada for electromagnetic emissions, file number IC 2186A-1 for OATS, certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, G-869 for RE measurements above 1 GHz, C-845 for conducted emissions site and T-1606 for conducted emissions at telecommunication ports).

The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing, environmental simulation and calibration (for exact scope please refer to Certificate No. 839.01, 839.03 and 839.04).

Address:	P.O. Box 23, Binyamina 3055001, Israel.
Telephone:	+972 4628 8001
Fax:	+972 4628 8277
e-mail:	mail@hermonlabs.com
website:	www.hermonlabs.com

Person for contact: Mr. Michael Nikishin, EMC&Radio group manager

11 APPENDIX D Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Transmitter tests	
Carrier power conducted at antenna connector	± 1.7 dB
Carrier power radiated (substitution method)	± 4.5 dB
Occupied bandwidth	±8%
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Spurious emissions radiated 30 MHz – 40 GHz (substitution method)	± 4.5 dB
Frequency error	30 – 300 MHz: ± 50.5 Hz (1.68 ppm)
	300 – 1000 MHz: ± 168 Hz (0.56 ppm)
Transient frequency behaviour	187 Hz
	± 13.9 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

12 APPENDIX E

FCC 47CFR part 90: 2019 FCC 47CFR part 2: 2019 ANSI/TIA/EIA-603-E:2016

RSS-119 Issue 12: 2015

Specification references

Private land mobile radio services

Frequency allocations and radio treaty matters; general rules and regulations Land Mobile FM or PM Communications Equipment Measurement and Performance Standards

Land Mobile and Fixed Equipment Equipment Operating in the Frequency Range 27.41-960 $\rm MHz$

13 APPENDIX F Abbreviations and acronyms

А	ampere
AC	alternating current
AM	amplitude modulation
AVRG	average (detector)
BB	broad band
cm	centimeter
dB	decibel
dBm	decibel referred to one milliwatt
dB(μV)	decibel referred to one microvolt
dB(μV/m	n) decibel referred to one microvolt per meter
dB(μA)	decibel referred to one microampere
DC	direct current
EIRP	equivalent isotropically radiated power
ERP	effective radiated power
EUT	equipment under test
F	frequency
GHz	gigahertz
GND	ground
Н	height
HL	Hermon laboratories
Hz	hertz
k	kilo
kHz	kilohertz
LO	local oscillator
m	meter
MHz	megahertz
min	minute
mm	millimeter
ms	millisecond
μs NA	microsecond
NB	not applicable narrow band
OATS	open area test site
Ω	Ohm
QP	quasi-peak
RE	radiated emission
RF	radio frequency
rms	root mean square
Rx	receive
S	second
Т	temperature
Tx	transmit
V	volt

END OF DOCUMENT