

Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel Tel. +972 4628 8001 Fax. +972 4628 8277 E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO:

FCC 47CFR part 15 subpart C § 15.247 (Hybrid) and subpart B, Class B

FOR:

Telematics Wireless Ltd. Light Control Unit Model: LCUN2LUS FCC ID:NTALCUN2L

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Test configuration	5
6.3	Changes made in EUT	5
6.4	Transmitter characteristics	6
7	Transmitter tests according to 47CFR part 15 subpart C	7
7.1	20 dB bandwidth	7
7.2	Carrier frequency separation	10
7.3	Number of hopping frequencies	12
7.4	Average time of occupancy	15
7.5	Peak output power	18
7.6	Peak spectral power density	24
7.7	Field strength of spurious emissions	28
7.8	Band edge radiated emissions	39
7.9	Conducted emissions	41
7.10	Antenna requirements	44
8	Unintentional emissions according to 47CFR part 15 subpart B	45
8.1	Conducted emissions at AC power port	45
8.2	Radiated emission measurements	49
9	APPENDIX A Test equipment and ancillaries used for tests	53
10	APPENDIX B Test laboratory description	54
11	APPENDIX C Test equipment correction factors	55
12	APPENDIX D Measurement uncertainties	57
13	APPENDIX E Specification references	58
14	APPENDIX F Abbreviations and acronyms	58

1 Applicant information

Client name:	Telematics Wireless Ltd.
Address:	26 Hamelacha street, POB 1911, Holon, 5811801, Israel
Telephone:	+972 3557 5700
Fax:	+972 3557 5703
E-mail:	Emzari.Roketlishvili@telematics-wireless.com
Contact name:	Mr. Emzari Roketlishvili

2 Equipment under test attributes

Product name:	Light Control Unit
Product type:	Transceiver
Model(s):	LCUN2LUS
Serial number:	98300
Hardware version:	Rev. D
Software release:	1.0.2-9
Receipt date	01-Feb-19

3 Manufacturer information

Manufacturer name:	Telematics Wireless Ltd.
Address:	26 Hamelacha street, POB 1911, Holon, 5811801, Israel
Telephone:	+972 3557 5700
Fax:	+972 3557 5703
E-Mail:	Emzari.Roketlishvili@telematics-wireless.com
Contact name:	Mr. Emzari Roketlishvili

4 Test details

Project ID:	32272
Location:	Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel
Test started:	21-Mar-19
Test completed:	29-May-19
Test specification(s):	FCC 47CFR part 15 subpart C § 15.247 (Hybrid) and subpart B, Class B

5 Tests summary

est	Status
Transmitter characteristics	
Section 15.247(a)1, 20 dB bandwidth	Pass
Section 15.247(a)1, Frequency separation	Pass
Section 15.247(a)1, Number of hopping frequencies	Pass
Section 15.247(a)1, Average time of occupancy	Pass
Section 15.247(b), Peak output power	Pass
Section 15.247(e), Peak spectral density	Pass
Section 15.247(d), Radiated spurious emissions	Pass
Section 15.247(i), RF exposure	Pass *
Section 15.247(d), Emissions at band edges	Pass
Section 15.207(a), Conducted emission	Pass
Section 15.203, Antenna requirements	Pass
Unintentional emissions	
Section 15.107, Conducted emission at AC power port	Pass
Section 15.109, Radiated emission	Pass

* - Pass, the exhibit to the application of certification is provided

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mrs. E. Pitt, test engineer	29-Mar-19 – 29-May-19	BH
Reviewed by: Mrs. Y. Rapin, technical writer		10-Jun-19	Om
Approved by:	Mr. S. Samokha, technical manager, EMC and Radio	28-Aug-19	Can

6 EUT description

Note: The following data in this clause is provided by the customer and represents his sole responsibility.

6.1 General information

The EUT is a wireless controlling unit installed outside at the top of the light fixture (twist-lock connector) which handles the data collection from the Luminaire and command transfer between the light unit and the street light management system.

The EUT operates in 902-928 MHz frequency range using LoRa modulation with 1kbps bit rate.

6.2 Test configuration

6.3 Changes made in EUT

No changes were implemented in the EUT during the testing.

6.4 Transmitter characteristics

Туре	of equipment										
Stand-alone (Equipment with or without its own control provisions)											
Х	Combined equipm	uipment (Equipment where the radio part is fully integrated within another type of equipment)									
	Plug-in card (Equipment intended for a variety of host systems)										
Inten	Intended use Condition of use										
	fixed	Always at a d									
Х	mobile		ways at a distance more than 20 cm from all people								
	portable	May operate	at a dis	tance clos	er than 2	20 cm to human bo	dy				
Assig	ned frequency rang	le	902-9	28 MHz							
Opera	ating frequency rang	ge	902.3	-927.7 MH	Z						
Mavi	num roted eutrout n		At tra	nsmitter 50	$\Omega RF c$	utput connector		NA	٩		
waxii	num rated output po	ower	Peak	output pov	ver	· ·		17	.05 dl	Bm	
			Х	No							
				-		continuous varia	able				
ls tra	nsmitter output pow	ver variable?				stepped variabl		tepsize		dB	
				Yes	minimu	Im RF power				dBm	
						maximum RF power			dBm		
Anter	na connection										
	unique coupling	sta	ndard c	onnector	х	integral	Х			ry RF connector	
				without temporary RF connection				orary RF connector			
Anter	nna/s technical char	acteristics									
Туре		Manufa	cturer	urer Model number Gain							
Printe	ed	Telema	tics Wir	Wireless NA 0 dBi							
Trans	smitter aggregate da	nta rate/s		1 kbp	S						
Туре	of modulation			LoRa							
Modu	ılating test signal (b	aseband)		PRBS)						
Trans	smitter power sourc	e									
		ominal rated vo		VD	-	Battery type					
		ominal rated vo		VD		-					
Х	AC mains	ominal rated vo	ltage	110	VAC	Frequency	60	Hz			
Com	non power source f	or transmitter an	d recei			X yes				no	
Spread spectrum technique used				Frequency hopping (FHSS)							
				Digital transmission system (DTS) X Hybrid							
X Hybrid Spread spectrum parameters for transmitters tested per FCC 15.247 only											
Sprea			ters te		CC 15.2	47 only					
FHSS		mber of hops		8-128 138.458	/U-7						
FHSS Bandwidth per hop Min. separation of hops				200.3 kH							
		aration of hops		200.3 KH	4						

Test specification: Section 15.247(a)1, 20 dB bandwidth							
Test procedure:	ANSI C63.10, section 7.8.7						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	29-Mar-19	verdict:	FA33				
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz				
Remarks:			·				

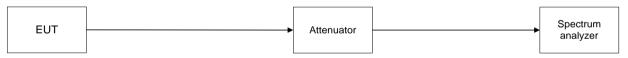
7 Transmitter tests according to 47CFR part 15 subpart C

7.1 20 dB bandwidth

7.1.1 General

This test was performed to measure 20 dB bandwidth of the transmitter hopping channel. Specification test limits are given in Table 7.1.1.

Table 7.1.1 The 20 dB bandwidth limits


Assigned frequency, MHz	Maximum bandwidth, kHz	Modulation envelope reference points*, dBc	
902.0 – 928.0	250	20	

* - Modulation envelope reference points provided in terms of attenuation below the peak of modulated carrier.

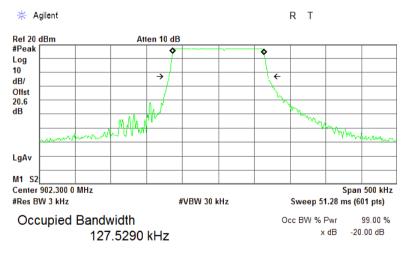
7.1.2 Test procedure

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- 7.1.2.2 The EUT was set to transmit modulated carrier at maximum data rate.
- **7.1.2.3** The transmitter bandwidth was measured with spectrum an analyzer as frequency delta between reference points on modulation envelope and provided in Table 7.1.2 and associated plot.
- 7.1.2.4 The test was repeated for each data rate and each modulation format.

Figure 7.1.1 The 20 dB bandwidth test setup

Test specification: Section 15.247(a)1, 20 dB bandwidth						
Test procedure:	ANSI C63.10, section 7.8.7					
Test mode:	Compliance	Verdict: PASS				
Date(s):	29-Mar-19	verdict.	FA33			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz			
Remarks:						

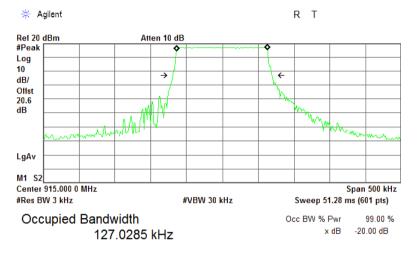
Table 7.1.2 The 20 dB bandwidth test results


ASSIGNED FREQUEN DETECTOR USED: SWEEP TIME: VIDEO BANDWIDTH: MODULATION ENVEL FREQUENCY HOPPIN	OPE REFEREN	ICE POINTS:	Peak Auto ≥ RB\	dBc			
Carrier frequency, MHz	Type of modulation	Symbol rate, Msymbols/s	20 dB bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict	
902.3	LoRa	1	NA	137.857	250	-112.143	Pass
915.0	LoRa	1	NA	138.065	250	-111.935	Pass
927.7	LoRa	1	NA	138.458	250	-111.542	Pass

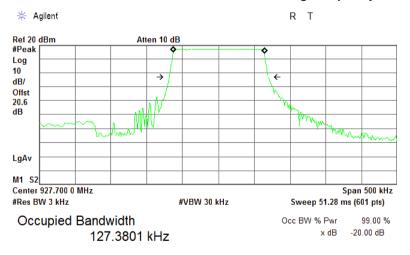
Reference numbers of test equipment used

HL 3818	HL 3440	HL 3433			
	an ia nivan in /				

Full description is given in Appendix A.



Transmit Freq Error 166.410 Hz x dB Bandwidth 137.857 kHz



Test specification:	Section 15.247(a)1, 20 dB bandwidth				
Test procedure:	ANSI C63.10, section 7.8.7				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	29-Mar-19	verdict.	FA33		
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz		
Remarks:					

Plot 7.1.2 The 20 dB bandwidth test result at mid frequency

Transmit Freq Error-278.666 Hzx dB Bandwidth138.065 kHz

Plot 7.1.3 The 20 dB bandwidth test result at high frequency

Transmit Freq Error618.636 Hzx dB Bandwidth138.458 kHz

Test specification:	specification: Section 15.247(a)1, Frequency separation					
Test procedure:	ANSI C63.10, section 7.8.2					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	29-Mar-19	veraici.	FA33			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 50 Hz			
Remarks:						

7.2 Carrier frequency separation

7.2.1 General

This test was performed to measure frequency separation between the peaks of adjacent channels. Specification test limits are given in Table 7.2.1.

Table 7.2.1	Carrier	frequency	separation limits
-------------	---------	-----------	-------------------

Assigned frequency range, MHz	Carrier frequency separation
902.0 – 928.0	25 kHz or 20 dB bandwidth of the hopping channel, whichever is greater

7.2.2 Test procedure

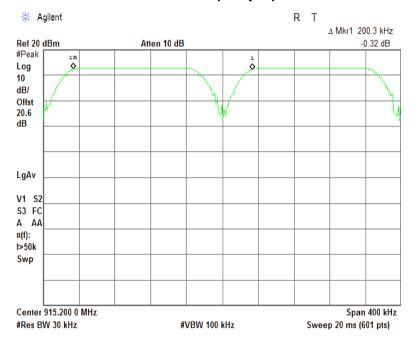
- **7.2.2.1** The EUT was set up as shown in Figure 7.2.1, energized with frequency hopping function enabled and its proper operation was checked.
- **7.2.2.2** The spectrum analyzer span was set to capture the carrier frequency and both of adjacent channels, the lower and the higher. The resolution bandwidth was set wider than 1 % of the frequency span.
- **7.2.2.3** The spectrum analyzer was set in max hold mode and allowed trace to stabilize.
- **7.2.2.4** The frequency separation between the peaks of adjacent channels was measured as provided in Table 7.2.2 and associated plots.

Figure 7.2.1 Carrier frequency separation test setup

Test specification: Section 15.247(a)1, Frequency separation					
Test procedure:	ANSI C63.10, section 7.8.2				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	29-Mar-19	verdict.	FA33		
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 50 Hz		
Remarks:					

Table 7.2.2 Carrier frequency separation test results

ASSIGNED FREQUENCY: MODULATION: BIT RATE: DETECTOR USED: FREQUENCY HOPPING: 20 dB BANDWIDTH:	902.0 – 928.0 MHz LoRa 1 kbps Peak Enabled 138.458 kHz		
Carrier frequency separation, kHz	Limit, kHz	Margin*	Verdict
200.3	138.458	61.842	Pass


* - Margin = Carrier frequency separation – specification limit.

Reference numbers of test equipment used

HL 3818	HL 3440	HL 3433			

Full description is given in Appendix A.

ſ

Plot 7.2.1 Carrier frequency separation

Test specification:	cification: Section 15.247(a)1, Number of hopping frequencies					
Test procedure:	ANSI C63.10, section 7.8.3					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	29-Mar-19	veraici.	FA33			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz			
Remarks:						

7.3 Number of hopping frequencies

7.3.1 General

This test was performed to calculate the number of hopping frequencies used by the EUT. Specification test limits are given in Table 7.3.1.

Table 7.3.1 Minimum number	of hopping frequencies
----------------------------	------------------------

Assigned frequency range, MHz	Number of hopping frequencies
902.0 – 928.0	50 (if the 20 dB bandwidth is less than 250 kHz) 25 (if the 20 dB bandwidth is 250 kHz or greater)

7.3.2 Test procedure

- **7.3.2.1** The EUT was set up as shown in Figure 7.3.1, energized with frequency hopping function enabled and its proper operation was checked.
- **7.3.2.2** Initially the spectrum analyzer span was set equal to frequency band of operation and the resolution bandwidth was set wider than 1 % of the frequency span. If the separate hopping channels were not clearly resolved the frequency band of operation was broken to sections and the resolution bandwidth was set wider than 1 % of the frequency span of each section.
- **7.3.2.3** The spectrum analyzer was set in max hold mode and allowed trace to stabilize.
- 7.3.2.4 The number of frequency hopping channels was calculated as provided in Table 7.3.2 and associated plots.

Figure 7.3.1 Hopping frequencies test setup

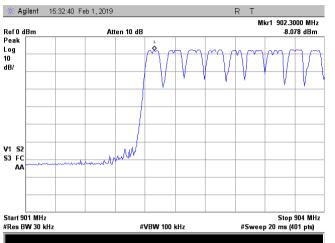
Table 7.3.2 Hopping frequencies test results

Maximum number of hopping frequencies	Minimum number of hopping frequencies	Margin	Verdict
FREQUENCY HOPPING:	Enabled		_
VIDEO BANDWIDTH:	≥ RBW		
DETECTOR USED:	Peak		
BIT RATE:	1 kbps		
MODULATION:	LoRa		
ASSIGNED FREQUENCY:	902.0 – 928.0 MHz		

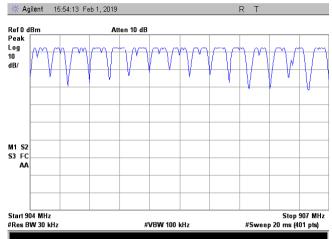
128 NA for hybrid mode NA

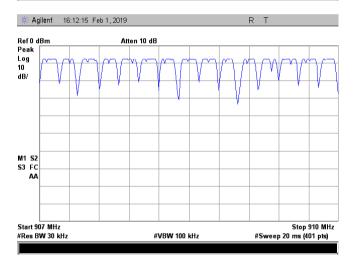
NOTE: Number of hopping frequencies is 8 to 128 as stated in section 6.4 of this report.

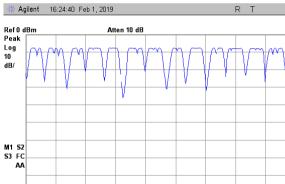
Reference numbers of test equipment used

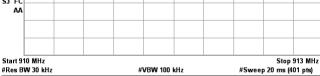

	HL 2909	HL 3440	HL 3818	HL 3433					
1	Full description is given in Appendix A								

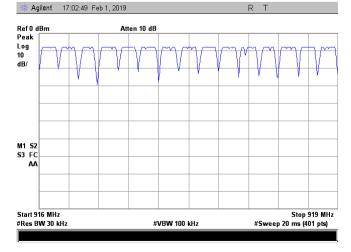
Full description is given in Appendix A.


Pass


Test specification:	Section 15.247(a)1, Number of hopping frequencies						
Test procedure:	ANSI C63.10, section 7.8.3						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	29-Mar-19	verdict:	PASS				
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz				
Remarks:	· · · ·						


Plot 7.3.1 Number of hopping frequencies




R Т

🔆 Agilent 16:43:07 Feb 1, 2019 R Ref0 dBm Atten 10 dB Peak Log 10 dB/ M1 S2 S3 FC AA Start 913 MHz Stop 916 MHz #VBW 100 kHz #Sweep 20 ms (401 pts) #Res BW 30 kHz



Test specification:	Section 15.247(a)1, Number of hopping frequencies						
Test procedure:	ANSI C63.10, section 7.8.3						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	29-Mar-19	verdict:	PA33				
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz				
Remarks:	· · ·						

#VBW 100 kHz

Stop 928.000 0 MHz #Sweep 20 ms (401 pts)

Start 925.000 0 MHz #Res BW 30 kHz

Test specification:	n: Section 15.247(a)1, Average time of occupancy						
Test procedure:	ANSI C63.10, section 7.8.4						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	29-May-19	verdict.	FA33				
Temperature: 24.1 °C	Relative Humidity: 47 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz				
Remarks:							

7.4 Average time of occupancy

7.4.1 General

This test was performed to calculate the average time of occupancy (dwell time) on any frequency channel of the EUT. Specification test limits are given in Table 7.4.1.

Table 7.4.1 Average time of occupancy limits	Table 7.4.1	Average	time of	occupand	y limits
--	-------------	---------	---------	----------	----------

Assigned frequency range, MHz	Maximum average time of occupancy, s	Investigated period, s	Number of hopping frequencies
902.0 - 928.0	0.4	20.0	≥ 50
902.0 – 928.0	0.4	10.0	< 50

7.4.2 Test procedure

- **7.4.2.1** The EUT was set up as shown in Figure 7.4.1, energized with frequency hopping function enabled and its proper operation was checked.
- 7.4.2.2 The spectrum analyzer span was set to zero centered on a hopping channel.
- 7.4.2.3 The single transmission duration and period were measured with oscilloscope.
- **7.4.2.4** The average time of occupancy was calculated as the single transmission time multiplied by the investigated period and divided by the single transmission period.
- 7.4.2.5 The test was repeated at each data rate and modulation type as provided in Table 7.4.2 and associated plots.

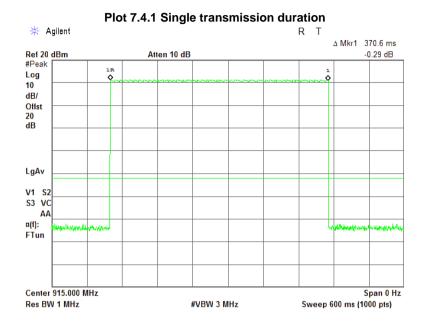
Figure 7.4.1 Average time of occupancy test setup

Test specification:	specification: Section 15.247(a)1, Average time of occupancy						
Test procedure:	ANSI C63.10, section 7.8.4						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	29-May-19	verdict.	FA33				
Temperature: 24.1 °C	Relative Humidity: 47 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz				
Remarks:							

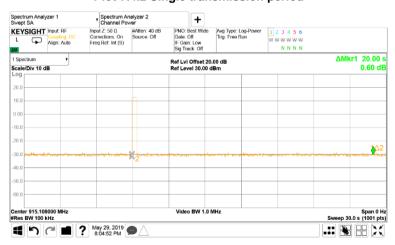
Table 7.4.2 Average time of occupancy test results

ASSIGNED FREQUE MODULATION: DETECTOR USED: RESOLUTION BAND VIDEO BANDWIDTH:	WIDTH:	902- LoRa Aver ≥ 1% ≥ RE					
Carrier frequency, MHz	Single transmission duration, s	Single transmission period, s	Average time of occupancy*, s	Limit, s	Margin, s**	Verdict	
Number of hopping	channels >50 (50-128 cl	nannels)					
915.108	0.3706	> 20	0.3706	0.4	-0.0294	Pass	
Number of hopping channels <50 (8 -49 channels)							
915.108	0.3706	> 10	0.3706	0.4	-0.0294	Pass	

* - Average time of occupancy = (Single transmission duration × Investigated period) / (Single transmission period × number of hopping channels). ** - Margin = Average time of occupancy – specification limit.


Reference numbers of test equipment used

HL 5112	HL 5174	HL 5376					


Full description is given in Appendix A.

Test specification:	Section 15.247(a)1, Average time of occupancy						
Test procedure:	ANSI C63.10, section 7.8.4						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	29-May-19	verdict.	FA35				
Temperature: 24.1 °C	Relative Humidity: 47 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz				
Remarks:							

Plot 7.4.2 Single transmission period

Spectrum Analy Swept SA	/zer 1	Spectrum And Channel Pow	alyzer 2 er	+				
	Input: RF Coupling: DC Align: Auto		#Atten: 40 dB Source: Off	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Trig: Free Run	1 2 3 4 5 6 W \ W W W W W N N N N		
1 Spectrum Scale/Div 10 d	r B			Ref Lvi Offset 20 Ref Level 30.00 c			ΔMI	(r1 10.00 -0.27 d
Log								
10.0			—					
0.00								
-10.0								
-20.0					Δ1Δ			
-30.0 matter de	فيحدمن وفاحد مهدماه	his way on a star of a star of a star of a star of	2 anno	and the second sec	and a subscription of the	Z 	hand the second s	and the second
-40.0								
-50.0								
-60.0								
Center 915.108 #Res BW 100 I				Video BW 1.0	MHz		Sweep 3	Span 0 0.0 s (1001 pt
4 7	۹ 🔳 ?	May 29, 2019 8:07:43 PM						

HERMON LABORATORIES

Test specification:	Section 15.247(b)2, Peak output power					
Test procedure:	ANSI C63.10, section 11.9.2.2.4	ļ				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	28-May-19	verdict.	FA33			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz			
Remarks:						

7.5 Peak output power

7.5.1 General

This test was performed to measure the maximum peak output power at RF antenna connector. Specification test limits are given in Table 7.5.1.

Table 7.5.1	Peak	output	power	limits
-------------	------	--------	-------	--------

Assigned frequency range,	Maximum antenna gain,	Peak outp	ut power*
MHz	dBi	W	dBm
902.0 - 928.0	6.0	0.25	24.0

*- If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power limit shall be reduced below the stated value as follows:

by the amount in dB that the directional gain of antenna exceeds 6 dBi.

7.5.2 **Test procedure**

- 7.5.2.1 The EUT was set up as shown in Figure 7.5.1, energized and its proper operation was checked.
- 7.5.2.2 The EUT was adjusted to produce maximum available for end user RF output power.
- 7.5.2.3 The resolution bandwidth of spectrum analyzer was set 1-5% of the occupied bandwidth of the EUT and the maximum average output power was measured as provided in Table 7.5.2 and associated plots.

Figure 7.5.1 Peak output power test setup

Test specification:	Section 15.247(b)2, Peak output power							
Test procedure:	ANSI C63.10, section 11.9.2.2	ANSI C63.10, section 11.9.2.2.4						
Test mode:	Compliance	Verdict:	PASS					
Date(s):	28-May-19	verdict.	FA35					
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz					
Remarks:	· · ·		·					

Table 7.5.2 Peak output power test results

ASSIGNED FREQU MODULATION: DETECTOR USED BIT RATE:		902-928 MHz LoRa RMS with power averaging 1 kbps						
Carrier frequency, MHz	Spectrum analyzer reading, dBm	20 dB BW kHz						
902.3	9.69	137.857	7.30	16.99	24.0	-7.01	Pass	
916.0	9.71	138.065 7.30 17.01 24.0 -6.99						
927.7	9.75	138.458	7.30	17.05	24.0	-6.95	Pass	

* - Margin = Peak output power – specification limit ** - Peak output power = SA reading + DC factor

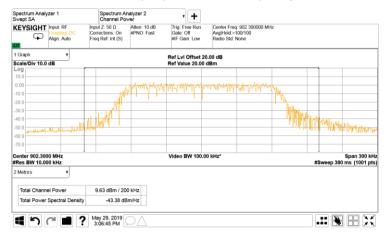
Table 7.5.3 Average factor calculation

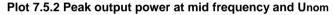
Transmis	sion pulse	Transmis	sion burst	Transmission train	DC factor, dB
Duration, ms	Period, ms	Duration, ms	Period, ms	duration, ms	DC factor, ub
383.3	2058	NA	NA	NA	7.3

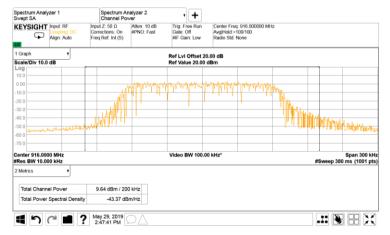
*- Duty cycle factor was calculated as follows:

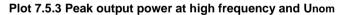
DC factor=10LOG (1/DC), where DC=TXon/TXon+TXoff

Reference numbers of test equipment used

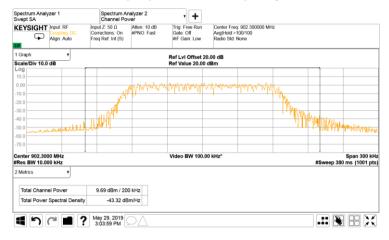

		<u> </u>					
HL 5112	HL 5174	HL 5371					
	•	•	•	•	•	•	-


Full description is given in Appendix A.

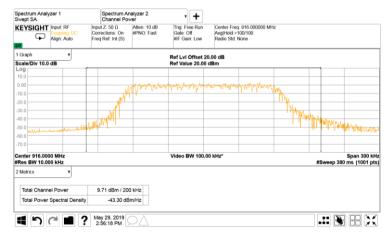



Test specification:	Section 15.247(b)2, Peak	Section 15.247(b)2, Peak output power							
Test procedure:	ANSI C63.10, section 11.9.2.2	.4							
Test mode:	Compliance	Verdict: PASS							
Date(s):	28-May-19	veraici.	FA33						
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz						
Remarks:	-								

Plot 7.5.1 Peak output power at low frequency and Unom

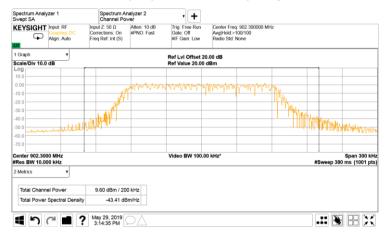


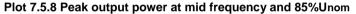
Spectrum Analy Swept SA	zer 1	Spectrum An Channel Pow	alyzer 2 /er	· +						
	Input: RF Coupling: DC Align: Auto		Atten: 10 dB #PNO: Fast	Trig: Free Ru Gate: Off #IF Gain: Low	Avg Hold:>1		łz			
1 Graph Scale/Div 10.0	dB			Ref Lvi Offse Ref Value 20.						
10.0	ſ									
0.00			win which	adamphinaha	and the second second	hr with the	Ղո			
-10.0			1		1 41 1	1	Mr.			
30.0					1		1 Million			
40.0	6.1011						1.1	łſm	Martin	
-50.0 -60.0	LULUL	Cryanita .					et hit	M M H	ių ji tulį	di Maleria
-70.0										
center 927.700				Video BW 10	0.00 kHz*				1	Span 300 I
Res BW 10.00	00 kHz							#	Sweep 380	0 ms (1001 p
2 11100103										
Total Channe	el Power	9.72 dBm / 200	kHz							
Total Power	Spectral Density	-43.29 dBr	n/Hz							
-		May 29, 2019 4:39:54 PM								
									.: 🔖	

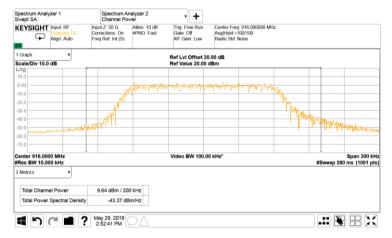


Test specification:	Section 15.247(b)2, Peak output power							
Test procedure:	ANSI C63.10, section 11.9.2.2.4	1						
Test mode:	Compliance	Verdict:	PASS					
Date(s):	28-May-19	verdict.	FA33					
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz					
Remarks:	-	·	·					

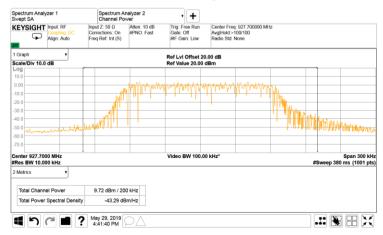
Plot 7.5.4 Peak output power at low frequency and 115%Unom

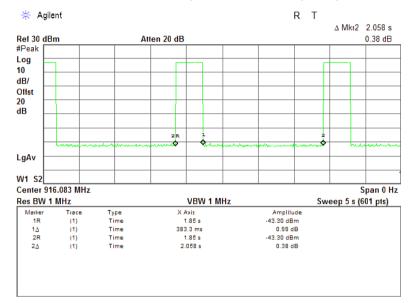

Plot 7.5.6 Peak output power at high frequency and 115%Unom


Spectrum Analy Swept SA	zer 1	Spectrum And Channel Pow	alyzer 2 er	• +						
	Input: RF Coupling: DC Align: Auto		Atten: 10 dB #PNO: Fast	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 9 Avg Hold:>100 Radio Std: Nor					
1 Graph Scale/Div 10.0	dB			Ref Lvl Offset 2 Ref Value 20.00						
Log	Í									
10.0						A 4- A		-		
-10.0		M	MPYMAN	ALL	March 1 and 1	A WALLAND AN				
-10.0		- III	L		יי או יי					
-20.0							Mar.			
40.0		and the						4		
-50.0	ullille	A MACINI -						10.	1. Hills	Nikithada
-60.0	WIN ALLING	argentine in the						1.1.1	and chôc i	in danda kudu
-70.0										
Center 927.700				Video BW 100.0						Span 300 l
Fenter 927.700				VIDEO BW 100.0	JU KHZ"			#Sw	veep 380	ms (1001 p
2 Metrics										
Total Channe	el Power	9.75 dBm / 200	kHz							
Total Power	Spectral Density	-43.26 dBr	n/Hz							
Total Format	opeca a benoty	40.20 00.								
-		May 29, 2019 4:43:49 PM	> ^							



Test specification:	Section 15.247(b)2, Peak output power						
Test procedure:	ANSI C63.10, section 11.9.2.2.4						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	28-May-19	verdict.	FA33				
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz				
Remarks:							


Plot 7.5.7 Peak output power at low frequency and 85%Unom


Plot 7.5.9 Peak output power at high frequency and 85%Unom

Test specification:	Section 15.247(b)2, Peak output power							
Test procedure:	ANSI C63.10, section 11.9.2.2.4	1						
Test mode:	Compliance	Verdict:	PASS					
Date(s):	28-May-19	verdict.	FA33					
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz					
Remarks:			·					

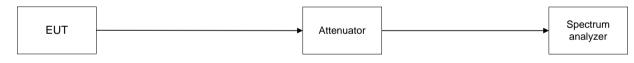
Plot 7.5.10 Transmission pulse duration and pulse period

Test specification:	Section 15.247(e), Peak power density			
Test procedure:	ANSI C63.10, section 11.10.5			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	29-May-19	verdict.	FA33	
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz	
Remarks:				

7.6 Peak spectral power density

7.6.1 General

This test was performed to measure the peak spectral power density radiated by the transmitter RF antenna. Specification test limits are given in Table 7.6.1.


Table 7.6.1 Peak s	pectral powe	r density limits
Tuble Tierri Cull o	pooliai pono	aonony minito

Assigned frequency range, MHz	Measurement bandwidth, kHz	Peak spectral power density, dBm
902.0 - 928.0	3.0	8.0

7.6.2 Test procedure for field strength measurements

- 7.6.2.1 The EUT was set up as shown in Figure 7.6.1, energized and its proper operation was checked.
- 7.6.2.2 The EUT was adjusted to produce maximum available to end user RF output power.
- **7.6.2.3** The frequency span of spectrum analyzer was set to capture the entire 6 dB band of the transmitter, in averaging mode with resolution bandwidth set to 100.0 kHz, video bandwidth wider than resolution bandwidth, sweep time and sufficient number of sweeps was allowed for trace stabilization.
- 7.6.2.4 The peak spectral power density was measured as provided in Table 7.6.2 and associated plots.
- 7.6.2.5 If measured value exceeds required limit, then RBW was reduced (but no less than 3 kHz) and repeated with new RBW.
- 7.6.2.6 The duty cycle factor was added to the measured PSD to compute the average PSD during the actual transmission time.

Figure 7.6.1 Peak spectral power density test setup

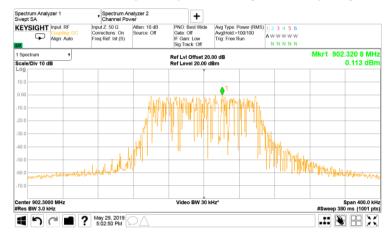
Test specification:	Section 15.247(e), Peak power density			
Test procedure:	ANSI C63.10, section 11.10.5			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	29-May-19	veraici.	FA33	
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz	
Remarks:				

Table 7.6.2 Peak spectral power density test results

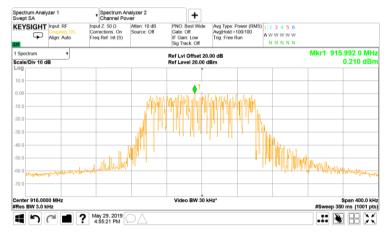
ASSIGNED FREQU MODULATION: BIT RATE: DETECTOR USED	:	902-928 MHz LoRa 1 kbps RMS with power averaging					
RESOLUTION BAN		3 kł					
VIDEO BANDWIDT	Ή:	30	kHz				
Carrier frequency, MHz	Spectrum analyzer reading, dBm	External attenuation, dB	Duty cycle factor, dB	Peak power density, dB(mW/3 kHz)**	Limit, dBm	Margin*, dB	Verdict
902.320	0.11	including	7.3	7.41	8.0	-0.59	Pass
915.992	0.21	including	7.3	7.51	8.0	-0.49	Pass
927.692	0.51	including	7.3	7.81	8.0	-0.19	Pass

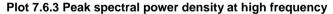
* - Margin = Peak power density – specification limit
 ** - PSD = SA reading + DC factor

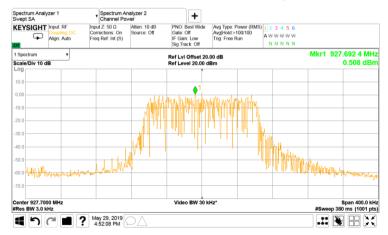
Reference numbers of test equipment used

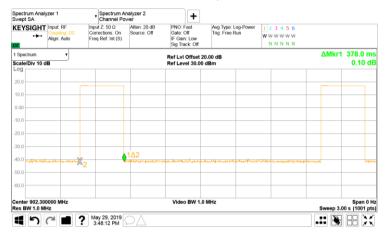

HL 5112	HL 5174	HL 5371					

Full description is given in Appendix A.




Test specification:	Section 15.247(e), Peak power density			
Test procedure:	ANSI C63.10, section 11.10.5			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	29-May-19	verdict.	FA35	
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz	
Remarks:	-			


Plot 7.6.1 Peak spectral power density at low frequency



Test specification:	Section 15.247(e), Peak power density			
Test procedure:	ANSI C63.10, section 11.10.5			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	29-May-19	verdict.	FA33	
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz	
Remarks:	-			

Plot 7.6.4 Transmitter pulse duration

Plot 7.6.5 Transmitter pulse period

Spectrum Analy Swept SA		Spectrum Ar Channel Po	wer	+				
KEYSIGHT	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corrections: On Freq Ref: Int (S)	Atten: 20 dB Source: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Trig: Free Run	1 2 3 4 5 6 W W W W W W N N N N N		
1 Spectrum	•			Ref Lvi Offset 20	00 dB		ΔMkr	1 2.058
Scale/Div 10 d	в			Ref Level 30.00 d				0.65 di
Log								
20.0								
10.0								
0.00								
-10.0								
-20.0								
-30.0								
-40.0 - Monale	and a start of the	2	and the second starting	malline Ashaaline	and an	Children manufactures	1Δ2	-ph
-50.0		<u> </u>						
-60.0								
Center 902.300 Res BW 1.0 MH				Video BW 1.0	MHz		Sweep 3.00	Span 0 H s (1001 pt
1 5	? 🗖 🖒	May 29, 2019 3:48:54 PM						

Test specification:	Section 15.247(d), Radiated spurious emissions			
Test procedure:	ANSI C63.10, sections 6.5, 6.6			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	15-Mar-19	verdict.	FA35	
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz	
Remarks:				

7.7 Field strength of spurious emissions

7.7.1 General

This test was performed to measure field strength of spurious emissions from the EUT. Specification test limits are given in Table 7.7.1.

Frequency, MHz	Field strength at 3 m within restricted bands, dB(μV/m)***			Attenuation of field strength of spurious versus
	Peak	Quasi Peak Average		carrier outside restricted bands, dBc***
0.009 - 0.090	148.5 – 128.5	NA	128.5 - 108.5**	
0.090 - 0.110	NA	108.5 - 106.8**	NA	
0.110 - 0.490	126.8 – 113.8	NA	106.8 - 93.8**	
0.490 - 1.705	NA	73.8 - 63.0**		
1.705 - 30.0*		69.5		20.0
30 - 88		40.0	NLA	30.0
88 – 216		43.5	NA	
216 – 960		46.0		
960 - 1000		54.0		
1000 – 10 th harmonic	74.0	NA	54.0	

Table 7.7.1 Radiated spurious emissions limits

*- The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows:

 $Lim_{S2} = Lim_{S1} + 40 \log (S_1/S_2),$

where S_1 and S_2 - standard defined and test distance respectively in meters.

**- The limit decreases linearly with the logarithm of frequency.

*** - The field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.

7.7.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.7.2.1 The EUT was set up as shown in Figure 7.7.1, energized and the performance check was conducted.
- **7.7.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360^o and the measuring antenna was rotated around its vertical axis.
- 7.7.2.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

7.7.3 Test procedure for spurious emission field strength measurements above 30 MHz

- **7.7.3.1** The EUT was set up as shown in Figure 7.7.2 / Figure 7.7.3, energized and the performance check was conducted.
- **7.7.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- 7.7.3.3 The worst test results (the lowest margins) were recorded and shown in the associated plots.

Test specification:	Section 15.247(d), Radiate	Section 15.247(d), Radiated spurious emissions				
Test procedure:	ANSI C63.10, sections 6.5, 6.6	6				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	15-Mar-19	veraici.	FA33			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz			
Remarks:						

Figure 7.7.1 Setup for spurious emission field strength measurements below 30 MHz

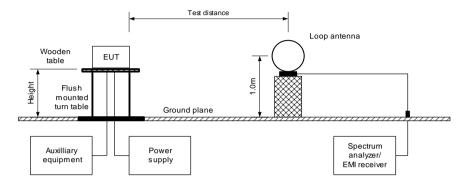


Figure 7.7.2 Setup for spurious emission field strength measurements from 30 to 1000 MHz

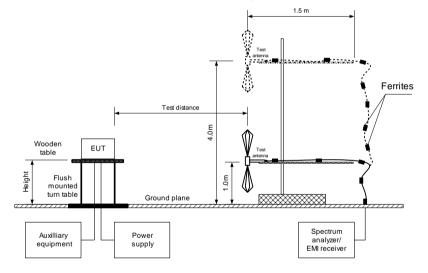
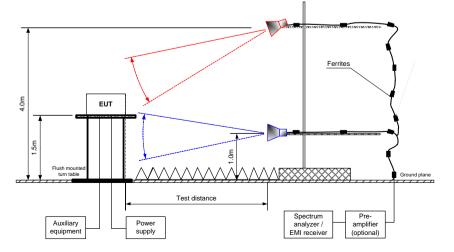



Figure 7.7.3 Setup for spurious emission field strength measurements above1000 MHz

Test specification:	Section 15.247(d), Radiate	Section 15.247(d), Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6						
Test mode:	Compliance	Vordict	DASS				
Date(s):	15-Mar-19	Verdict: PASS					
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz				
Remarks:	-						

Table 7.7.2 Field strength of emissions outside restricted bands

	ASSIGNED I	REQUENCY:			90	02.0 – 928.0 Mł	Ηz			
	INVESTIGAT	TED FREQUE	NCY RANGE:		0.	009 – 9500 MH	lz			
	TEST DISTA	NCE:			3	m				
	MODULATIC	DN:			Lo	oRa				
	FREQUENC	Y HOPPING:			Di	isabled				
	TRANSMITT	ER OUTPUT F	POWER SETT	FINGS:	Μ	aximum				
D	ETECTOR L	JSED:			R	MS with max he	bld			
	TEST ANTE	NNA TYPE:			Ad	ctive loop (9 kH	z – 30 MHz)			
					Bi	conilog (30 MH	z – 1000 MHz)			
					D	ouble ridged gu	ide (above 1000) MHz)		
	Frequency, MHz	Field strength of spurious, dB(µV/m)	Antenna polarization	Antenna height, m	Azimuth, degrees*	Field strength of carrier, dB(µV/m)	Attenuation below carrier, dBc	Limit, dBc	Margin, dB**	Verdio
	Low carrier	frequency								
	1804.6	43.90	Vertical	1.8	33		70.70		40.70	

1804.0	43.90	vertical	1.0			70.70		40.70	
6316.1	58.73	Vertical	2.6	-81	114.6	55.87	30.0	25.87	Pass
7218.4	51.70	Vertical	1.8	35		62.90		32.90	
Mid carrier f	requency								
1830.0	44.34	Horizontal	1.3	-65		69.96		39.96	
5490.0	47.01	Vertical	2.1	-76	114.3	67.29	30.0	37.29	Pass
6405.0	50.17	Vertical	1.5	-89		64.13		34.13	
High carrier	frequency								
1855.4	48.90	Vertical	2.1	-101		64.40		34.40	
5566.2	48.05	Vertical	2.3.	-89	113.3	65.25	30.0	35.25	Pass
6493.9	50.38	Vertical	2.9	-76	113.3	62.92	30.0	32.92	Pass
9277.0	49.17	Vertical	2.4	-88]	64.13]	34.13	

*- EUT front panel refers to 0 degrees position of turntable.
**- Margin = Attenuation below carrier – specification limit.

Test specification:	Section 15.247(d), Radiate	Section 15.247(d), Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.	6					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	15-Mar-19	verdict:	PASS				
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz				
Remarks:	-						

Table 7.7.3 Field strength of spurious emissions above 1 GHz within restricted bands

ASSIGNED INVESTIGA TEST DISTA MODULATIO FREQUENC TRANSMITT DETECTOR RESOLUTIO TEST ANTE	TED FREQU ANCE: DN: Y HOPPINO TER OUTPU USED: DN BANDWI	JENCY RAI G: JT POWER IDTH:		5:	1000 – 9 3 m LoRa Disableo Maximu Peak 1 MHz	-				
F	Ante	enna	Azimuth Peak field strength Average field strength					ngth		
Frequency, MHz	Polarization	Height, m	Azimuth, degrees*	Measured, dB(μV/m)	Limit, dB(µV/m)	Margin, dB**	Measured, dB(μV/m)	Limit, dB(µV/m)	Margin, dB**	Verdict
Low carrier	frequency									
2706.9	Vertical	1.5	-130	47.22	74.00	-26.78	42.52	54.00	-11.48	
4511.5	Vertical	1.4	-112	44.17	74.00	-29.83	40.83	54.00	-13.17	Dees
8120.7	Vertical	1.5	-80	56.23	74.00	-17.77	51.48	54.00	-2.52	Pass
9023.0	Vertical	1.6	-81	46.35	74.00	-27.65	42.16	54.00	-11.84	
Mid carrier	frequency									
2745	Vertical	2.9	86	46.77	74.00	-27.23	42.11	54.00	-11.89	
4575	Vertical	2.3	4	45.73	74.00	-28.27	39.83	54.00	-14.17	
7320	Vertical	2.6	-130	55.06	74.00	-18.94	50.34	54.00	-3.66	Pass
8235	Vertical	1.5	-88	54.85	74.00	-19.15	49.09	54.00	-4.91	
9150	Vertical	2.3	35	50.44	74.00	-23.56	45.58	54.00	-8.42	
High carrier frequency										
2783.1	Vertical	2.4	-88	51.55	74.00	-22.45	47.29	54.00	-6.71	
4638.5	Vertical	2.6	-86	43.87	74.00	-30.13	38.14	54.00	-15.86	Pass
7421.6	Vertical	2.3	-118	56.86	74.00	-17.14	52.09	54.00	-1.91	1 435
8349.3	Vertical	2.8	-65	49.16	74.00	-24.84	43.86	54.00	-10.14	

* - EUT front panel refers to 0 degrees position of turntable.
** - Margin = Measured field strength - specification limit.

Test specification:	Section 15.247(d), Radiat	Section 15.247(d), Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.	6					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	15-Mar-19	verdict:	PA33				
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz				
Remarks:	· · ·						

Table 7.7.4 Field strength of spurious emissions below 1 GHz within restricted bands

Frequency, Peak	Quasi-peak		Antenna	Antenna	Turn-table	
FREQUENCY HOPPING):	Disabled	-	,		
		Biconilog	(30 MHz – 10	00 MHz)		
TEST ANTENNA TYPE:		Active loc	op (9 kHz – 30	MHz)		
VIDEO BANDWIDTH:		> Resolut	ion bandwidth	1		
		(30 MHz – 100	,		
		`	150 kHz – 30 l	,		
RESOLUTION BANDWI	DTH:	0.2 kHz (9	9 kHz – 150 kł	- z)		
TRANSMITTER OUTPU	T POWER SETTINGS:	Maximum	1			
BIT RATE:		1 kbps				
MODULATING SIGNAL:		PRBS				
MODULATION:		LORA				
TEST DISTANCE:		3 m				
INVESTIGATED FREQU	JENCY RANGE:	0.009 – 1	000 MHz			
ASSIGNED FREQUENC	SY:	902.0 – 9	28.0 MHz			

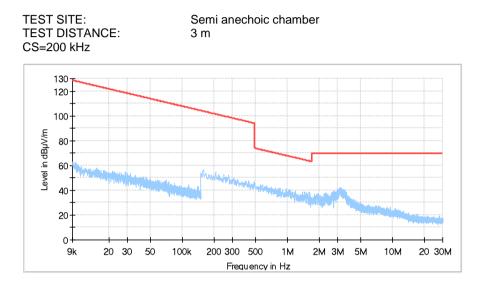
Frequency, MHz	Peak emission, dB(μV/m)	Qua Measured emission, dB(μV/m)	asi-peak Limit, dB(μV/m)	Margin, dB*	Antenna polarization	Antenna height, m	Turn-table position**, degrees	Verdict
		1	No signals wer	e found				Pass

* - Margin = Measured emission - specification limit.
** - EUT front panel refer to 0 degrees position of turntable.

Table 7.7.5 Restricted bands according to FCC section 15.205

MHz	MHz	MHz	MHz	MHz	GHz
0.09 - 0.11	8.37625 - 8.38675	73 - 74.6	399.9 - 410	2690 - 2900	10.6 - 12.7
0.495 - 0.505	8.41425 - 8.41475	74.8 - 75.2	608 - 614	3260 - 3267	13.25 - 13.4
2.1735 - 2.1905	12.29 - 12.293	108 - 121.94	960 - 1240	3332 - 3339	14.47 - 14.5
4.125 - 4.128	12.51975 - 12.52025	123 - 138	1300 - 1427	3345.8 - 3358	15.35 - 16.2
4.17725 - 4.17775	12.57675 - 12.57725	149.9 - 150.05	1435 - 1626.5	3600 - 4400	17.7 - 21.4
4.20725 - 4.20775	13.36 - 13.41	156.52475 - 156.52525	1645.5 - 1646.5	4500 - 5150	22.01 - 23.12
6.215 - 6.218	16.42 - 16.423	156.7 - 156.9	1660 - 1710	5350 - 5460	23.6 - 24
6.26775 - 6.26825	16.69475 - 16.69525	162.0125 - 167.17	1718.8 - 1722.2	7250 - 7750	31.2 - 31.8
6.31175 - 6.31225	16.80425 - 16.80475	167.72 - 173.2	2200 - 2300	8025 - 8500	36.43 - 36.5
8.291 - 8.294	25.5 - 25.67	240 - 285	2310 - 2390	9000 - 9200	Above 38.6
8.362 - 8.366	37.5 - 38.25	322 - 335.4	2483.5 - 2500	9300 - 9500	AD0ve 30.0

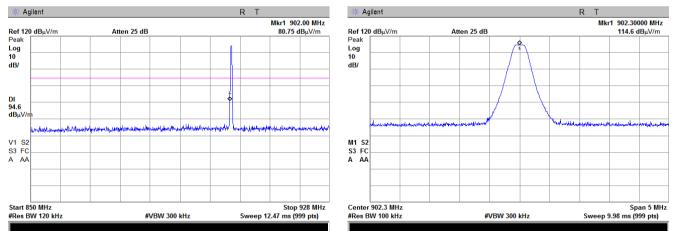
Reference numbers of test equipment used

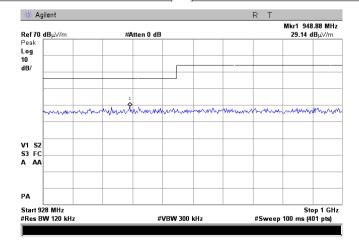

HL 1915	HL 3615	HL 4277	HL 4339	HL 4360	HL 4933	HL 5111	HL 5288
HL 2909	HL 446						

Full description is given in Appendix A.

Test specification:	Section 15.247(d), Radiated	ection 15.247(d), Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6						
Test mode:	Compliance	Verdict: PASS					
Date(s):	15-Mar-19	verdict.	FA33				
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz				
Remarks:	•						

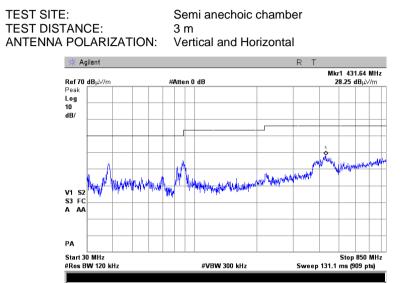

Plot 7.7.1 Radiated emission measurements from 9 kHz to 30 MHz at the low; mid; high carrier frequency

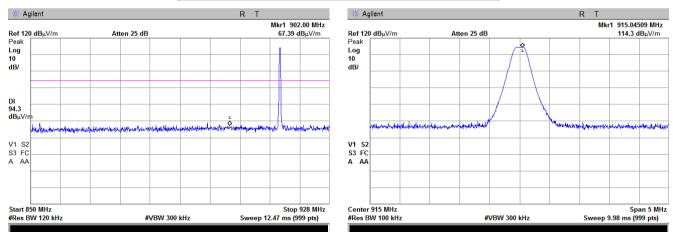


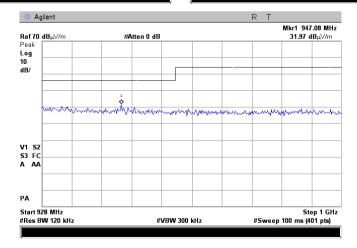


Test specification:	Section 15.247(d), Radiat	Section 15.247(d), Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.	6					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	15-Mar-19	verdict:	PASS				
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz				
Remarks:	· · ·						

Plot 7.7.2 Radiated emission measurements from 30 to 1000 MHz at the low carrier frequency

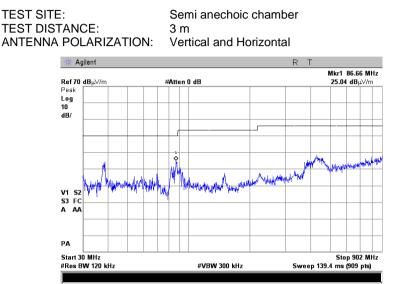


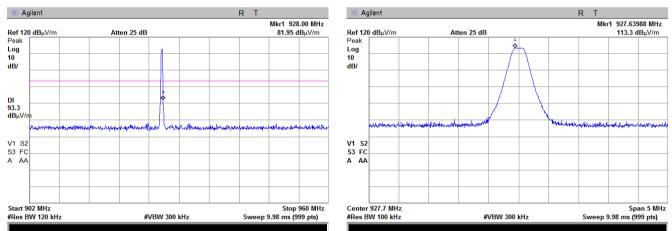


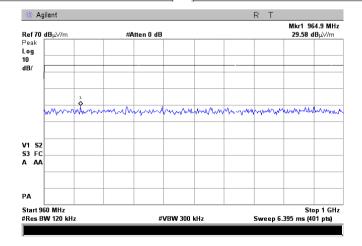


Test specification:	Section 15.247(d), Radiated spurious emissions			
Test procedure:	ANSI C63.10, sections 6.5, 6.6			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	15-Mar-19			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz	
Remarks:	· · · · · ·			

Plot 7.7.3 Radiated emission measurements from 30 to 1000 MHz at the mid carrier frequency

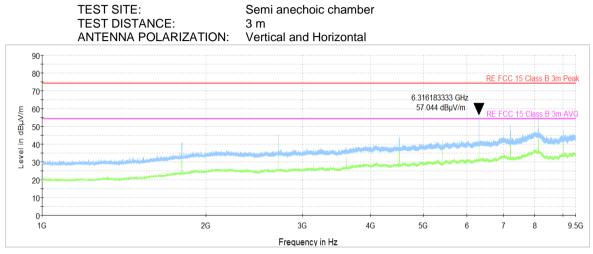


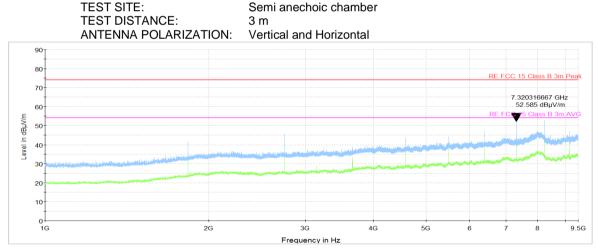




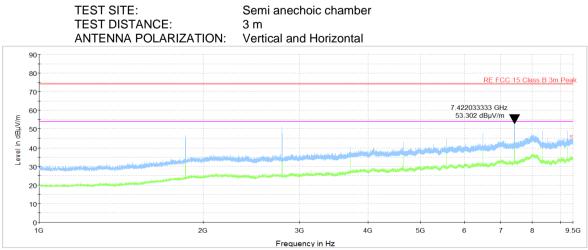
Test specification:	Section 15.247(d), Radiated spurious emissions ANSI C63.10, sections 6.5, 6.6		
Test procedure:			
Test mode:	Compliance	Verdict:	PASS
Date(s):	15-Mar-19		
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz
Remarks:	· · ·		

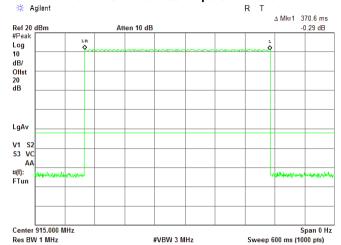
Plot 7.7.4 Radiated emission measurements from 30 to 1000 MHz at the high carrier frequency





Test specification:	Section 15.247(d), Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.6	3				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	15-Mar-19	verdict:	PA33			
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz			
Remarks:	· · ·					


Plot 7.7.5 Radiated emission measurements from 1000 to 9500 MHz at the low carrier frequency



est specification: Section 15.247(d), Radiated spurious emissions					
Test procedure:	ANSI C63.10, sections 6.5, 6.	6			
Test mode:	Compliance	Verdict:	PASS		
Date(s):	15-Mar-19	verdict:	PASS		
Temperature: 24 °C	Relative Humidity: 48 %	Air Pressure: 1009 hPa Power: 110 VAC, 60			
Remarks:					

Test specification: Section 15.247(d), Emissions at band edges					
Test procedure:	ANSI C63.10, Section 6.10				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	29-May-19	verdict.	FA33		
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1009 hPa Power: 110 VAC, 60			
Remarks:	· · ·				

7.8 Band edge radiated emissions

7.8.1 General

This test was performed to measure emissions, radiated from the EUT at the assigned frequency band edges. Specification test limits are given in Table 7.8.1.

Table 7.8.1	Band	edae	emission	limits
	Dana	o a go	01111001011	

Output power	Assigned frequency, MHz	Attenuation below carrier*, dBc	Field strength at 3 m within restricted bands, dB(μV/m)		
	IVITIZ	carrier, abc	Peak	Average	
Averaged over a time interval	902.0 - 928.0	30.0	74.0	54.0	

* - Band edge emission limit is provided in terms of attenuation below the peak of modulated carrier measured with the same resolution bandwidth.

7.8.2 Test procedure

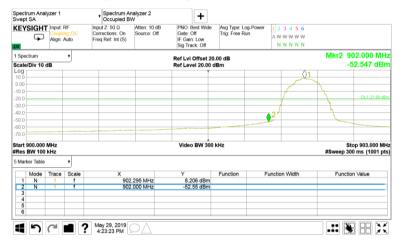
- **7.8.2.1** The EUT was set up as shown in Figure 7.8.1, energized normally modulated at the maximum data rate and its proper operation was checked.
- 7.8.2.2 The EUT was adjusted to produce maximum available to end user RF output power at the lowest carrier frequency.
- **7.8.2.3** The spectrum analyzer span was set to capture the carrier frequency and associated modulation products. The resolution bandwidth was set wider than 1 % of the frequency span.
- **7.8.2.4** The spectrum analyzer was set in max hold mode and allowed trace to stabilize. The highest emission level within the authorized band was measured.
- **7.8.2.5** The maximum band edge emission and modulation product outside of the band were measured as provided in Table 7.8.2 and associated plots and referenced to the highest emission level measured within the authorized band.
- **7.8.2.6** The above procedure was repeated with the EUT adjusted to produce maximum RF output power at the highest carrier frequency.

Figure 7.8.1 Band edge emission test setup

Test specification: Section 15.247(d), Emissions at band edges					
Test procedure:	ANSI C63.10, Section 6.10				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	29-May-19	verdict.	FA33		
Temperature: 24.2 °C	Relative Humidity: 49 %	Air Pressure: 1009 hPa	Power: 110 VAC, 60 Hz		
Remarks:					

Table 7.8.2 Band edge emission test results

ASSIGNED FREQUENCY RANGE: DETECTOR USED: MODULATION: TRANSMITTER OUTPUT POWER S RESOLUTION BANDWIDTH: VIDEO BANDWIDTH:	RMS LoRa ETTINGS: Maxim	of the span					
Frequency, Band edge MHz emission, dBm	Emission at carrier, dBm	Attenuation below carrier, dBc	Limit, dBc	Margin, dB*	Verdict		
Averaged over a time interval power							
902.0 -52.55	8.20	60.75	30.0	30.75	Pass		
928.0 -44.37	9.02	53.39	30.0	23.39	ra55		


*- Margin = Attenuation below carrier – specification limit.

Reference numbers of test equipment used

HL 3433	HL 3440	HL 5376					

Full description is given in Appendix A.

Plot 7.8.1 The highest band edge emission at low carrier frequency

Plot 7.8.2 The highest band edge emission at high carrier frequency

Spectru Swept	um Analy SA	zer 1		•	Spectrum An Occupied BV	alyzer 2 V		+					
KEYS	SIGHT	Input: Coupl Align:		Corre	t Z: 50 Ω ections: On Ref: Int (S)	Atten: 10 dB Source: Off	Gate IF G	: Best Wide : Off ain: Low Track: Off	Avg Type: Lo Trig: Free R		1 2 3 4 5 6 A W W W W W N N N N N		
	trum Div 10 d	в	•					vi Offset 20 evel 20.00 c				Mkr2 928. -4	000 0 M 4.376 dE
-og 10.0 0.00			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Q1_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
10.0		m	·	_	. <u>,</u>	4							DL1 -20.98
30.0 40.0 50.0	~~^	4				Mar and	2						
60.0 70.0				_									
	27.4000 BW 100 I						Vid	eo BW 300	kHz			Stop #Sweep 300	929.0000 M ms (1001)
	er Table		•										
		Trace	Scale		х		Y		Function	FI	unction Width	Function	Value
1	N	1	1			94 4 MHz		.020 dBm					
2	N	1	T		928.0	00 0 MHz	-4	4.38 dBm					
4													
5													
6													
	5	2	2	Ma	y 29, 2019 32:35 PM	$\neg \land$							

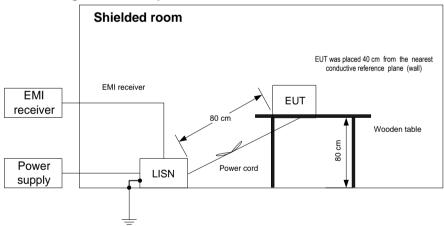
Test specification: Section 15.207, Conducted emission at AC power port					
Test procedure:	ANSI C63.10, Section 6.7				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	04-Apr-19	verdict:	PA33		
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa Power: 110 VAC,			
Remarks:					

7.9 Conducted emissions

7.9.1 General

This test was performed to measure common mode conducted emissions at the mains power port. Specification test limits are given in Table 7.9.1. The worst test results (the lowest margins) were recorded in Table 7.9.2 and shown in the associated plots.

Table 7.9.1 I	Limits for	conducted	emissions
---------------	------------	-----------	-----------


Frequency,	Class B lin	nit, dB(μV)	Class A limit, dB(μV)		
MHz	QP	AVRG	QP	AVRG	
0.15 - 0.5	66 - 56*	56 - 46*	79	66	
0.5 - 5.0	56	46	73	60	
5.0 - 30	60	50	73	60	

* The limit decreases linearly with the logarithm of frequency.

7.9.2 Test procedure

- **7.9.2.1** The EUT was set up as shown in Figure 7.9.1 and associated photograph, energized and the performance check was conducted.
- **7.9.2.2** The measurements were performed at power terminals with the LISN, connected to a spectrum analyzer in the frequency range referred to in Table 7.9.2. Unused coaxial connector of the LISN was terminated with 50 Ohm. Quasi-peak and average detectors were used throughout the testing.
- 7.9.2.3 The position of the device cables was varied to determine maximum emission level.

Figure 7.9.1 Setup for conducted emission measurements

Photograph 7.9.1 Setup for conducted emission measurements

Test specification:	Section 15.207, Conduct	Section 15.207, Conducted emission at AC power port				
Test procedure:	ANSI C63.10, Section 6.7	ANSI C63.10, Section 6.7				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	04-Apr-19	verdict.	FA33			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz			
Remarks:	· · ·					

Table 7.9.2 Conducted emission test results

LINE: LIMIT: EUT OPERATIN EUT SET UP: TEST SITE: DETECTORS U FREQUENCY R RESOLUTION E	SED: ANGE:		AC mains Class B Tx / Rx TABLE-TOP SHIELDED ROOM PEAK / QUASI-PEAK / AVERAGE 150 kHz - 30 MHz 9 kHz						
	Peak	Q	Quasi-peak		Average				
Frequency, MHz	emission, dB(mV)	Measured emission,	Limit, dB(mV	Margin,	Measured emission,	Limit, dB(mV	Margin,	Line ID	Verdict
	ub(iiiv)	dB(mV))	dB*	dB(mV))	dB*		
0.184	49.8) 64.3	dB * -16.7) 54.3	dB * -19.6		
0.184 0.220		dB(mV))		dB(mV))			
	49.8	dB(mV) 47.6) 64.3	-16.7	dB(mV) 34.7) 54.3	-19.6		Page
0.220	49.8 49.7	dB(mV) 47.6 47.6) 64.3 62.9	-16.7 -15.3	dB(mV) 34.7 33) 54.3 52.9	-19.6 -19.9	L1	Pass
0.220 0.367	49.8 49.7 46.8	dB(mV) 47.6 47.6 44.5) 64.3 62.9 58.6	-16.7 -15.3 -14.1	dB(mV) 34.7 33 37.2) 54.3 52.9 48.6	-19.6 -19.9 -11.4	L1	Pass

-22.4

-18.5

-12.4

-13.5

-12.1

-15.2

33.2

35.7

41.3

38.2

41.9

39.2

54.3

52.9

48.8

47.9

46

46

-21.1

-17.2

-7.5

-9.7

-4.1

-6.8

L2

Pass

Full description is given in Appendix A.

47.6

47.8

48.6

46.2

46.5

43.7

Reference numbers of test equipment used

HL 4778

*- Margin = Measured emission - specification limit.

41.9

44.4

46.4

44.4

43.9

40.8

HL 4787

64.3

62.9

58.8

57.9

56

56

0.185

0.220

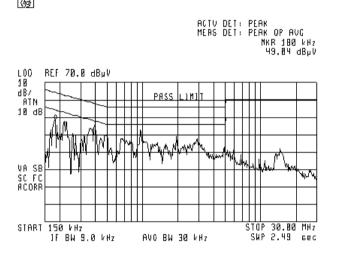
0.360

0.400

0.979

1.958

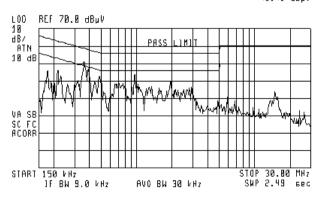
HL 3016



Test specification:	: Section 15.207, Conducted emission at AC power port					
Test procedure:	ANSI C63.10, Section 6.7	ANSI C63.10, Section 6.7				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	04-Apr-19	verdict.	FA33			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz			
Remarks:			·			

Plot 7.9.1 Conducted emission measurements

LINE: I	L1
LIMIT:	Class B
EUT OPERATING MODE:	Tx / Rx
LIMIT:	QUASI-PEAK, AVERAGE
DETECTOR:	PEAK

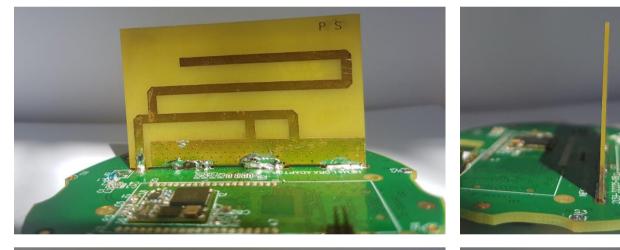

69

LINE:	L2
LIMIT:	Class B
EUT OPERATING MODE:	Tx / Rx
LIMIT:	QUASI-PEAK, AVERAGE
DETECTOR:	PEAK
(

ACTV DET: PEAK Mers det: Peak op avg NKR 360 kHz 48.42 dBµV

Test specification:	FCC Part 15, Section 203, Antenna requirements				
Test procedure:	Visual inspection				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	29-Mar-19	verdict.	FA33		
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: NA		
Remarks:					

7.10 Antenna requirements


The EUT was verified for compliance with antenna requirements. A transmitter shall be designed to ensure that no antenna other than that furnished by the responsible party will be used with the device. It may be either permanently attached or employs a unique antenna connector for every antenna proposed for use with the EUT. This requirement does not apply to professionally installed transmitters.

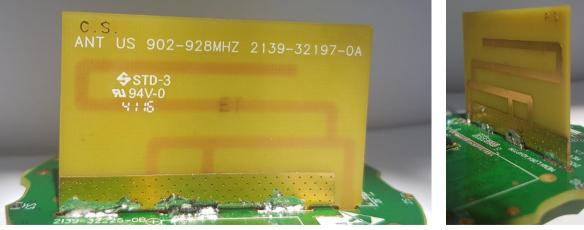

The rationale for compliance with the above requirements was either visual inspection results or supplier declaration. The summary of results is provided in Table 7.10.1.

Table 7.10.1 Antenna requirements

Requirement	Rationale	Verdict
The transmitter antenna is permanently attached	Visual inspection	
The transmitter employs a unique antenna connector	NA	Comply
The transmitter requires professional installation	NA	

Photograph 7.10.1 Antenna assembly

Test specification:	Section 15.107, Conducted emission at AC power port				
Test procedure:	ANSI C63.4, Sections 11.5 ar	id 12.1.3			
Test mode:	Compliance	Verdict:	PASS		
Date(s):	04-Apr-19	verdict:	PA33		
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz		
Remarks:	·				

8 Unintentional emissions according to 47CFR part 15 subpart B

8.1 Conducted emissions at AC power port

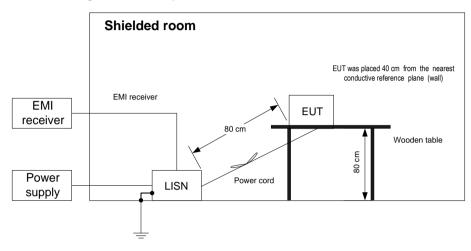
8.1.1 General

This test was performed to measure common mode conducted emissions at the mains power port. Specification test limits are given in Table 8.1.1. The worst test results (the lowest margins) were recorded in Table 8.1.2 and shown in the associated plots.

Frequency,	Class B limit, dB(μV)		Class A limit, dB(μV)		
MHz	QP	AVRG	QP	AVRG	
0.15 - 0.5	66 - 56*	56 - 46*	79	66	
0.5 - 5.0	56	46	73	60	
5.0 - 30	60	50	73	60	

Table 8.1.1 Limits for conducted emissions

* The limit decreases linearly with the logarithm of frequency.


8.1.2 Test procedure

- **8.1.2.1** The EUT was set up as shown in Figure 8.1.1 and associated photographs, energized and the performance check was conducted.
- **8.1.2.2** The measurements were performed at power terminals with the LISN, connected to a spectrum analyzer in the frequency range referred to in Table 8.1.2. Unused coaxial connector of the LISN was terminated with 50 Ohm. Quasi-peak and average detectors were used throughout the testing.
- **8.1.2.3** The position of the device cables was varied to determine maximum emission level.

Test specification:	Section 15.107, Conducted emission at AC power port				
Test procedure:	ANSI C63.4, Sections 11.5 and	d 12.1.3			
Test mode:	Compliance	Verdict:	PASS		
Date(s):	04-Apr-19	verdici.	FA33		
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz		
Remarks:	· · ·				

Figure 8.1.1 Setup for conducted emission measurements

Photograph 8.1.1 Setup for conducted emission measurements

Test specification:	Section 15.107, Conducted emission at AC power port					
Test procedure:	ANSI C63.4, Sections 11.5 an	I C63.4, Sections 11.5 and 12.1.3				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	04-Apr-19	verdict:	PASS			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz			
Remarks:	· · · · · ·	· · ·				

Table 8.1.2 Conducted emission test results

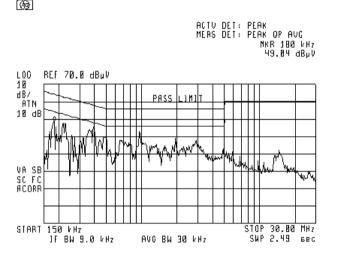
EUT SET UP: TEST SITE: DETECTORS U FREQUENCY R	E: SHIELDED ROOM DRS USED: PEAK / QUASI-PEAK / AVERAGE								
	Peak	Q	uasi-peak			Average			
Frequency, MHz	emission, dB(μV)	Measured emission, dB(μV)	Limit, dB(μV)	Margin, dB*	Measured emission, dB(μV)	Limit, dB(μV)	Margin, dB*	Line ID	Verdict
0.184	49.7	47.5	64.3	-16.8	34.6	54.3	-19.7		
0.220	49.7	47.6	62.9	-15.3	33.0	52.9	-19.9		
0.367	46.8	44.5	58.6	-14.1	37.2	48.6	-11.4	L1	Pass
0.489	41.8	39.8	56.2	-16.4	32.2	46.2	-14.0	L1	Fa55
0.981	44.5	42.2	56.0	-13.8	40.0	46.0	-6.0		
1.958	43.1	40.6	56.0	-15.4	39.3	46.0	-6.7		
0.185	47.6	41.9	64.3	-22.4	33.2	54.3	-21.1		
0.220	47.7	44.3	62.9	-18.6	35.6	52.9	-17.3		
0.360	48.5	46.2	58.8	-12.6	41.3	48.8	-7.5	L2	Pass
0.400	46.1	44.4	57.9	-13.5	38.0	47.9	-9.9	LZ	F 855
0.979	46.4	43.9	56.0	-12.1	41.8	46.0	-4.2		
1.958	43.6	40.7	56.0	-15.3	39.1	46.0	-6.9		

*- Margin = Measured emission - specification limit.

Reference numbers of test equipment used

HL 0787	HL 3016	HL 4778					

Full description is given in Appendix A.

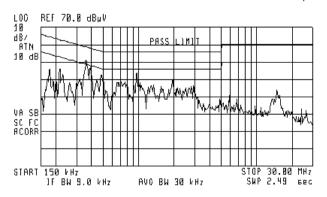


Test specification: Section 15.107, Conducted emission at AC power port						
Test procedure:	ANSI C63.4, Sections 11.5 and 12.1.3					
Test mode:	Compliance	mpliance Verdict:				
Date(s):	04-Apr-19	verdict.	PASS			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz			
Remarks:						

Plot 8.1.1 Conducted emission measurements

LINE:	L1
LIMIT:	Class B
EUT OPERATING MODE:	Tx / Rx
LIMIT:	QUASI-PEAK, AVERAGE
DETECTOR:	PEAK

69



EUT OPERATING MODE: TELIMIT: Q	2 Class B Tx / Rx QUASI-PEAK, AVERAGE PEAK
--------------------------------	--

69

ACTV DET: PEAK Mers det: Peak op avg NKR 360 kHz 48.42 dBµV

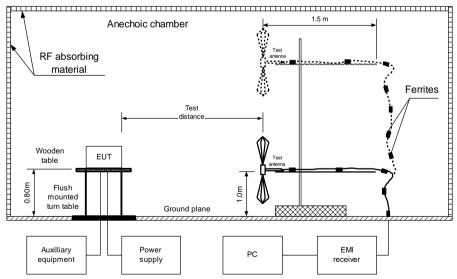
Test specification:	Section 15.109, Radiated emission					
Test procedure:	ANSI C63.4, Sections 11.6 and 12.1.4					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	29-Mar-19	verdict.	FA33			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz			
Remarks:						

8.2 Radiated emission measurements

8.2.1 General

This test was performed to measure radiated emissions from the EUT enclosure. Specification test limits are given in Table 8.2.1.

Table 8.2.1	Radiated	emission	test limits


Frequency,	Class B lim	it, dB(μV/m)	Class A limit, dB(μV/m)		
MHz	10 m distance	3 m distance	10 m distance	3 m distance	
30 - 88	29.5*	40.0	39.0	49.5*	
88 - 216	33.0*	43.5	43.5	54.0*	
216 - 960	35.5*	46.0	46.4	56.9*	
Above 960	43.5*	54.0	49.5	60.0*	

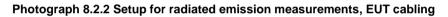
* The limit for test distance other than specified was calculated using the inverse linear distance extrapolation factor as follows: $\lim_{s_2} = \lim_{s_1} + 20 \log (S_1/S_2)$,

where S_1 and S_2 – standard defined and test distance respectively in meters.

8.2.2 Test procedure for measurements in semi-anechoic chamber

- **8.2.2.1** The EUT was set up as shown in Figure 8.2.1 and associated photographs, energized and the performance check was conducted.
- **8.2.2.2** The specified frequency range was investigated with biconilog antenna connected to EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal and the EUT cables position was varied.
- 8.2.2.3 The worst test results (the lowest margins) were recorded in Table 8.2.2 and shown in the associated plots.

Figure 8.2.1 Setup for radiated emission measurements in anechoic chamber


Test specification:	Section 15.109, Radiated emission					
Test procedure:	ANSI C63.4, Sections 11.6 and 12.1.4					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	29-Mar-19	verdict.	PA55			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz			
Remarks:						

Photograph 8.2.1 Setup for radiated emission measurements, general view

Below 1 GHz

Above 1 GHz

TERMON EADORATORIES						
Test specification: Section 15.109, Radiated emission						
Test procedure:	ANSI C63.4, Sections 11.6 and 12.1.4					
Test mode:	Compliance	- Verdict:	PASS			
Date(s):	29-Mar-19	verdict.	FA33			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz			
Remarks:						

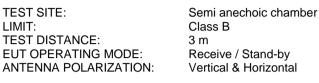
Table 8.2.2 Radiated emission test results

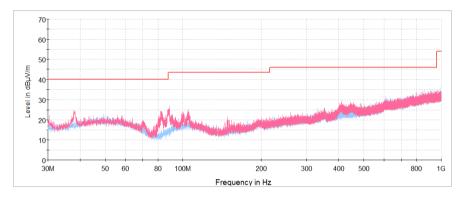
EUT SET UP:TABLE-TOPLIMIT:Class BEUT OPERATING MODE:Receive / Stand-byTEST SITE:SEMI ANECHOIC CHAMBERTEST DISTANCE:3 mDETECTORS USED:PEAK / QUASI-PEAKFREQUENCY RANGE:30 MHz – 1000 MHzRESOLUTION BANDWIDTH:120 kHz									
Frequency, MHz	Peak emission, dB(μV/m)	Measured emission, dB(μV/m)	Quasi-peak Limit, dB(µV/m)	Margin, dB*	Antenna polarization	Antenna height, m	Turn-table position**, degrees	Verdict	
At least 20 dB bellow limit								Pass	
TEST SITE:	EST SITE: SEMI ANECHOIC CHAMBER								

TEST SITE:										
TEST DISTANCE:					3 m	3 m				
DETECTORS USED:					PEA	K / AVE	RAGE			
FREQUENCY RANGE:					100	0 MHz –	5000 MHz			
RESOLUTION	N BANDWIDT	H:			100	0 kHz				
Freewooner	Peak		Average				Antonno	Turn table		
Frequency,	Measured	Limit,	Margin,	Measured	Limit,	Margin,	Antenna		Turn-table position**,	
MHz	emission,			emission,			polarization	• •	•	veraici
			10.4			-10+		m	degrees	
1411 12	dB(μV/m)	dB(μV/m)	dB*	dB(μV/m)	αB(μv/m)	dB*			-	
	dB(μV/m)	dB(μV/m)			bellow limi					Pass

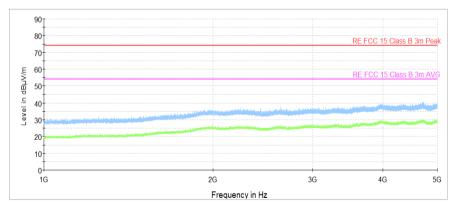
*- Margin = Measured emission - specification limit.
**- EUT front panel refer to 0 degrees position of turntable.

Reference numbers of test equipment used


	HL 3903	HL 4360	HL 4933	HL 5288	HL 5404			
Full description is given in Appendix A								


Full description is given in Appendix A.

Test specification:	Section 15.109, Radiated emission			
Test procedure:	ANSI C63.4, Sections 11.6 and 12.1.4			
Test mode:	Compliance	Verdict: PASS		
Date(s):	29-Mar-19	verdict.	FA33	
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1008 hPa	Power: 110 VAC, 60 Hz	
Remarks:				


Plot 8.2.1 Radiated emission measurements in 30 - 1000 MHz range

Plot 8.2.2 Radiated emission measurements above 1000 MHz

TEST SITE: LIMIT: TEST DISTANCE: EUT OPERATING MODE: ANTENNA POLARIZATION: Semi anechoic chamber Class B 3 m Receive / Stand-by Vertical & Horizontal

9 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0446	Antenna, Loop, Active, 10 (9) kHz - 30 MHz	EMCO	6502	2857	24-Feb-19	24-Feb-20
0787	Transient Limiter 9 kHz-200 MHz	Hewlett Packard	11947A	3107A01877	08-Oct-18	08-Oct-19
1915	Antenna, Loop, Active Receiving, 1 kHz - 30 MHz	EMC Test Systems	6507	1457	24-Feb-19	24-Feb-20
2909	Spectrum analyzer, ESA-E, 100 Hz to 26.5 GHz	Agilent Technologies	E4407B	MY41444762	04-Apr-19	04-Apr-20
3016	LISN, Two-line V-network, 9 kHz to 30 MHz, (50 uH+5 Ohm)	Rohde & Schwarz	ESH 3-Z5	892239/002	27-Jan-19	27-Jan-20
3433	Test Cable , DC-18 GHz, 1.5 m, SMA - SMA	Mini-Circuits	CBL-5FT- SMSM+	25679	28-Mar-18	28-Mar-19
3434	Test Cable , DC-18 GHz, 1.5 m, SMA - SMA	Mini-Circuits	CBL-5FT- SMSM+	25683	28-Mar-18	28-Mar-19
3440	Precision Fixed Attenuator, 50 Ohm, 5 W, 20 dB, DC to 18 GHz	Mini-Circuits	BW- S20W5+	NA	10-Dec-18	10-Dec-19
3615	Cable RF, 6.5 m, N type-N type, DC-6 GHz	Suhner Switzerland	RG 214/U	NA	10-Jun-18	10-Jun-19
3818	PSA Series Spectrum Analyzer, 3 Hz- 44 GHz	Agilent Technologies	E4446A	MY4825028 8	28-May-18	28-May-19
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFLEX 102A	1226/2A	07-Apr-19	07-Apr-20
4277	Test Cable , DC-18 GHz, 3.05 m, N/M - N/M	Mini-Circuits	APC-10FT- NMNM+	0748A	01-Aug-18	01-Aug-19
4339	High pass Filter, 50 Ohm, 1-18 GHz, SMA-FM / SMA-M	Micro-Tronics	HPM50115- 02	1	14-May-17	14-Mar-19
4360	EMI Test Receiver, 20 Hz to 40 GHz.	Rohde & Schwarz	ESU40	100322	31-Dec-18	31-Dec-19
4778	EMI Receiver, 9 kHz - 2.9 GHz, System: HL1431, HL4777	Hewlett Packard	8542E	30807A00262 3427A00123	28-Oct-18	28-Oct-19
4933	Active Horn Antenna, 1 GHz to 18 GHz	COM-POWER CORPORATION	AHA-118	701046	06-Jan-19	06-Jan-20
5111	RF cable, 40 GHz, 5.5 m, K-type	Huber-Suhner	500MM	502493/2EA	09-Apr-18	09-Apr-19
5288	Trilog Antenna, 25 MHz - 8 GHz, 100W	Frankonia	ALX-8000E	809	08-Feb-19	08-Feb-22
5404	RF cable, 18 GHz, N-N, 6 m	Huber-Suhner	SF118/11N(x2)	500024/18	01-Aug-18	01-Aug-19

10 APPENDIX B Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, Radio, Safety, Environmental and Telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for relevant parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; Recognized by Innovation, Science and Economic Development Canada for wireless and terminal testing (ISED), CAB identifier is IL1001, ISED# number 2186A; Certified by VCCI, Japan (the registration numbers are R-10808 for OATS, R-1082 for anechoic chamber, G-10869 for RE measurements above 1 GHz, C-10845 for conducted emissions site and T-11606 for conducted emissions at telecommunication ports).

The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing, environmental simulation and calibration (for exact scope please refer to Certificate No. 839.01, 839.03 and 839.04).

Address:	P.O. Box 23, Binyamina 3055001, Israel
Telephone:	+972 4628 8001
Fax:	+972 4628 8277
e-mail:	mail@hermonlabs.com
website:	www.hermonlabs.com

Person for contact: Mr. M. Nikishin, EMC and radio group leader

11 APPENDIX C Test equipment correction factors

HL 0446: Active Loop Antenna EMCO, model: 6502, s/n 2857

Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
10	-33.4	±1.0
20	-37.8	±1.0
50	-40.5	±1.0
75	-41.0	±1.0
100	-41.2	±1.0
150	-41.2	±1.0
250	-41.1	±1.0
500	-41.2	±1.0
750	-41.3	±1.0
1000	-41.3	±1.0

Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
2000	-41.4	±1.0
3000	-41.4	±1.0
4000	-41.5	±1.0
5000	-41.5	±1.0
10000	-41.7	±1.0
15000	-42.1	±1.0
20000	-42.7	±1.0
25000	-44.2	±1.0
30000	-45.8	±1.0

The antenna factor shall be added to receiver reading in dB_µV to obtain field strength in dB_µA/m.

HL 1915: Loop Antenna EMC Test Systems, model: 6507, s/n 1457

Frequency,	Antenna factor, dB/m	Frequency, MHz	Antenna factor, dB/m
9	-21.8	1000	-33.3
10	-23.0	2000	-33.7
20	-27.3	3000	-34.0
50	-31.3	4000	-34.3
75	-32.0	5000	-34.6
100	-32.2	10000	-35.4
150	-32.5	15000	-36.0
250	-32.8	20000	-36.3
500	-33.1	25000	-37.3
750	-33.2	30000	-37.8

The antenna factor shall be added to receiver reading in $dB\mu V$ to obtain field strength in $dB\mu V/m$.

HL 4933: Active Horn Antenna COM-POWER CORPORATION, model: AHA-118, s/n 701046

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
1000	-16.1
1500	-15.1
2000	-10.9
2500	-11.9
3000	-11.1
3500	-10.6
4000	-8.6
4500	-8.3
5000	-5.9
5500	-5.7
6000	-3.3
6500	-4.0
7000	-2.2
7500	-1.7
8000	1.1
8500	-0.8
9000	-1.5
9500	-0.2

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
10000	1.8
10500	1.0
11000	0.3
11500	-0.5
12000	3.1
12500	1.4
13000	-0.3
13500	-0.4
14000	2.5
14500	2.2
15000	1.9
15500	0.5
16000	2.1
16500	1.2
17000	0.6
17500	3.1
18000	4.2

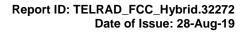
The antenna factor shall be added to receiver reading in $dB_{\mu}V$ to obtain field strength in $dB_{\mu}V/m$.

HL 5288: Trilog Antenna Frankonia, model: ALX-8000E, s/n: 00809

Frequency, MHz	Antenna factor, dB/m	Frequency, MHz	Antenna factor, dB/m
30	14.96	160	12.67
35	15.33	180	13.34
40	16.37	200	15.40
45	17.56	250	16.42
50	17.95	300	17.28
60	16.87	400	19.98
70	13.22	500	21.11
80	10.56	600	22.90
90	13.61	700	24.13
100	15.46	800	25.25
120	14.03	900	26.35
140	12.23	1000	27.18

The antenna factor shall be added to receiver reading in $dB\mu V$ to obtain field strength in $dB\mu V/m$.

12 APPENDIX D Measurement uncertainties


Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Conducted carrier power at RF antenna connector	Below 12.4 GHz: ± 1.7 dB
	12.4 GHz to 40 GHz: ± 2.3 dB
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Occupied bandwidth	± 8.0 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB
	150 kHz to 30 MHz: ± 3.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: \pm 6.0 dB
	Double ridged horn antenna: \pm 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

13 APPENDIX E Specification references

FCC 47CFR part 15:2018	Radio Frequency Devices.
ANSI C63.2:2016	American National Standard for Instrumentation-Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications.
ANSI C63.4:2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
ANSI C63.10:2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
558074 D01 DTS Meas_Guidance v05	Guidance for compliance measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices operating under section 15.247 of the FCC rules

14 APPENDIX F Abbreviations and acronyms

А	ampere	LISN	line impedance stabilization network
AC	alternating current	m	meter
A/m	ampere per meter	MHz	megahertz
AM	amplitude modulation	MIL	military
ASSL	abnormal steady state limits	mm	millimeter
ATP	acceptance test procedure	ms	millisecond
AVRG	average (detector)	μF	microfarad
BB	broad band	μS	microsecond
cm	centimeter	NA	not applicable
dB	decibel	NB	narrow band
dBm	decibel referred to one milliwatt	NP	normal performance
dB(μA)	decibel referred to one microampere	NSSL	normal steady state limits
dBµV	decibel referred to one microvolt	NT	not tested
dBµV/m	decibel referred to one microvolt per meter	OATS	open area test site
DC	direct current	Ω	Ohm
EMI	electromagnetic interference	QP	quasi-peak
ESS	environmental stress screening	PBIT	periodic built in test
ESSL	emergency steady state limits	PM	pulse modulation
EUT	equipment under test	PS	power supply
FTE	functional test equipment	RE	radiated emission
GHz	gigahertz	RF	radio frequency
GND	ground	rms	root mean square
Н	height	S	second
HL	Hermon laboratories	STD	standard
Hz	hertz	TBD	to be defined
k	kilo	V	volt
kHz	kilohertz	VA	volt-ampere
kV	kilovolt	W	width
L	length	W	watt

END OF DOCUMENT