

Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel Tel. +972 4628 8001 Fax. +972 4628 8277

E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC 47 CFR Part 90, and RSS-119 Issue 12:2015

FOR:

ST Engineering Telematics Wireless Ltd

Allegro Wall Mount

Models: ALLWM, ALLRCD

FCC ID: NTAALLWM

IC: 4732A-ALLWM

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Report ID: TELRAD_FCC.40685_Rev1

Date of Issue: 11-Jan-21

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Test configuration	5
6.3	Changes made in EUT	5
6.4	Transmitter characteristics	6
7	Transmitter tests according to 47CFR part 90 and RSS-119 requirements	7
7.1	Peak output power test	7
7.2	Occupied bandwidth test	11
7.3	Emission mask test	14
7.4	Radiated spurious emission measurements	17
7.5	Frequency stability test	28
7.6	Transient frequency behaviour test	30
8	APPENDIX A Test equipment and ancillaries used for tests	35
9	APPENDIX B Test equipment correction factors	36
10	APPENDIX C Measurement uncertainties	39
11	APPENDIX D Test laboratory description	40
12	APPENDIX E Specification references	41
13	APPENDIX F Manufacturer's declaration of Identity	42
14	APPENDIX G Abbreviations and acronyms	43

1 Applicant information

Client name: ST Engineering Telematics Wireless Ltd

Address: 26 Hamelacha street, POB 1911, Holon, 5811801, Israel

Telephone: +972 3557 5700 **Fax:** +972 3557 5703

E-mail: itsikk@telematics-wireless.com

Contact name: Mr. Itsik Kanner

2 Equipment under test attributes

Product name: Allegro Wall Mount

Product type: Transceiver
Model(s): ALLWM
Serial number: 02381063
Hardware version: REV B
Software release: 3A01
Receipt date 24-Sep-20

3 Manufacturer information

Manufacturer name: ST Engineering Telematics Wireless Ltd

Address: 26 Hamelacha street, POB 1911, Holon, 5811801, Israel

Telephone: +972 3557 5700 **Fax:** +972 3557 5703

E-Mail: <u>itsikk@telematics-wireless.com</u>

Contact name: Mr. Itsik Kanner

4 Test details

Project ID: 40685

Location: Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel

Test started: 14-Oct-20
Test completed: 01-Nov-20

Test specification(s): FCC 47 CFR part 90, RSS-119 issue 12

5 Tests summary

Test	Status
Transmitter characteristics	
FCC Section 90.205 / RSS-119 Section 5.4, Maximum output power	Pass
FCC Section 90.209 / RSS-119 Section 5.5, Occupied bandwidth	Pass
FCC Section 90.210 / RSS-119 Section 5.8.4, Emission mask	Pass
FCC Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions	Pass
FCC Section 90.213 / RSS-119 Section 5.3, Frequency stability	Pass
FCC Section 90.214 / RSS-119 Section 5.9, Transient frequency behaviour	Pass
FCC Section 2.1091 / RSS-102 section 2.5, RF radiation exposure evaluation	Pass, Exhibit in application for certification provided

^{*} The EUT model with a data cable is the worst case representative for testing.

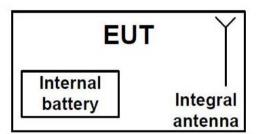
This test report supersedes the previously issued test report identified by Doc ID: TELRAD_FCC.40685

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mr. I. Zilberstein, test engineer, EMC & Radio	14-Oct-20 – 01-Nov-20	word
Reviewed by:	Mrs. S. Peysahov Sheynin, test engineer, EMC & Radio	10-Jan-21	
Approved by: Mr. S. Samokha, technical manager, EMC & Radio		11-Jan-21	Can

6 EUT description


Note: The following data in this clause is provided by the customer and represents his sole responsibility

6.1 General information

The EUT is an interface unit connected to a water meter. The EUT operates in Allegro system at 450-470MHz frequency band and it is powered by 3.6V battery. The EUT has two models ALLWM and ALLRCD.

According to manufacturer's declaration provided in Appendix F of the test report models ALLWM and ALLRCD are electically/electronically identical and differ only that model ALLWM has a data cable connected to a water meter and a different battery size.

6.2 Test configuration

6.3 Changes made in EUT

No changes were implemented in the EUT during testing.

6.4 Transmitter characteristics

Туре	of equipment										
Χ	Stand-alone (Ed										
	Combined equipment (Equipment where the radio part is fully integrated within another type of equipment)										
	Plug-in card (Ed	uipment int	ended for	a variet	ty of host :	systems)					
Inter	nded use	Con	dition of	use							
	fixed	Alwa	ays at a di	stance r	more than	2 m from	n all people				
Χ	mobile	Alwa	Always at a distance more than 20 cm from all people								
	portable	May	operate a	at a dista	ance close	er than 20	cm to human	bod	y		
Assi	gned frequency ra	nges		450- 4 ⁻	70 MHz						
				At tran	smitter 50	Ω RF ou	utput connecto	r		32.5	6 dBm
Maxi	mum rated output	power					.,				
				Χ	No						
							continuous	varia	able		
Is tra	ansmitter output po	ower varial	ole?	Yes	.,		stepped variable with stepsize			dB	
					Yes	minimum RF power			dBm		
					maximu	ım RF power				dBm	
Ante	nna connection										
								Χ	with temporary	RF conr	nector
	unique coupling		star	ndard connector		X	X integral		without temporary RF connector		
Ante	nna/s technical ch	aracteristic	cs			•			·		
Туре			Manufac	turer		Mode	l number		Gai	n	
Print			ARAD	, turor		NA	Hamber		-2dl		
Tran	smitter aggregate	data rate/s			4.8	kbps			ı		
	of modulation					SK					
	ulating test signal	(baseband)		PRI						
	smitter power sou	`	,		1 10						
X	Battery	Nominal	rated vol	tage	3.6	VDC	Battery t	me	Lithium		
^	DC	Nominal			3.0	V DC	Dattery t	ype	Littiiuiii		
	AC mains	Nominal					Frequen	CV.			
	, to mano	.1011111101	. 4.04 701	gc			1 TOQUET	<i>-</i> y			

^{*} The EUT model with a data cable is the worst case representative for testing.

Test specification:	Section 90.205 / RSS-119 Section 5.4, Maximum output power						
Test procedure:	47 CFR, Section 2.1046						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	15-Oct-20	verdict.	PASS				
Temperature: 24 °C	Relative Humidity: 43 %	Air Pressure: 1008 hPa	Power: 3.6 VDC				
Remarks:							

7 Transmitter tests according to 47CFR part 90 and RSS-119 requirements

7.1 Peak output power test

7.1.1 General

This test was performed to measure effective radiated power emanated by transmitter at carrier frequency. Specification test limits are given in Table 7.1.1

Table 7.1.1 Peak output power limits

Assigned frequency band,		ERP				
MHz	W	dBm				
FCC						
450.0 – 470.0	2	33.00				
RSS-119 Table 2						
450.0 - 470.0	60	47.78				

^{* -} Equivalent field strength limit was calculated from maximum allowed ERP as follows: E=sqrt(30xPx1.64)/r, where P is ERP in Watts, 1.64 is numeric gain of ideal dipole and r is antenna to EUT distance in meters

7.1.2 Test procedure for field strength measurements

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- 7.1.2.2 The EUT was adjusted to produce maximum available for end user RF output power.
- **7.1.2.3** The resolution bandwidth of spectrum analyzer was set wider than 6 dB bandwidth of the EUT and the maximum peak output power was measured as provided in Table 7.1.2 and associated plots.

Figure 7.1.1 Peak output power test setup

Test specification: Section 90.205 / RSS-119 Section 5.4, Maximum output power

Test procedure: 47 CFR, Section 2.1046

Test mode: Compliance Verdict: PASS

Date(s): 15-Oct-20

Temperature: 24 °C Relative Humidity: 43 % Air Pressure: 1008 hPa Power: 3.6 VDC

Remarks:

Table 7.1.2 Peak output power test results

ASSIGNED FREQUENCY:

MODULATION:

MODULATING SIGNAL:

TRANSMITTER OUTPUT POWER SETTINGS:

DETECTOR USED:

RESOLUTION BANDWIDTH:

450 - 470 MHz

4GFSK

PRBS

Maximum

Peak

100 kHz

VIDEO BANDWIDTH: > Resolution bandwidth

Carrier frequency, MHz	Spectrum analyzer reading, dBm	External attenuation, dB	Cable loss, dB	Peak output power,** dBm	Limit, dBm	Margin*, dB	Verdict
450.0031	32.05	Included	Included	32.05	33.0	-0.95	Pass
460.0000	32.52	Included	Included	32.52	33.0	-0.48	Pass
469.9969	32.56	Included	Included	32.56	33.0	-0.44	Pass

^{* -} Margin = Peak output power – specification limit.

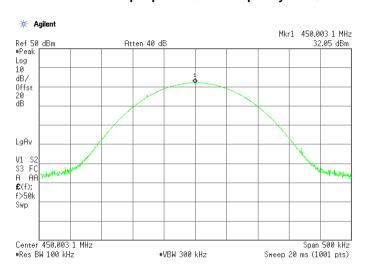
Table 7.1.3 Peak output power test results according to RSS-119 Table 2

ASSIGNED FREQUENCY: 450 - 470 MHz
MODULATION: 4GFSK
MODULATING SIGNAL: PRBS
TRANSMITTER OUTPUT POWER SETTINGS: Maximum
DETECTOR USED: Peak
RESOLUTION BANDWIDTH: 100 kHz

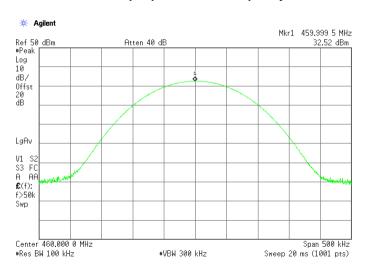
VIDEO BANDWIDTH: > Resolution bandwidth

. 110000/1101110	· · · · · ·		, 11000	idilon banamain			
Carrier frequency, MHz Spectrum analyzer reading, dBm		External attenuation, dB	Cable loss, dB	Peak output power,** dBm	Limit, dBm	Margin*, dB	Verdict
450.0031	32.05	Included	Included	32.05	47.78	-15.73	Pass
460.0000	32.52	Included	Included	32.52	47.78	-15.26	Pass
469.9969	32.56	Included	Included	32.56	47.78	-15.22	Pass

Reference numbers of test equipment used


HL 3818	HL 3787	HL 5608	HL 5637	HL 3521						

Full description is given in Appendix A.



Test specification:	Section 90.205 / RSS-119 Section 5.4, Maximum output power						
Test procedure:	47 CFR, Section 2.1046						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	15-Oct-20	verdict.	PASS				
Temperature: 24 °C	Relative Humidity: 43 %	Air Pressure: 1008 hPa	Power: 3.6 VDC				
Remarks:							

Plot 7.1.1 Peak output power at low frequency and Unom


Plot 7.1.2 Peak output power at mid frequency and Unom

Test specification:	Section 90.205 / RSS-119 Section 5.4, Maximum output power						
Test procedure:	47 CFR, Section 2.1046						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	15-Oct-20	verdict.	PASS				
Temperature: 24 °C	Relative Humidity: 43 %	Air Pressure: 1008 hPa	Power: 3.6 VDC				
Remarks:	-						

Plot 7.1.3 Peak output power at high frequency and Unom

Test specification:	Section 90.209 / RSS-119 Section 5.5, Occupied bandwidth						
Test procedure:	47 CFR, Section 2.1049						
Test mode:	Compliance	Verdict:	PASS				
Date(s):	18-Oct-20	verdict.	PASS				
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1006 hPa	Power: 3.6 VDC				
Remarks:							

7.2 Occupied bandwidth test

7.2.1 General

This test was performed to measure transmitter occupied bandwidth. Specification test limits are given in Table 7.2.1

Table 7.2.1 Occupied bandwidth limits

Assigned frequency, MHz	Modulation envelope reference points*, dBc	Maximum allowed bandwidth, kHz
450.0 – 470.0	26	6

^{* -} Modulation envelope reference points are provided in terms of attenuation below the unmodulated carrier.

7.2.2 Test procedure

- 7.2.2.1 The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.
- 7.2.2.2 The EUT was set to transmit the unmodulated carrier and the reference peak power level was measured.
- **7.2.2.3** The EUT was set to transmit the normally modulated carrier.
- **7.2.2.4** The transmitter occupied bandwidth was measured with spectrum analyzer as a frequency delta between the reference points on modulation envelope and provided in Table 7.2.2 and the associated plots.

Figure 7.2.1 Occupied bandwidth test setup

Test specification: Section 90.209 / RSS-119 Section 5.5, Occupied bandwidth

Test procedure: 47 CFR, Section 2.1049

Test mode: Compliance Verdict: PASS

Date(s): 18-Oct-20

Temperature: 25 °C Relative Humidity: 45 % Air Pressure: 1006 hPa Power: 3.6 VDC

Remarks:

Table 7.2.2 Occupied bandwidth test results

DETECTOR USED:

RESOLUTION BANDWIDTH:

VIDEO BANDWIDTH:

MODULATION:

MODULATING SIGNAL:

BIT RATE:

Peak hold

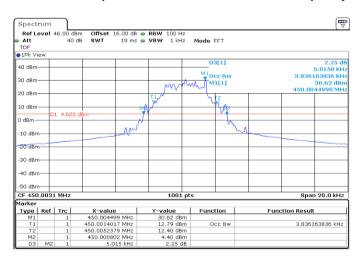
100 Hz

1kHz

4GFSK

ID code

4.8 kbps

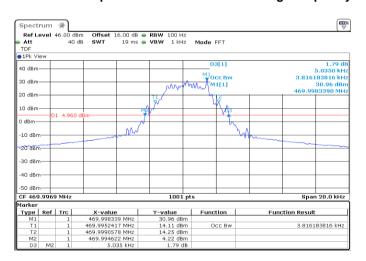

Carrier frequency, MHz	Occupied bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict
MODULATION ENVELOPE RE	FERENCE POINTS: 99%			
450.0031	3.836	6	-2.164	Pass
460.0000	3.816	6	-2.184	Pass
469.9969	3.816	6	-2.184	Pass
MODULATION ENVELOPE RE	FERENCE POINTS: 26 dBc			
450.0031	5.015	6	-0.985	Pass
460.0000	5.035	6	-0.965	Pass
469.9969	5.035	6	-0.965	Pass

Reference numbers of test equipment used

HL 4355	HL 3901	HL 5608	HL 4413	HL 5397		

Full description is given in Appendix A.

Plot 7.2.1 Occupied bandwidth test result at low frequency



Test specification:	Section 90.209 / RSS-119 Section 5.5, Occupied bandwidth			
Test procedure:	47 CFR, Section 2.1049			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	18-Oct-20	verdict.	PASS	
Temperature: 25 °C	Relative Humidity: 45 %	Air Pressure: 1006 hPa	Power: 3.6 VDC	
Remarks:				

Plot 7.2.2 Occupied bandwidth test result at mid frequency

Plot 7.2.3 Occupied bandwidth test result at high frequency

Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Emission mask				
Test procedure:	47 CFR, Sections 2.1051, 2.1047 and 90.210(e), TIA/EIA-603-E, Section 2.2.13				
Test mode:	Compliance Verdict: PASS				
Date(s):	01-Nov-20	verdict: PASS			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 3.6 VDC		
Remarks:					

7.3 Emission mask test

7.3.1 General

This test was performed to measure emission mask at RF antenna connector. Specification test limits are given in Table 7.3.1 .

Table 7.3.1 Emission mask limits

Frequency displacement from carrier	Attenuation below carrier, dBc
Emission mask E (Channel band	dwidth 6.25 kHz, authorized bandwidth 6.0 kHz)
0 – 3.0 kHz	0
3.0 – 4.6 kHz	$30 + 16.67(f_d^{**} - 3 \text{ kHz})$ or $55+10logP(W)$) or 65 whichever is the lesser
More than 4.6 kHz	55+10logP(W) or 57 whichever is the lesser (RSS-119) 55+10logP(W) or 65 whichever is the lesser (FCC)

^{* -} linearly increase with frequency

7.3.2 Test procedure

- 7.3.2.1 The EUT was set up as shown in Figure 7.3.1, energized and its proper operation was checked.
- **7.3.2.2** The emission mask was measured with spectrum analyzer as provided in the associated plots.
- **7.3.2.3** The test results are provided in Table 7.3.2 and the the associated plots.

Table 7.3.2 Emission mask test results

Carrier frequency, MHz	Limit	Verdict
450.0310		
460.0000	Emission mask E	Pass
469.9969		

Reference numbers of test equipment used

HL 4355							
	HL 4355	HL 3901	HL 5608	HL 4413	HL 5397		

Full description is given in Appendix A.

^{** -} displacement frequency

Test specification:	ion: Section 90.210 / RSS-119 Section 5.8.4, Emission mask				
Test procedure:	47 CFR, Sections 2.1051, 2.1047 and 90.210(e), TIA/EIA-603-E, Section 2.2.13				
Test mode:	Compliance	- Verdict: PASS			
Date(s):	01-Nov-20	verdict: PASS			
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 3.6 VDC		
Remarks:	-				

Figure 7.3.1 Emission mask test setup

Plot 7.3.1 Emission mask test results at low carrier frequency

OPERATING FREQUENCY RANGE: 450.0 – 470.0 MHz

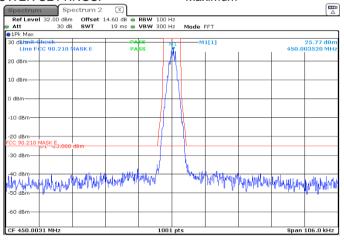
DETECTOR USED:

MODULATION:

MODULATING SIGNAL:

BIT RATE:

TRANSMITTER OUTPUT POWER SETTINGS:


Peak

4GFSK

ID code

4.8 kbps

Maximum

Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Emission mask			
Test procedure:	47 CFR, Sections 2.1051, 2.1047 and 90.210(e), TIA/EIA-603-E, Section 2.2.13			
Test mode:	Compliance Verdict: PASS			
Date(s):	01-Nov-20	verdict.	PASS	
Temperature: 23 °C	Relative Humidity: 55 %	Air Pressure: 1010 hPa	Power: 3.6 VDC	
Remarks:	-			

Plot 7.3.2 Emission mask test results at mid carrier frequency

OPERATING FREQUENCY RANGE: 450.0 – 470.0 MHz

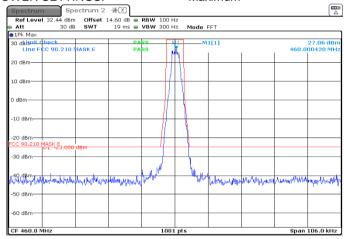
DETECTOR USED:

MODULATION:

MODULATING SIGNAL:

BIT RATE:

TRANSMITTER OUTPUT POWER SETTINGS:


Peak

4GFSK

ID code

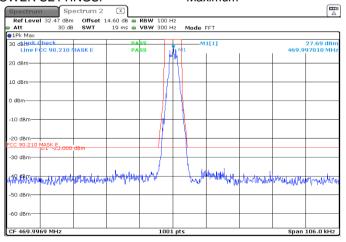
4.8 kbps

Maximum

Plot 7.3.3 Emission mask test results at high carrier frequency

OPERATING FREQUENCY RANGE: 450.0 – 470.0 MHz

DETECTOR USED:


MODULATION:

MODULATING SIGNAL:

BIT RATE:

TRANSMITTER OUTPUT POWER SETTINGS:

Peak
4GFSK
ID code
4.8 kbps
Maximum

Test specification:	n: Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions				
Test procedure:	47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12				
Test mode:	Compliance Verdict: PASS				
Date(s):	01-Nov-20	verdict: PASS			
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1010 hPa	Power: 3.6 VDC		
Remarks:					

7.4 Radiated spurious emission measurements

7.4.1 General

This test was performed to measure radiated spurious emissions from the EUT. Specification test limits are given in Table 7.4.1.

Table 7.4.1 Radiated spurious emission test limits

Frequency, MHz	Attenuation below carrier, dBc	ERP of spurious, dBm	Equivalent field strength limit @ 3m, dB(μV/m)***
0.009 - 10th harmonic*	55+10logP**	-25	72.4

^{* -} Excluding the in band emission within ± 250 % of the authorized bandwidth from the carrier

7.4.2 Test procedure for radiated spurious emission measurements in 9 kHz to 30 MHz band

- 7.4.2.1 The EUT was set up as shown in Figure 7.4.1, energized and the performance check was conducted.
- **7.4.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360° and the measuring antenna was rotated around its vertical axis.
- **7.4.2.3** The worst test results (the lowest margins) were recorded in Table 7.4.2 and shown in the associated plots.

7.4.3 Test procedure for radiated spurious emission measurements above 30 MHz

- 7.4.3.1 The EUT was set up as shown in Figure 7.4.2, energized and the performance check was conducted.
- **7.4.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna height was swept from 1 to 4 m in both, vertical and horizontal, polarizations.
- 7.4.3.3 The worst test results (the lowest margins) were recorded in Table 7.4.2 and shown in the associated plots.

^{** -} P is transmitter output power in Watts

^{*** -} Equivalent field strength limit was calculated from maximum allowed ERP of spurious as follows: E=sqrt(30xPx1.64)/r, where P is ERP in Watts, 1.64 is numeric gain of ideal dipole and r is antenna to EUT distance in meters

Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions							
Test procedure:	47 CFR, Section 2.1053; TIA/EI	47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12						
Test mode:	Compliance	Verdict: PASS						
Date(s):	01-Nov-20	verdict.	PASS					
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1010 hPa	Power: 3.6 VDC					
Remarks:								

Figure 7.4.1 Setup for radiated spurious emission measurements in 9 kHz to 30 MHz band

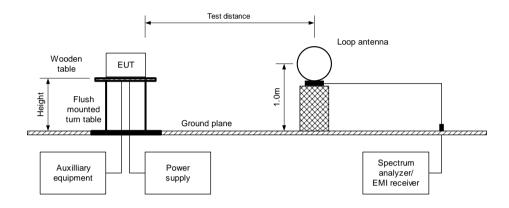
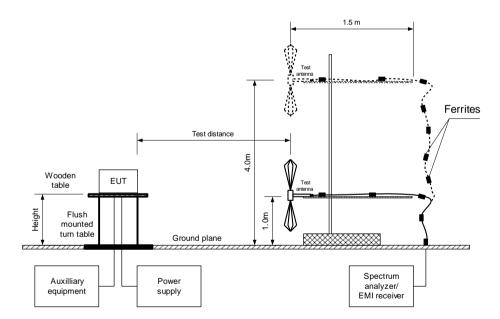



Figure 7.4.2 Setup for radiated spurious emission measurements above 30 MHz

Test specification:
Test procedure:

47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12

Test mode:
Compliance
Date(s):

1-Nov-20

Temperature: 23 °C
Relative Humidity: 46 %

Table 7.4.2 Radiated spurious emission test results

ASSIGNED FREQUENCY RANGE: 450 - 470 MHz

TEST DISTANCE: 3 m

TEST SITE: Semi anechoic chamber INVESTIGATED FREQUENCY RANGE: 0.009 – 5000 MHz

DETECTOR USED: Peak

VIDEO BANDWIDTH: > Resolution bandwidth
TEST ANTENNA TYPE: Active loop (9 kHz – 30 MHz)
Biconilog (30 MHz – 1000 MHz)

Double ridged guide (above 1000 MHz)

MODULATION: 4GFSK
BIT RATE: 4.8 kbps
TRANSMITTER OUTPUT POWER SETTINGS: Maximum

Frequency, MHz	Field strength, dB(μV/m)	Limit, dB(μV/m)	Margin, dB*	RBW, kHz	Antenna polarization	Antenna height, m	Turn-table position**, degrees	Verdict		
Low carrier f	Low carrier frequency 450.0031 MHz									
900.019	62.59	72.4	-9.81	100	Vertical	1.0	0	Pass		
1350.003	32.97	72.4	-39.43	1000	Vertical	1.7	20	Pass		
1799.992	33.39	72.4	-39.01	1000	Vertical	1.5	0			
Mid carrier fr	equency 460.0000	MHz								
919.999	63.79	72.4	-8.61	100	Vertical	1.0	0	Pass		
1379.964	27.25	72.4	-45.15	1000	Vertical	1.8	25	Pass		
1840.000	32.90	72.4	-39.50	1000	Vertical	1.5	0			
High carrier	High carrier frequency 469.9969 MHz									
1409.892	32.24	72.4	-40.16	1000	Vertical	1.6	0	Pass		
1880.000	36.40	72.4	-36.00	1000	Vertical	1.5	15	Pass		

^{*-} Margin = Field strength of spurious - calculated field strength limit.

Reference numbers of test equipment used

HL 3903	HL 4355	HL 4360	HL 4933	HL 5288	HL 5112					

Full description is given in Appendix A.

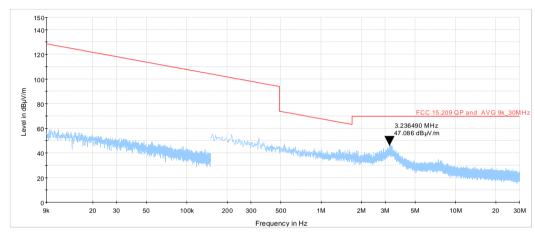
^{**-} EUT front panel refers to 0 degrees position of turntable.

Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions							
Test procedure:	47 CFR, Section 2.1053; TIA/E	47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12						
Test mode:	Compliance	Verdict:	PASS					
Date(s):	01-Nov-20	verdict.	PASS					
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1010 hPa	Power: 3.6 VDC					
Remarks:	-							

Plot 7.4.1 Radiated spurious emission measurements in 9 kHz - 30 MHz range

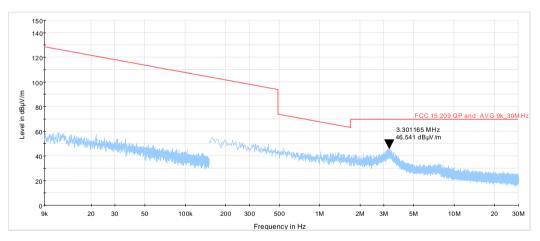
TEST SITE:

ANTENNA POLARIZATION:

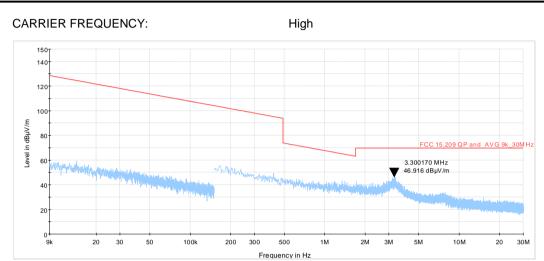

TEST DISTANCE:

Semi anechoic chamber

Vertical and Horizontal


3 m

TEST DISTANCE: 3 m CARRIER FREQUENCY: Low

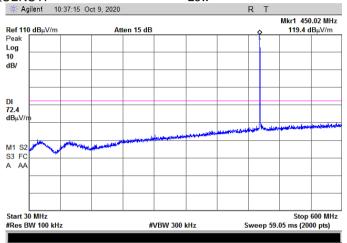

CARRIER FREQUENCY:

Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions							
Test procedure:	47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12							
Test mode:	Compliance	Verdict: PASS						
Date(s):	01-Nov-20	verdict.	PASS					
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1010 hPa	Power: 3.6 VDC					
Remarks:								

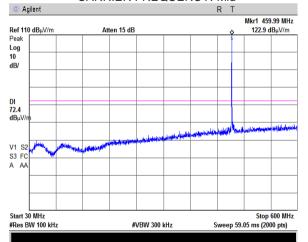
Test specification: Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions

Test procedure: 47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12

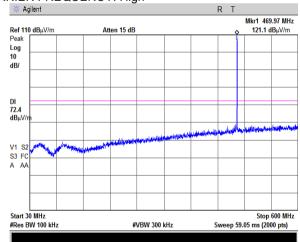
Test mode: Compliance Verdict: PASS

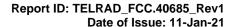

Temperature: 23 °C Relative Humidity: 46 % Air Pressure: 1010 hPa Power: 3.6 VDC

Remarks:


Plot 7.4.2 Radiated spurious emission measurements in 30 - 600 MHz range

TEST SITE: Semi anechoic chamber ANTENNA POLARIZATION: Vertical and Horizontal TEST DISTANCE: 3 m


CARRIER FREQUENCY: 3 m



CARRIER FREQUENCY: Mid

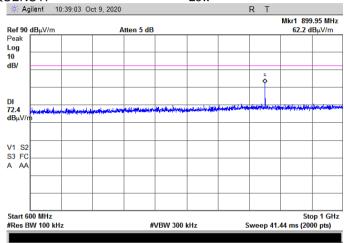
CARRIER FREQUENCY: High

Test specification: Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions

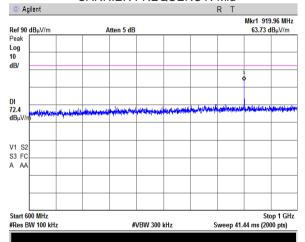
Test procedure: 47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12

Test mode: Compliance Verdict: PASS

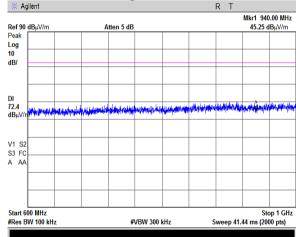
Date(s): 01-Nov-20


Temperature: 23 °C Relative Humidity: 46 % Air Pressure: 1010 hPa Power: 3.6 VDC

Remarks:

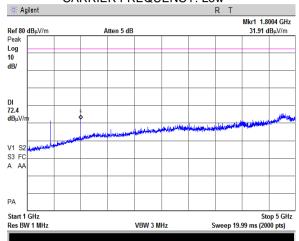

Plot 7.4.3 Radiated spurious emission measurements in 600 - 1000 MHz range

TEST SITE: Semi anechoic chamber ANTENNA POLARIZATION: Vertical and Horizontal


TEST DISTANCE: 3 m CARRIER FREQUENCY: Low

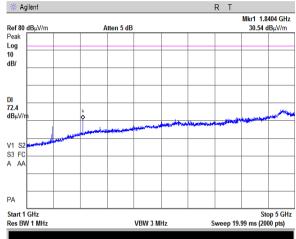
CARRIER FREQUENCY: Mid

CARRIER FREQUENCY: High

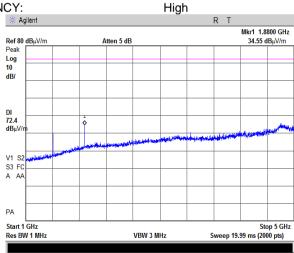


Test specification: Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions 47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12 Test procedure: Test mode: Compliance **PASS** Verdict: Date(s): 01-Nov-20 Temperature: 23 °C Relative Humidity: 46 % Air Pressure: 1010 hPa Power: 3.6 VDC Remarks:

Plot 7.4.4 Radiated spurious emission measurements in 1000 - 5000 MHz range


TEST SITE: ANTENNA POLARIZATION:

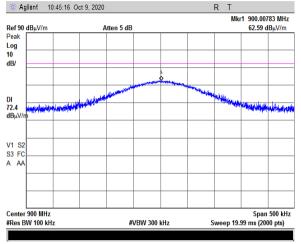
TEST DISTANCE: CARRIER FREQUENCY: Low

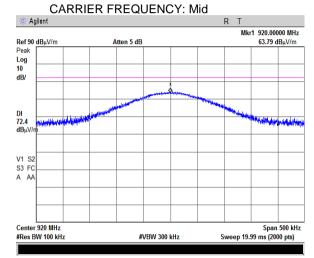


Semi anechoic chamber Vertical and Horizontal

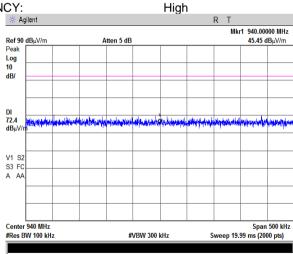
CARRIER FREQUENCY: Mid

CARRIER FREQUENCY:


Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions							
Test procedure:	47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12							
Test mode:	Compliance	Verdict: PASS						
Date(s):	01-Nov-20	verdict.	PASS					
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1010 hPa	Power: 3.6 VDC					
Remarks:								


Plot 7.4.5 Radiated spurious emission measurements at the 2nd harmonic

TEST SITE: ANTENNA POLARIZATION: TEST DISTANCE:


CARRIER FREQUENCY: Low

Semi anechoic chamber Vertical and horizontal 3 m

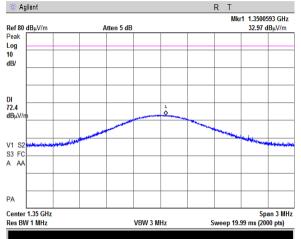
Test specification: Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions

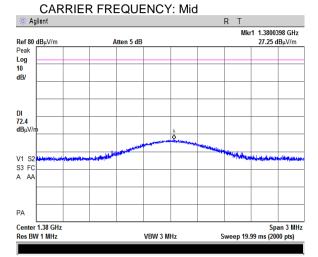
Test procedure: 47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12

Test mode: Compliance Verdict: PASS

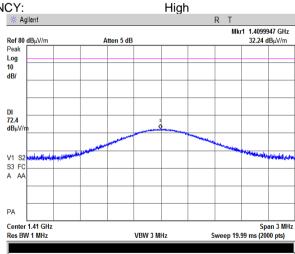
Date(s): 01-Nov-20

Temperature: 23 °C Relative Humidity: 46 % Air Pressure: 1010 hPa Power: 3.6 VDC


Remarks:


Plot 7.4.6 Radiated spurious emission measurements at the 3rd harmonic

TEST SITE: ANTENNA POLARIZATION: TEST DISTANCE:


CARRIER FREQUENCY: Low

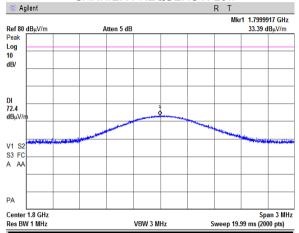
Semi anechoic chamber Vertical and Horizontal 3 m

Test specification: Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions

Test procedure: 47 CFR, Section 2.1053; TIA/EIA-603-E, Section 2.2.12

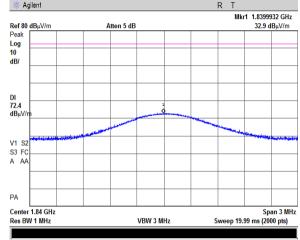
Test mode: Compliance Verdict: PASS

Date(s): 01-Nov-20

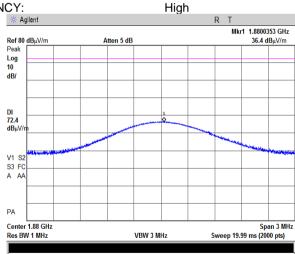

Temperature: 23 °C Relative Humidity: 46 % Air Pressure: 1010 hPa Power: 3.6 VDC

Remarks:

Plot 7.4.7 Radiated spurious emission measurements at the 4th harmonic


TEST SITE: ANTENNA POLARIZATION: TEST DISTANCE:

CARRIER FREQUENCY: Low



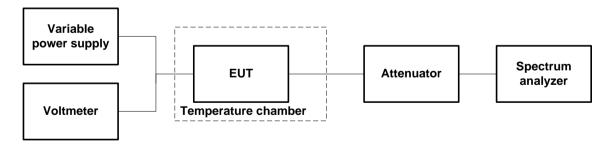
Semi anechoic chamber Vertical and Horizontal 3 m

Test specification:	Section 90.213 / RSS-119 Section 5.3, Frequency stability						
Test procedure:	47 CFR, Section 2.1055; TIA/EI	47 CFR, Section 2.1055; TIA/EIA-603-E, Section 2.2.2					
Test mode:	Compliance	Verdict: PASS					
Date(s):	01-Nov-20	verdict.	FASS				
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1010 hPa	Power: 3.6 VDC				
Remarks:							

7.5 Frequency stability test

7.5.1 General

This test was performed to measure frequency stability of transmitter RF carrier. Specification test limits are given in Table 7.5.1. The test results are provided in Table 7.5.2.


Table 7.5.1 Frequency stability limits

Assigned fraguency MHz	Maximum allowed frequency displacement				
Assigned frequency, MHz	ppm	Hz			
450.0031		450			
460.0000	1	460			
469.9969		470			

7.5.2 Test procedure

- 7.5.2.1 The EUT was set up as shown in Figure 7.5.1, energized and its proper operation was checked.
- **7.5.2.2** The EUT power was turned off. Temperature within test chamber was set to +30°C and a period of time sufficient to stabilize all of the oscillator circuit components was allowed.
- **7.5.2.3** The EUT was powered on and carrier frequency was measured at start up moment and then every minute until frequency had been stabilized or 10 minutes elapsed whichever reached the last. The EUT was powered off.
- **7.5.2.4** The above procedure was repeated at 0°C and at the lowest test temperature.
- **7.5.2.5** The EUT was powered on and carrier frequency was measured at start up moment and at the end of stabilization period at the rest of test temperatures and voltages. The EUT was powered off.
- 7.5.2.6 Frequency displacement was calculated and compared with the limit as provided in Table 7.5.2.

Figure 7.5.1 Frequency stability test setup

Test specification:	Section 90.213 / RSS-119 Section 5.3, Frequency stability						
Test procedure:	47 CFR, Section 2.1055; TIA/EI	47 CFR, Section 2.1055; TIA/EIA-603-E, Section 2.2.2					
Test mode:	Compliance	Verdict: PASS					
Date(s):	01-Nov-20	verdict.	PASS				
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1010 hPa	Power: 3.6 VDC				
Remarks:							

Table 7.5.2 Frequency stability test results

OPERATING FREQUENCY: 450.0 – 470.0 MHz

NOMINAL POWER VOLTAGE:
TEMPERATURE STABILIZATION PERIOD:
POWER DURING TEMPERATURE TRANSITION:
SPECTRUM ANALYZER MODE:
Counter
RESOLUTION BANDWIDTH:
VIDEO BANDWIDTH:
MODULATION:
Unmodulated

MOD	ULATION	l: Unmodulated											
T, ºC	Voltage,			Fre	quency, M	ИHz			Max frequency drift, Hz		Limit, Hz	Margin, Hz	Verdict
	٧	Start up	1 st min	2 nd min	3 rd min	4 th min	5 th min	10 th min	Positive	Negative	112	112	
Low f	requency		•							<u> </u>		•	
-30	nominal	450.003368	450.003370	450.003371	450.003370	450.003369	450.003370	450.003369	23	0		-427	Pass
-20	nominal	450.003295	NA	NA	NA	NA	NA	450.003292	0	-56		-394	Pass
-10	nominal	450.003270	NA	NA	NA	NA	NA	450.003277	0	-78		-372	Pass
0	nominal	450.003306	450.003307	450.003306	450.003307	450.003307	450.003306	450.003308	0	-42		-408	Pass
10	nominal	450.003327	NA	NA	NA	NA	NA	450.003340	0	-21		-429	Pass
20	+15%	450.003354	NA	NA	NA	NA	NA	450.003350	6	0	450	-444	Pass
20	nominal	450.003353	NA	NA	NA	NA	NA	450.003348	5	0		-445	Pass
20	-15%	450.003327	NA	NA	NA	NA	NA	450.003341	0	-21		-429	Pass
30	nominal	450.003323	450.003337	450.003341	450.003340	450.003341	450.003341	450.003341	0	-25		-425	Pass
40	nominal	450.003352	NA	NA	NA	NA	NA	450.003355	7	0		-443	Pass
50	nominal	450.003363	NA	NA	NA	NA	NA	450.003365	17	0		-433	Pass
Mid fr	Mid frequency												
-30	nominal	460.000325	460.000327	460.000328	460.000328	460.000327	460.000327	460.000328	26	0		-434	Pass
-20	nominal	460.000255	NA	NA	NA	NA	NA	460.000246	0	-56		-404	Pass
-10	nominal	460.000221	NA	NA	NA	NA	NA	460.000228	0	-81		-379	Pass
0	nominal	460.000251	460.000256	460.000257	460.000258	460.000260	460.000260	460.000260	0	-51		-409	Pass
10	nominal	460.000295	NA	NA	NA	NA	NA	460.000298	0	-7		-453	Pass
20	+15%	460.000305	NA	NA	NA	NA	NA	460.000305	3	0	460	-457	Pass
20	nominal	460.000303	NA	NA	NA	NA	NA	460.000302	1	0		-459	Pass
20	-15%	460.000296	NA	NA	NA	NA	NA	460.000295	0	-7		-453	Pass
30	nominal	460.000282	460.000296	460.000297	460.000297	460.000296	460.000297	460.000293	0	-20		-440	Pass
40	nominal	460.000306	NA	NA	NA	NA	NA	460.000311	9	0		-451	Pass
50	nominal	460.000320	NA	NA	NA	NA	NA	460.000321	19	0		-441	Pass
High t	frequency	/											
-30	nominal	469.997205	469.997210	469.997211	469.997211	469.997210	469.997210	469.997211	31	0		-439	Pass
-20	nominal	469.997137	NA	NA	NA	NA	NA	469.997126	0	-54		-416	Pass
-10	nominal	469.997096	NA	NA	NA	NA	NA	469.997103	0	-84		-386	Pass
0	nominal	469.997132	469.997136	469.997135	469.997136	469.997137	469.997136	469.997135	0	-48		-422	Pass
10	nominal	469.997167	NA	NA	NA	NA	NA	469.997176	0	-13		-457	Pass
20	+15%	469.997172	NA	NA	NA	NA	NA	469.997182	2	-8	470	-462	Pass
20	nominal	469.997181	NA	NA	NA	NA	NA	469.997180	1	0		-469	Pass
20	-15%	469.997175	NA	NA	NA	NA	NA	469.997176	0	-5		-465	Pass
30	nominal	469.997176	469.997177	469.997177	469.997176	469.997177	469.997176	469.997176	0	-4		-466	Pass
40	nominal	469.997186	NA	NA	NA	NA	NA	469.997187	7	0		-463	Pass
50	nominal	469.997205	NA	NA	NA	NA	NA	469.997206	26	0		-444	Pass

^{* -} Reference frequency

Reference numbers of test equipment used

HL 3286	HL 4355	HL 5608	HL 3521	HL 3901						

Full description is given in Appendix A.

Test specification:	Section 90.214 / RSS-119 Section 5.9, Transient frequency behaviour						
Test procedure:	TIA/EIA-603-E, Section 2.2.19	TIA/EIA-603-E, Section 2.2.19					
Test mode:	Compliance	Verdict: PASS					
Date(s):	14-Oct-20	verdict.	PASS				
Temperature: 23 °C	Relative Humidity: 45 %	Air Pressure: 1010 hPa	Power: 3.6 VDC				
Remarks:							

7.6 Transient frequency behaviour test

7.6.1 General

This test was performed to measure carrier frequency drift as function of time during transmitter start up and shut down. Specification test limits are given in Table 7.6.1. The test results are provided in the associated plots.

Table 7.6.1 Transient frequency limits

Channel bandwidth, kHz		Duration, ms	Time interval*
421.0 – 512.0 MHz band			
	± 6.25	10.0	t ₁
6.25	± 3.125	25.0	t ₂
	± 6.25	10.0	t ₃

^{* -} ton is the instant when a 1 kHz test signal is completely suppressed;

t₂ is the time period immediately following t₁;

t₃ is the time period from the instant when the transmitter is turned off until toff;

toff is the instant when the 1 kHz test signal starts to rise.

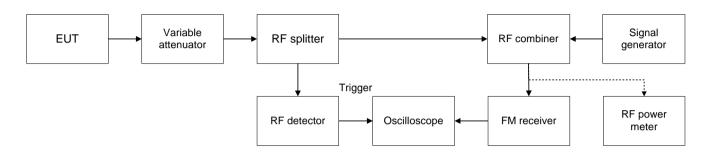
7.6.2 Test procedure

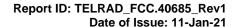
- **7.6.2.1** The EUT was set up as shown in Figure 7.6.1, energized and its proper operation was checked. Variable attenuator was adjusted to provide signal level approximately 40 dB below the FM receiver maximum allowed level as measured with RF power meter. The EUT was turned off.
- **7.6.2.2** The signal generator was set to the assigned transmitter frequency modulated with 1 kHz tone at 25 kHz deviation and the output power was adjusted to provide the same as the EUT signal level at the FM receiver input as measured with power meter.
- **7.6.2.3** The storage oscilloscope was set to provide horizontal sweep rate 10 milliseconds per division. Amplitude control of the storage oscilloscope was adjusted to obtain 1 kHz sinusoidal signal vertically centered with ± 4 divisions amplitude.
- **7.6.2.4** The variable attenuator was adjusted to increase RF level supplied to splitter by 30 dB and the EUT was consequently turned on and off. Transient frequency during power switching was captured and shown in the associated plots.

t₁ is the time period immediately following t_{on};

Test specification:	Section 90.214 / RSS-119 Section 5.9, Transient frequency behaviour			
Test procedure:	TIA/EIA-603-E, Section 2.2.19			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	14-Oct-20	verdict.	PASS	
Temperature: 23 °C	Relative Humidity: 45 %	Air Pressure: 1010 hPa	Power: 3.6 VDC	
Remarks:				

Figure 7.6.1 Transient frequency test setup

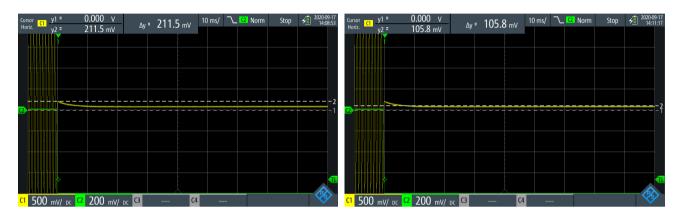



Table 7.6.2 Transient frequency behaviour test results

Carrier frequency, MHz	Time interval	Duration, ms	Frequency tolerance, kHz	Limit, kHz	Margin, kHz	Verdict	
Channel bandwidth 6.	Channel bandwidth 6.25 kHz						
	t ₁	10.0	2.644	± 6.25	-3.606		
450.0031	t_2	25.0	1.323	± 3.125	-1.802	Pass	
	t ₃	10.0	1.373	± 6.25	-4.877		
	t ₁	10.0	2.765	± 6.25	-3.485		
460.0000	t_2	25.0	1.202	± 3.125	-1.923	Pass	
	t ₃	10.0	1.373	± 6.25	-4.877		
	t ₁	10.0	2.524	± 6.25	-3.726		
469.9969	t_2	25.0	1.082	± 3.125	-2.043	Pass	
	t ₃	10.0	1.176	± 6.25	-5.074		

Reference numbers of test equipment used

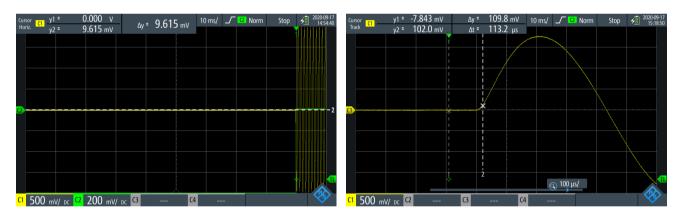
Reference numbers of test equipment used							
HL 5372	HL 0539	HL2227	HL 2017	HL 3433	HL 3434	HL 5714	HL 2015
HI 2016	HL 3370	HI 4068					

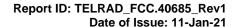

Full description is given in Appendix A.

Test specification:	Section 90.214 / RSS-119 Section 5.9, Transient frequency behaviour			
Test procedure:	TIA/EIA-603-E, Section 2.2.19			
Test mode:	Compliance	Verdict: PASS		
Date(s):	14-Oct-20	verdict.	PASS	
Temperature: 23 °C	Relative Humidity: 45 %	Air Pressure: 1010 hPa	Power: 3.6 VDC	
Remarks:		·		

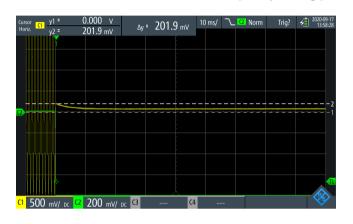
Plot 7.6.1 Transient frequency during power ON test results at low carrier frequency

Plot 7.6.2 Transient frequency during power OFF test results at low carrier frequency


Test specification:	Section 90.214 / RSS-119 Section 5.9, Transient frequency behaviour			
Test procedure:	TIA/EIA-603-E, Section 2.2.19			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	14-Oct-20	verdict.	FASS	
Temperature: 23 °C	Relative Humidity: 45 %	Air Pressure: 1010 hPa	Power: 3.6 VDC	
Remarks:				


Plot 7.6.3 Transient frequency during power ON test results at mid carrier frequency

Plot 7.6.4 Transient frequency during power OFF test results at mid carrier frequency



Test specification:	Section 90.214 / RSS-119 Section 5.9, Transient frequency behaviour			
Test procedure:	TIA/EIA-603-E, Section 2.2.19			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	14-Oct-20	verdict.	PASS	
Temperature: 23 °C	Relative Humidity: 45 %	Air Pressure: 1010 hPa	Power: 3.6 VDC	
Remarks:				

Plot 7.6.5 Transient frequency during power ON test results at high carrier frequency

Plot 7.6.6 Transient frequency during power OFF test results at high carrier frequency

8 APPENDIX A Test equipment and ancillaries used for tests

HL	Description	Manufacturer	Model	Ser. No.	Last Cal./	Due Cal./
No					Check	Check
0539	Generator Signal, 10 kHz - 1.2 GHz	Marconi Instruments	2023	112121/04 1	12-Aug-20	12-Aug-21
2015	Power Divider, 0.5-18.0 GHz, 80 W	Omni Spectra	2090- 6204-00	NA	21-Jan-19	21-Jan-21
2016	Attenuator, Manual Step, 0-9/1 dB, 0-8 GHz, 2 W	Midwest Microwave	1072	1315	08-Mar-20	08-Mar-21
2017	Attenuator, Manual Step, 0-60/10 dB, 0-8.0 GHz	Midwest Microwave	1071	2017	08-Mar-20	08-Mar-21
2909	Spectrum analyzer, ESA-E, 100 Hz to 26.5 GHz	Agilent Technologies	E4407B	MY414447 62	05-Apr-20	05-Apr-21
3286	Temperature Chamber, (-50 to +170) °C	Thermotron	EL-8-CH- 1-1-CO2	21-9048	04-Dec-19	04-Dec-20
3370	Load Termination 50 Ohm, 0.5 W, DC-1GHz	RELM	LT-50	3370	31-Oct-19	31-Oct-20
3433	Test Cable , DC-18 GHz, 1.5 m, SMA - SMA	Mini-Circuits	CBL-5FT- SMSM+	25679	13-Apr-20	13-Apr-21
3434	Test Cable , DC-18 GHz, 1.5 m, SMA - SMA	Mini-Circuits	CBL-5FT- SMSM+	25683	13-Apr-20	13-Apr-21
3521	Multimeter	Fluke	115	94771103	20-Jul-20	20-Jul-21
3787	Precision Fixed Attenuator, 50 Ohm, 5 W, 10 dB, DC to 18 GHz	Mini-Circuits	BW- S10W5+	NA	23-Sep-20	23-Sep-21
3818	PSA Series Spectrum Analyzer, 3 Hz- 44 GHz	Agilent Technologies	E4446A	MY482502 88	27-Apr-20	27-Apr-21
3901	Microwave Cable Assembly, 40.0 GHz, 3.5 m, SMA/SMA	Huber-Suhner	SUCOFL EX 102A	1225/2A	06-Apr-20	06-Apr-21
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFL EX 102A	1226/2A	06-Apr-20	06-Apr-21
4068	Attenuator, SMA, 30 dB, DC to 12.4 GHz	Midwest Microwave	ATT- 0527-30- SMA-07	NA	06-Aug-20	06-Aug-21
4339	High pass Filter, 50 Ohm, 1000 to 18000 MHz, SMA-FM / SMA-M	Micro-Tronics	HPM5011 5-02	001	05-Jun-19	05-Jun-21
4355	Signal and Spectrum Analyzer, 9 kHz to 7 GHz	Rohde & Schwarz	FSV 7	101630	09-Sep-20	09-Sep-21
4360	EMI Test Receiver, 20 Hz to 40 GHz.	Rohde & Schwarz	ESU40	100322	20-Jan-20	20-Jan-21
4413	Resistive divider, DC to 1.5 GHz, 2 W	Microlab	DA-3FN	NA	14-Nov-19	14-Nov-21
4933	Active Horn Antenna, 1 GHz to 18 GHz	COM-POWER CORPORATI ON	AHA-118	701046	06-Jan-20	06-Jan-21
5112	RF cable, 40 GHz, 5.5 m, K-type	Huber-Suhner	SF102EA/ 11SK/11S K/5500M M	502494/2E A	19-Apr-20	19-Apr-21

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
5288	Trilog Antenna, 25 MHz - 8 GHz, 100W	Frankonia	ALX- 8000E	00809	08-Feb-19	08-Feb-22
5372	MXE EMI receiver, 3 Hz to 44 GHz	Keysight Technologies	N9038A	MY572901 55	10-Aug-20	10-Aug-21
5397	H-field near field probe, 3 cm	ETS Lindgren	7405-902	NA	16-Aug-20	16-Aug-22
5608	Precision Fixed Attenuator, 50 Ohm, 5 W, 10 dB, DC to 18 GHz	Mini Circuits	BW- S10W5+	NA	17-Sep-20	17-Sep-21
5637	Cable, 50 Ohm, DC to 18 GHz, 1.8 m, SMA/SMA	Mini Circuits	CBL-6FT- SMSM+	NA	29-Oct-20	29-Oct-21
5714	Handheld Oscilloscope, 60 MHz, 4 channels	Rohde & Schwarz	RTH1004	104416	10-Dec-19	10-Dec-20

9 APPENDIX B Test equipment correction factors

HL 4933: Active Horn Antenna COM-POWER CORPORATION, model: AHA-118, s/n 701046

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
1000	-16.1
1500	-15.1
2000	-10.9
2500	-11.9
3000	-11.1
3500	-10.6
4000	-8.6
4500	-8.3
5000	-5.9
5500	-5.7
6000	-3.3
6500	-4.0
7000	-2.2
7500	-1.7
8000	1.1
8500	-0.8
9000	-1.5
9500	-0.2

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
10000	1.8
10500	1.0
11000	0.3
11500	-0.5
12000	3.1
12500	1.4
13000	-0.3
13500	-0.4
14000	2.5
14500	2.2
15000	1.9
15500	0.5
16000	2.1
16500	1.2
17000	0.6
17500	3.1
18000	4.2

The antenna factor shall be added to receiver reading in $dB_{\mu}V$ to obtain field strength in $dB_{\mu}V/m$.

HL 5112 RF cable, 40 GHz, 5.5 m, K-type Huber-Suhner, SF102EA/11SK/11SK/5500MM, s/n 502494/2EA, HL 5112

Insertion loss

Set / Applied, MHz	Measured, dB	Uncertainty, dB
100	0.70	±0.07
200	0.99	±0.08
300	1.21	±0.08
500	1.55	±0.08
1000	2.18	±0.08
1500	2.67	±0.08
2000	3.09	±0.08
2500	3.46	±0.10
3000	3.80	±0.10
3500	4.12	±0.10
4000	4.41	±0.10
4500	4.69	±0.10
5000	4.95	±0.10
5500	5.20	±0.10
6000	5.45	±0.10
6500	5.68	±0.10
7000	5.91	±0.10
7500	6.13	±0.10
8000	6.34	±0.10
8500	6.56	±0.10
9000	6.76	±0.10
9500	6.95	±0.10
10000	7.16	±0.10
10500	7.33	±0.10
11000	7.51	±0.10
11500	7.68	±0.10
12000	7.85	±0.10
12500	8.02	±0.13
13000	8.17	±0.13
13500	8.31	±0.13
14000	8.46	±0.13
14500	8.61	±0.18
15000	8.76	±0.18
15500	8.91	±0.18
16000	9.07	±0.18
16500	9.22	±0.18
17000	9.36	±0.18
17500	9.51	±0.18
18000	9.66	±0.18
18500	9.81	±0.23
19000	9.95	±0.23
19500	10.10	±0.23

Set / Applied,	Measured,	Uncertainty,
MHz	dB	dB
20000	10.25	±0.23
20500	10.38	±0.23
21000	10.52	±0.23
21500	10.67	±0.23
22000	10.84	±0.23
22500	11.00	±0.29
23000	11.10	±0.29
23500	11.20	±0.29
24000	11.32	±0.29
24500	11.42	±0.29
25000	11.59	±0.23
25500	11.70	±0.23
26000	11.85	±0.23
26500	11.97	±0.23
27000	12.07	±0.33
27500	12.17	±0.33
28000	12.26	±0.40
28500	12.38	±0.40
29000	12.50	±0.40
29500	12.63	±0.40
30000	12.75	±0.40
30500	12.82	±0.33
31000	12.93	±0.33
31500	13.09	±0.33
32000	13.22	±0.33
32500	13.35	±0.33
33000	13.48	±0.33
33500	13.60	±0.33
34000	13.72	±0.33
34500	13.80	±0.40
35000	13.92	±0.40
35500	14.01	±0.40
36000	14.12	±0.40
36500	14.23	±0.40
37000	14.34	±0.33
37500	14.44	±0.33
38000	14.57	±0.33
38500	14.72	±0.33
39000	14.82	±0.33
39500	14.94	±0.33
40000	15.08	±0.47

HL 5288: Trilog Antenna Frankonia, model: ALX-8000E, s/n: 00809 30-1000 MHz

	30-
Frequency, MHz	Antenna factor, dB/m
30	14.96
35	15.33
40	16.37
45	17.56
50	17.95
60	16.87
70	13.22
80	10.56
90	13.61
100	15.46
120	14.03
140	12.23

Frequency, MHz	Antenna factor, dB/m
160	12.67
180	13.34
200	15.40
250	16.42
300	17.28
400	19.98
500	21.11
600	22.90
700	24.13
800	25.25
900	26.35
1000	27.18

The antenna factor shall be added to receiver reading in $dB_{\mu}V$ to obtain field strength in $dB_{\mu}V/m$. **above 1000 MHz**

Frequency, MHz	Antenna factor, dB/m
1000	26.9
1100	28.1
1200	28.4
1300	29.6
1400	29.1
1500	30.4
1600	30.7
1700	31.5
1800	32.3
1900	32.6
2000	32.5
2100	32.9
2200	33.5
2300	33.2
2400	33.7
2500	34.6
2600	34.7
2700	34.6
2800	35.0
2900	35.5
3000	36.2
3100	36.8
3200	36.8
3300	37.0
3400	37.5
3500	38.2

Frequency, MHz	Antenna factor, dB/m
3600	38.9
3700	39.4
3800	39.4
3900	39.6
4000	39.7
4100	39.8
4200	40.5
4300	40.9
4400	41.1
4500	41.4
4600	41.3
4700	41.6
4800	41.9
4900	42.3
5000	42.7
5100	43.0
5200	42.9
5300	43.5
5400	43.6
5500	44.3
5600	44.7
5700	45.0
5800	45.0
5900	45.3
6000	45.9

The antenna factor shall be added to receiver reading in $dB_{\mu}V$ to obtain field strength in $dB_{\mu}V/m$.

10 APPENDIX C Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Transmitter tests	
Carrier power conducted at antenna connector	± 1.7 dB
Carrier power radiated (substitution method)	± 4.5 dB
Occupied bandwidth	±8%
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Spurious emissions radiated 30 MHz – 40 GHz (substitution method)	± 4.5 dB
Frequency error	30 – 300 MHz: ± 50.5 Hz (1.68 ppm)
	300 – 1000 MHz: ± 168 Hz (0.56 ppm)
Transient frequency behaviour	187 Hz
	± 13.9 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %
Unintentional radiator tests	
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB
	150 kHz to 30 MHz: ± 3.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

11 APPENDIX D Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, Radio, Safety, Environmental and Telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for relevant parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; Recognized by Innovation, Science and Economic Development Canada for wireless and terminal testing (ISED), ISED #2186A, CAB identifier is IL1001; Certified by VCCI, Japan (the registration numbers for OATS are R-10808 for RE measurements below 1 GHz, G-20112 for RE measurements above 1 GHz, R-11082 for anechoic chamber for RE measurements below 1 GHz, G-10869 for RE measurements above 1 GHz, C-10845 for conducted emissions site and T-11606 for conducted emissions at telecommunication ports).

The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing, environmental simulation and calibration (for exact scope please refer to Certificate No. 839.01, 839.03 and 839.04).

Address: P.O. Box 23, Binyamina 3055001, Israel.

Telephone: +972 4628 8001 Fax: +972 4628 8277 e-mail: mail@hermonlabs.com

website: www.hermonlabs.com

Person for contact: Mr. Michael Nikishin, EMC&Radio group manager

12 APPENDIX E

Specification references

FCC 47CFR part 90: 2019 FCC 47CFR part 2: 2019

ANSI/TIA/EIA-603-E:2016

RSS-119 Issue 12: 2015

Private land mobile radio services

Frequency allocations and radio treaty matters; general rules and regulations Land Mobile FM or PM Communications Equipment Measurement and Performance Standards

Land Mobile and Fixed Equipment Equipment Operating in the Frequency Range 27.41-960 MHz

13 APPENDIX F Manufacturer's declaration of Identity

Declaration of Identity

We, the undersigned,

Company: ST Engineering Telematics Wireless Ltd. Address: 26 Hamelacha street, POB 1911, Holon 5811801

Country: Israel

Telephone number: +972 35575700 Fax number: +972 35575703

Declare under our sole responsibility that the following equipment:

Brand/Item	Type/Model	Short Product description
Allegro wall Mount	ALLWM	The item operates in Allegro system at 450-470MHz

and

Type/Model	Short Product description
ALLRCD	The item operates in Allegro system at 450-470MHz

are electronically/ mechanically identical – have the same hardware (PCB card and antenna) and the same radio operational software, except that

(position)

Model ALLWM has a data cable connected to a water meter and a battery size C.

Model ALLRCD (used as a technician tool for debugging) has no data cable and has a battery size D.

1 Dec. 2020
(date)
(signature)

Roman Sternberg
(printed name)

VP Marketing & Business Development

ST Engineering Telematics Wireless Ltd.

(company stamp)

14 APPENDIX G Abbreviations and acronyms

A ampere

AC alternating current
AM amplitude modulation
AVRG average (detector)

BB broad band cm centimeter dB decibel

dBm decibel referred to one milliwatt $dB(\mu V)$ decibel referred to one microvolt

 $dB(\mu V/m)$ decibel referred to one microvolt per meter

dB(μA) decibel referred to one microampere

DC direct current

EIRP equivalent isotropically radiated power

ERP effective radiated power EUT equipment under test

F frequency GHz gigahertz GND ground H height

HL Hermon laboratories

Hz hertz
k kilo
kHz kilohertz
LO local oscillator
m meter

MHz megahertz min minute millimeter mm millisecond ms μS microsecond NA not applicable NΒ narrow band OATS open area test site

 Ω Ohm QP quasi-peak RE radiated emission RF radio frequency rms root mean square

Rx receive s second T temperature Tx transmit V volt

END OF DOCUMENT