

Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel Tel. +972 4628 8001 Fax. +972 4628 8277 E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC CFR 47 Part 90, subpart I, and RSS-119 Issue 12:2015

FOR:

ST Engineering Telematics Wireless Ltd Water meter Model: ALLEGRO2I FCC ID: NTA2W4GB2 IC: 4732A-2W4GB2

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Test configuration	5
6.3	Changes made in EUT	5
6.4	Transmitter characteristics	6
7	Transmitter tests according to 47CFR part 90 and RSS-119 requirements	7
7.1	Effective radiated power of carrier	
7.2	Radiated spurious emission measurements	14
8	APPENDIX A Test equipment and ancillaries used for tests	23
9	APPENDIX B Test equipment correction factors	25
10	APPENDIX C Measurement uncertainties	28
11	APPENDIX D Test laboratory description	29
12	APPENDIX E Specification references	30
13	APPENDIX F Abbreviations and acronyms	31

1 Applicant information

Client name:	ST Engineering Telematics Wireless Ltd		
Address:	26 Hamelaha street, POB 1911, Holon 5811801, Israel		
Telephone:	+972 3557 5767		
Fax:	+972 3557 5753		
E-mail:	itsikk@tlmw.com		
Contact name:	Mr. Itsik Kanner		

2 Equipment under test attributes

Product:	Water meter with internal antenna
Product name:	Allegro
Product type:	Transceiver
Model(s):	ALLEGRO2I
Serial number:	02525679
Hardware version:	REV A
Software release:	4.65
Receipt date	23-May-21

3 Manufacturer information

Manufacturer name:	ST Engineering Telematics Wireless Ltd
Address:	26 Hamelaha street, POB 1911, Holon 5811801, Israel
Telephone:	+972 3557 5767
Fax:	+972 3557 5753
E-Mail:	itsikk@tlmw.com
Contact name:	Mr. Itsik Kanner

4 Test details

Project ID:	42897
Location:	Hermon Laboratories Ltd. P.O. Box 23, Binyamina 3055001, Israel
Test started:	23-May-21
Test completed:	06-Jul-21
Test specification(s):	FCC part 90, subpart I; RSS-119 isue 12

5 Tests summary

Test	Status
FCC Section 90.205 / RSS-119 Section 5.4, Maximum output power	Pass
FCC Section 90.209 / RSS-119 Section 5.5, Occupied bandwidth	Not required*
FCC Section 90.210 / RSS-119 Section 5.8.4, Emission mask	Not required*
FCC Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions	Pass
FCC Section 90.210 / RSS-119 Section 5.8.4, Conducted spurious emissions	Not required*
FCC Section 90.213 / RSS-119 Section 5.3, Frequency stability	Not required*
FCC Section 90.214 / RSS-119 Section 5.9, Transient frequency behaviour	Not required*
FCC Section 2.1091 / RSS-102 section 2.5, RF radiation exposure evaluation	Pass, Exhibit in application for certification provided

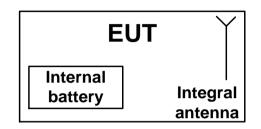
Note*. The test results provided in the test report TELRAD_FCC.42897_EA for device version with external antenna.

This test report supersedes the previously issued test report identified by Doc ID: TELRAD_FCC.42897_IA

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mr. A. Morozov, test engineer, EMC & Radio	23-May-21 – 06-Jun-21	fr
Reviewed by:	Mrs. S. Peysahov Sheynin, test engineer, EMC & Radio	23-Jul-21	
Approved by:	Mr. S. Samokha, technical manager, EMC & Radio	04-Aug-21	Can


6 EUT description

Note: The following data in this clause is provided by the customer and represents his sole responsibility

6.1 General information

The EUT is a Water Meter, operating in 450-470 MHz band, battery powered. The battery rated voltage is 3.6V.

6.2 Test configuration

6.3 Changes made in EUT

No changes were implemented in the EUT during testing.

6.4 Transmitter characteristics

Type of equipment													
	Stand-alone (Equipment with or without its own control provisions)												
		Equipment where the radio part is fully integrated within another type of equipment)											
Plug-in card (Equi	Plug-in card (Equipment intended for a variety of host systems)												
Intended use	Condition												
fixed	Always a												
X mobile		ways at a distance more than 20 cm from all people ay operate at a distance closer than 20 cm to human body											
portable	, i	erate a	t a dista	ance	closer t	han 2	20 cm	to human	body				
Assigned frequency rang	е		450- 4	70 M	Hz								
Maximum rated output po	wor		At tran	nsmitte	er 50 Ω	RF c	output	connector				33.2 dBm	
	Jwei		Effecti	ve rad	diated p	ower							
			Х	No									
							CC	ontinuous v	ariab	le			
Is transmitter output pow	er variable?			Yes			st	epped varia	able v	vith stepsiz	ze		
				res	res m		minimum RF power						
					n	naxim	um R	F power					
Antenna connection													
unique coupling		oton	dard co		tor			y RF connector					
		Star		Jillec	101			thout tempo	porary RF connector				
Antenna/s technical chara	acteristics												
Туре	Ma	anufac	turer			Mod	el nur	nber			Gain		
Internal	Ara	ad Tec	chnolog	ies		NA					0.5 dBi		
Transmitter 99% power b	andwidth				6 kHz								
Transmitter aggregate da	ta rate/s				4.8 kbps								
Type of modulation					4GFSK								
Modulating test signal (ba	aseband)				PRBS								
Maximum transmitter duty cycle in normal use				0.0023	023 % Tx ON time 1 s Per		Period	12 ho	urs				
Transmitter duty cycle supplied for test				100 %)	Tx C	ON time			Period			
Transmitter power source	e												
	Nominal rate				3.6 VI	C		Battery ty	ре	Lithium			
	Nominal rate				VDC								
AC mains	Nominal rate	d volt	age		VAC			Frequenc	у	Hz			
Common power source for	or transmitte	er and	receiv	er				Х	ye	es		no	

Test specification:	Section 90.205 / RSS-119 Section 5.4, Maximum output power						
Test procedure:	47 CFR, Section 2.1046; TIA/EI	47 CFR, Section 2.1046; TIA/EIA-603-E, Section 2.2.1					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	04-Jun-21 - 04-Jul-21	Verdict: PASS					
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC				
Remarks:							

7 Transmitter tests according to 47CFR part 90 and RSS-119 requirements

7.1 Effective radiated power of carrier

7.1.1 General

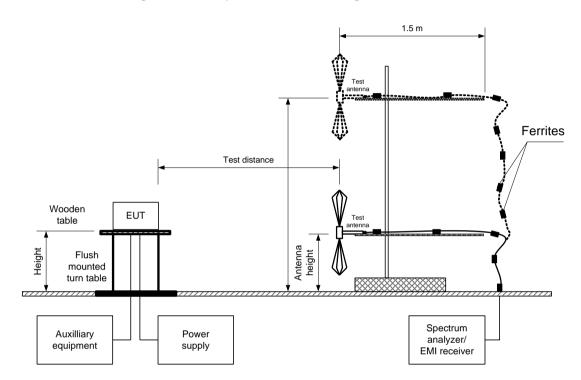
This test was performed to measure effective radiated power emanated by transmitter at carrier frequency. Specification test limits are given in Table 7.1.1.

Table 7.1.1 Effective radiated power limit

Assigned frequency band,	Ef	RP	Equivalent field strength limit @ 3n	
MHz	W	dBm	dB(µV/m)*	
According to FCC part 90.205				
450-470	2 33.00		130.38	
According to RSS-119				
450-470	60	47.78	145.16	

* - Equivalent field strength limit was calculated from maximum allowed ERP as follows: E=sqrt(30×P×1.64)/r, where P is ERP in Watts, 1.64 is numeric gain of ideal dipole and r is antenna to EUT distance in meters

7.1.2 Test procedure for field strength measurements


7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and the performance check was conducted.

- **7.1.2.2** The field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360, the measuring antenna height was swept throughout the range, specified in Table 7.1.2 and Table 7.1.3, in both vertical and horizontal polarizations.
- **7.1.2.3** The worst test results (the lowest margins) were recorded in Table 7.1.2 and Table 7.1.3 and shown in the associated plots.

Test specification:	Section 90.205 / RSS-119 Section 5.4, Maximum output power						
Test procedure:	47 CFR, Section 2.1046; TIA/EI	47 CFR, Section 2.1046; TIA/EIA-603-E, Section 2.2.1					
Test mode:	Compliance		PASS				
Date(s):	04-Jun-21 - 04-Jul-21	Verdict: PASS					
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC				
Remarks:							

Figure 7.1.1 Setup for carrier field strength measurements

×.

Test specification:	t specification: Section 90.205 / RSS-119 Section 5.4, Maximum output power							
Test procedure:	47 CFR, Section 2.1046; TIA/EIA-603-E, Section 2.2.1							
Test mode:	Compliance	Verdict: PASS						
Date(s):	04-Jun-21 - 04-Jul-21	verdict.	FA33					
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC					
Remarks:	· · ·							

Table 7.1.2 Transmitter carrier field strength according to FCC requirements

ASSIGNED	FREQUENCY F	RANGE:		450 - 470	MHz	
TEST SITE:				Semi anec	hoic chambe	ər
TEST DIST/	ANCE:			3 m		
EUT HEIGH	IT:			0.8 m		
TEST ANTE	NNA HEIGHTS	RANGE:		1.0 – 4.0 n	n	
DETECTOR	USED:			Peak		
VIDEO BAN	DWIDTH:			> Resoluti	on bandwidtl	า
TEST ANTE	NNA TYPE:			Biconilog		
MODULATI	ON:			4GFSK		
TRANSMIT	TER OUTPUT P	OWER SET	TINGS:	Maximum		
			Antonna		FUT	

	equency, MHz	Field strength, dB(μV/m)	Antenna polarization	Antenna height, m	Azimuth, degrees	EUT antenna gain, dBi	ERP, dBm***	Peak output power (conducted), dBm*	ERP Limit, dBm	Margin, dB**	Verdict
450	0.003125	128.3	Vertical	1.5	-160	0.5	30.9	32.6	33.00	-2.10	Pass
460	000000.0	128.9	Vertical	1.4	-160	0.5	31.5	33.2	33.00	-1.50	Pass
469	9.996875	125.4	Vertical	1.5	-110	0.5	28.0	29.7	33.00	-5.00	Pass

*- Peak output power was calculated from the field strength of carrier as follows: $P = (E \times d)^2 / (30 \times G)$,

where P is the peak output power in W, E is the field strength in V/m, d is the test distance in meters and G is the transmitter numeric antenna gain over an isotropic radiator. The above equation was converted in logarithmic units for 3 m test distance: Peak output power in dBm = Field strength in dB(μ V/m) - Transmitter antenna gain in dBi – 95.2 dB

**- Margin = ERP – specification ERP limit.

*** ERP=Field strength in dB(μ V/m) – 97.4 dB

Test specification:	Section 90.205 / RSS-119	Section 5.4, Maximum outp	ut power
Test procedure:	47 CFR, Section 2.1046; TIA/E	EIA-603-E, Section 2.2.1	
Test mode:	Compliance	Verdict: PASS	
Date(s):	04-Jun-21 - 04-Jul-21	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC
Remarks:			

Table 7.1.3 Transmitter carrier field strength according to RSS-119 requirements

ASSIGNED	FREQUENC	Y RANGE:		450 - 47	70 MHz	
TEST SITE:				Semi ar	nechoic char	nber
TEST DIST	ANCE:			3 m		
EUT HEIGH	T:			0.8 m		
TEST ANTE	NNA HEIGH	TS RANGE:		1.0 – 4.	0 m	
DETECTOR	USED:			Peak		
VIDEO BAN	DWIDTH:			> Resol	ution bandw	ridth
TEST ANTE	NNA TYPE:			Biconilc	g	
MODULATIO	ON:			4GFSK		
TRANSMITTER OUTPUT POWER SETTINGS:			Maximum			

Frequency, MHz	strength	Antenna polarization	Antenna height, m	Azimuth, degrees	EUT antenna gain, dBi	ERP, dBm***	Peak output power (conducted), dBm*	ERP Limit, dBm	- Margin, dB**	Verdict
450.003125	128.3	Vertical	1.5	5	0.5	30.9	32.6	47.78	-16.88	Pass
460.000000	128.9	Vertical	1.4	5	0.5	31.5	33.2	47.78	-16.28	Pass
469.996875	125.4	Vertical	1.5	5	0.5	28.0	29.7	47.78	-19.78	Pass

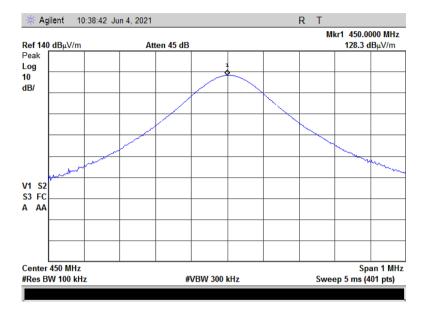
*- Peak output power was calculated from the field strength of carrier as follows: $P = (E \times d)^2 / (30 \times G)$,

where P is the peak output power in W, E is the field strength in V/m, d is the test distance in meters and G is the transmitter numeric antenna gain over an isotropic radiator. The above equation was converted in logarithmic units for 3 m test distance: Peak output power in dBm = Field strength in dB(μ V/m) - Transmitter antenna gain in dBi – 95.2 dB

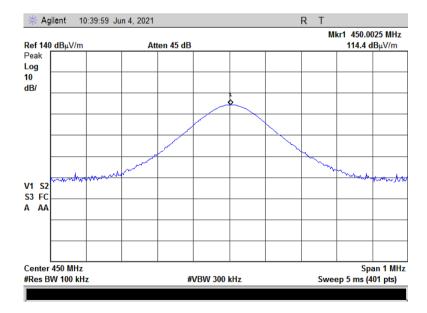
**- Margin = ERP – specification ERP limit.

*** ERP=Field strength in dB(μ V/m) – 97.4 dB

Reference numbers of test equipment used

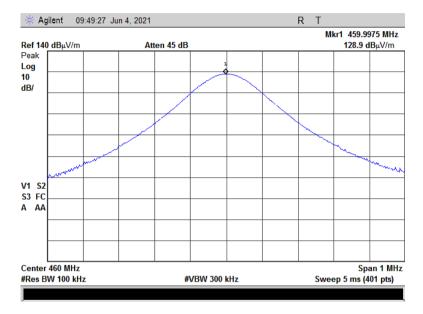

HL 5288 HL 2909 HL 3903 HL 5404

Full description is given in Appendix A.



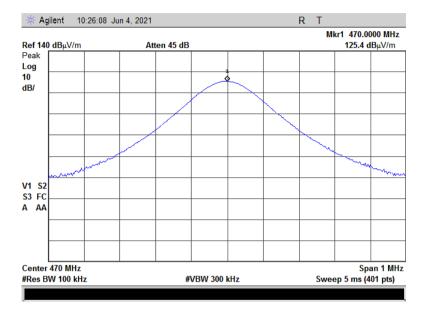
Test specification:	Section 90.205 / RSS-119	Section 5.4, Maximum outp	ut power
Test procedure:	47 CFR, Section 2.1046; TIA/E	IA-603-E, Section 2.2.1	
Test mode:	Compliance	Verdict: PASS	
Date(s):	04-Jun-21 - 04-Jul-21	verdict.	FA35
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC
Remarks:			

Plot 7.1.1 Transmitter carrier field strength at low frequency in vertical antenna polarization


Plot 7.1.2 Transmitter carrier field strength at low frequency in horizontal antenna polarization

Test specification:	Section 90.205 / RSS-119	Section 5.4, Maximum outp	ut power
Test procedure:	47 CFR, Section 2.1046; TIA/E	EIA-603-E, Section 2.2.1	
Test mode:	Compliance	Verdict: PASS	
Date(s):	04-Jun-21 - 04-Jul-21	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC
Remarks:			

Plot 7.1.3 Transmitter carrier field strength at mid frequency in vertical antenna polarization


Plot 7.1.4 Transmitter carrier field strength at mid frequency in horizontal antenna polarization

Test specification:	Section 90.205 / RSS-119	Section 5.4, Maximum outp	ut power
Test procedure:	47 CFR, Section 2.1046; TIA/E	EIA-603-E, Section 2.2.1	
Test mode:	Compliance	Verdict: PASS	
Date(s):	04-Jun-21 - 04-Jul-21	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC
Remarks:	•		

Plot 7.1.5 Transmitter carrier field strength at high frequency in vertical antenna polarization

Plot 7.1.6 Transmitter carrier field strength at high frequency in horizontal antenna polarization

Test specification:	Section 90.210 / RSS-119 S	Section 5.8.4, Radiated spur	rious emissions
Test procedure:	47 CFR, Sections 2.1053 and 9	0.210(m); TIA/EIA-603-A, Sectio	on 2.2.12
Test mode:	Compliance	Verdict: PASS	
Date(s):	04-Jun-21 - 04-Jul-21	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC
Remarks:			

7.2 Radiated spurious emission measurements

7.2.1 General

This test was performed to measure radiated spurious emissions from the EUT. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Radiated spurious emission test limits

Frequency,	Attenuation below carrier,	ERP of spurious,	Equivalent field strength limit @ 3m,
MHz	dBc	dBm	dB(μV/m)***
0.009 – 10th harmonic*	55+10logP**	-25	72.35

* - Excluding the in band emission within ± 250 % of the authorized bandwidth from the carrier

** - P is transmitter output power in Watts

*** - Equivalent field strength limit was calculated from maximum allowed ERP of spurious as follows: E=sqrt(30xPx1.64)/r, where P is ERP in Watts, 1.64 is numeric gain of ideal dipole and r is antenna to EUT distance in meters

7.2.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.2.2.1 The EUT was set up as shown in Figure 7.2.1, energized and the performance check was conducted.
- **7.2.2.** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360^o and the measuring antenna was rotated around its vertical axis.
- 7.2.2.3 The worst test results (the lowest margins) were recorded in Table 7.2.2 and shown in the associated plots.

7.2.3 Test procedure for spurious emission field strength measurements above 30 MHz

- 7.2.3.1 The EUT was set up as shown in Figure 7.2.2, energized and the performance check was conducted.
- **7.2.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360^o and the measuring antenna height was swept from 1 to 4 m in both, vertical and horizontal, polarizations.
- 7.2.3.3 The worst test results (the lowest margins) were recorded in Table 7.2.2 and shown in the associated plots.

Test specification:	Section 90.210 / RSS-119	Section 5.8.4, Radiated spu	rious emissions
Test procedure:	47 CFR, Sections 2.1053 and	90.210(m); TIA/EIA-603-A, Secti	on 2.2.12
Test mode:	Compliance	Verdict:	PASS
Date(s):	04-Jun-21 - 04-Jul-21	verdict.	FA33
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC
Remarks:	· · ·		

Figure 7.2.1 Setup for spurious emission field strength measurements in 9 kHz to 30 MHz band

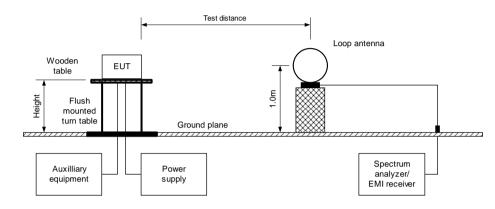
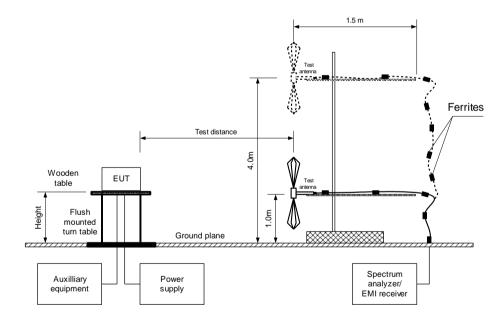



Figure 7.2.2 Setup for spurious emission field strength measurements above 30 MHz

Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions			
Test procedure:	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	04-Jun-21 - 04-Jul-21	verdict.	FA33	
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC	
Remarks:	-			

Table 7.2.2 Spurious emission field strength test results

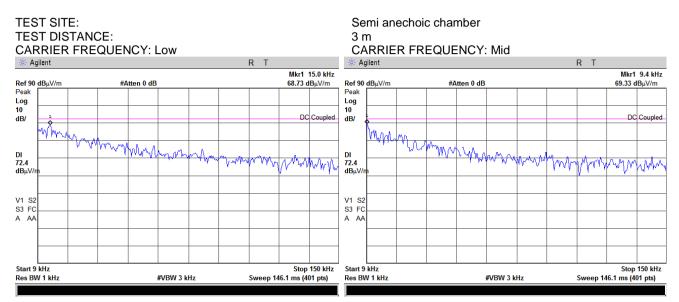
ASSIGNED FREQUENCY RANGE: 450 - 470 MHz TEST DISTANCE: 3 m TEST SITE: Semi anechoic chamber EUT HEIGHT: 0.8 m INVESTIGATED FREQUENCY RANGE: 0.009 – 5000 MHz DETECTOR USED: Peak VIDEO BANDWIDTH: > Resolution bandwidth TEST ANTENNA TYPE: Active loop (9 kHz - 30 MHz) Biconilog (30 MHz - 1000 MHz) Double ridged guide (above 1000 MHz) MODULATION: 4GFSK 4.8 kbps BIT RATE: TRANSMITTER OUTPUT POWER SETTINGS: Maximum

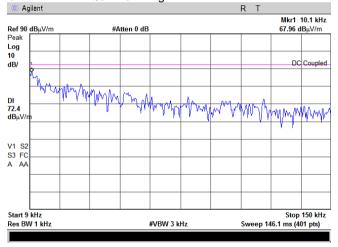
Field strength, dB(μV/m)	Limit, dB(µV/m)	Margin, dB*	RBW, kHz	Antenna polarization	Antenna height, m	Turn-table position**, degrees	Verdict
Low carrier frequency 450.003125 MHz							
64.21	72.3	-8.09	120	Vert	1.4	-160	Pass
50.54	72.3	-21.76	1000	Vert	1.4	130	Pass
Mid carrier frequency 460.000000 MHz							
64.63	72.3	-7.67	120	Vert	1.5	-160	Pass
56.21	72.3	-16.09	1000	Vert	1.4	-180	Pass
High carrier frequency 469.996875 MHz							
63.58	72.3	-8.72	120	Vert	1.5	-140	Pass
60.00	72.3	-12.30	1000	Vert	1.3	-180	Pass
	Field strength, dB(μV/m) requency 450.003 64.21 50.54 equency 460.0000 64.63 56.21 requency 469.996 63.58	Field strength, dB(μV/m) Limit, dB(μV/m) requency 450.003125 MHz 64.21 72.3 50.54 72.3 equency 460.000000 MHz 64.63 64.21 72.3 56.21 72.3 requency 469.996875 MHz 63.58	Field strength, dB(μV/m) Limit, dB(μV/m) Margin, dB* requency 450.003125 MHz 64.21 72.3 -8.09 50.54 72.3 -21.76 equency 460.000000 MHz 64.63 72.3 -7.67 56.21 72.3 -16.09 -16.09 requency 469.996875 MHz 63.58 72.3 -8.72	Field strength, dB(μV/m) Limit, dB(μV/m) Margin, dB* RBW, kHz requency 450.003125 MHz 64.21 72.3 -8.09 120 50.54 72.3 -21.76 1000 equency 460.000000 MHz -76.67 120 64.63 72.3 -7.67 120 56.21 72.3 -16.09 1000 requency 469.996875 MHz 63.58 72.3 -8.72 120	Field strength, dB(μV/m) Limit, dB(μV/m) Margin, dB* RBW, kHz Antenna polarization requency 450.003125 MHz -	Field strength, dB(μV/m) Limit, dB(μV/m) Margin, dB* RBW, kHz Antenna polarization Antenna height, m 64.21 72.3 -8.09 120 Vert 1.4 50.54 72.3 -21.76 1000 Vert 1.4 equency 460.000000 MHz -7.67 120 Vert 1.4 64.63 72.3 -7.67 120 Vert 1.4 equency 460.000000 MHz -7.67 120 Vert 1.4 64.63 72.3 -7.67 120 Vert 1.4 63.58 72.3 -8.72 120 Vert 1.4	Field strength, dB(μV/m) Limit, dB(μV/m) Margin, dB* RBW, kHz Antenna polarization Antenna height, m Turn-table position**, degrees 64.21 72.3 -8.09 120 Vert 1.4 -160 50.54 72.3 -21.76 1000 Vert 1.4 130 equency 460.000000 MHz - - - - - - - - - - 1.60 - - 1.60 - - - - - - - - - - 1.60 -

*- Margin = Field strength of spurious – calculated field strength limit.

**- EUT front panel refers to 0 degrees position of turntable.

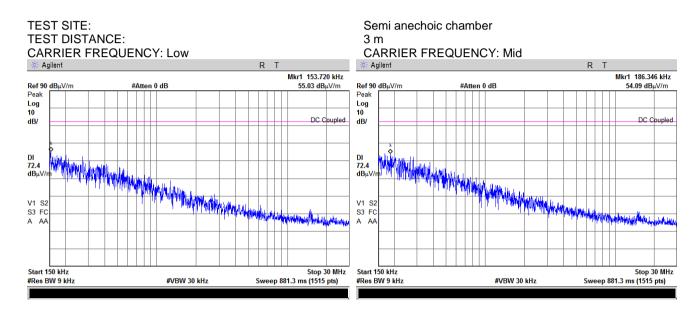
Reference numbers of test equipment used


HL 0446	HL 2909	HL 3339	HL 3903	HL 4280	HL 4339	HL 4933	HL 5288
HL 5902							


Full description is given in Appendix A.

Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions				
Test procedure:	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	04-Jun-21 - 04-Jul-21	verdict.	FA33		
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC		
Remarks:					

Plot 7.2.1 Radiated emission measurements in 9 - 150 kHz range

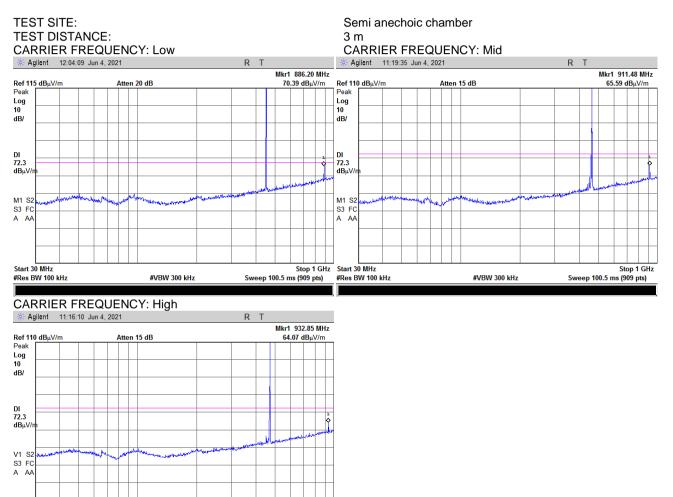


Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions				
Test procedure:	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	04-Jun-21 - 04-Jul-21	verdict.	FA33		
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC		
Remarks:					

Plot 7.2.2 Radiated emission measurements in 0.15 - 30 MHz range

Mkr1 160.875 kHz

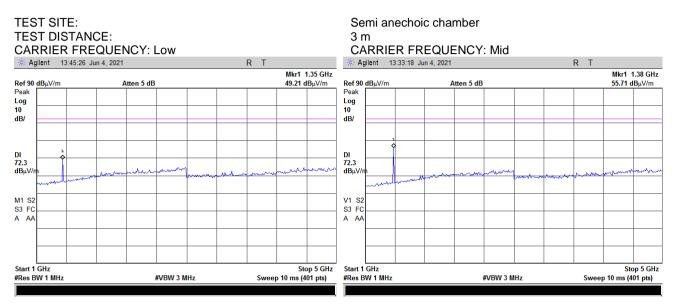
CARRIER FREQUENCY: High 🔆 Agilent R T #Atten 0 dB Ref 90 dBµV/m Peak Log 10 dB/

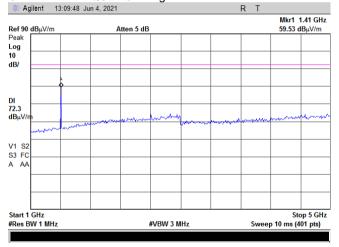


Start 30 MHz #Res BW 100 kHz

Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions				
Test procedure:	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	04-Jun-21 - 04-Jul-21	verdict:	PASS		
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC		
Remarks:	÷ •	· ·			

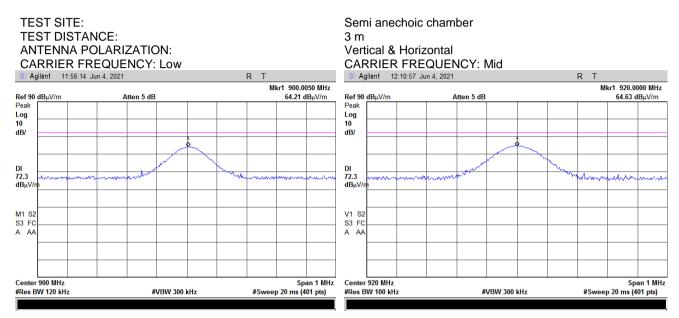
Plot 7.2.3 Radiated emission measurements in 30 - 1000 MHz range

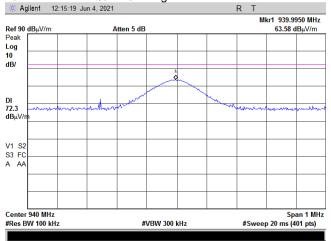

Stop 1 GHz Sweep 100.5 ms (909 pts)


#VBW 300 kHz

Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions			
Test procedure:	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	04-Jun-21 - 04-Jul-21	veraict.	FA33	
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC	
Remarks:				

Plot 7.2.4 Radiated emission measurements in 1000 - 5000 MHz range



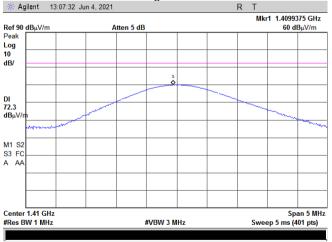


Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions				
Test procedure:	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	04-Jun-21 - 04-Jul-21	verdict.	FA33		
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC		
Remarks:					

Plot 7.2.5 Radiated emission measurements at the 2nd harmonic

Test specification:	Section 90.210 / RSS-119 Section 5.8.4, Radiated spurious emissions				
Test procedure:	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	04-Jun-21 - 04-Jul-21	verdict.	FA35		
Temperature: 23 °C	Relative Humidity: 46 %	Air Pressure: 1012 hPa	Power: 3.6 VDC		
Remarks:					

Plot 7.2.6 Radiated emission measurements at the 3 harmonic


TEST SITE: Semi anechoic chamber TEST DISTANCE: 3 m ANTENNA POLARIZATION: Vertical & Horizontal CARRIER FREQUENCY: Low CARRIER FREQUENCY: Mid 🔆 Agilent 13:42:39 Jun 4, 2021 R * Agilent 13:31:38 Jun 4, 2021 R T Т Mkr1 1.3500625 GHz Mkr1 1.3800000 GHz
 Ref 90 dBμV/m

 Peak

 Log

 10

 dB/
Atten 5 dB 50.54 dBµV/m Ref 90 dBµV/m Atten 5 dB 56.21 dBµV/m Peak Log 10 dB/ DI 72.3 dBµV DI 72.3 dBµV/ M1 S2 S3 FC A AA V1 S2 S3 FC A AA Span 5 MHz Sweep 5 ms (401 pts) Span 5 MHz Sweep 5 ms (401 pts) Center 1.35 GHz Center 1.38 GHz #VBW 3 MHz #VBW 3 MHz #Res BW 1 MHz #Res BW 1 MHz

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0446	Antenna, Loop, Active, 10 (9) kHz - 30 MHz	EMCO	6502	2857	28-Feb-21	28-Feb-22
2016	Attenuator, Manual Step, 0-9/1 dB, 0-8 GHz, 2 W	Midwest Microwave	1072	1315	13-Apr-21	13-Apr-22
2017	Attenuator, Manual Step, 0-60/10 dB, 0- 8.0 GHz	Midwest Microwave	1071	2017	13-Apr-21	13-Apr-22
2227	Crystal Detector 0.01-18 GHz, 100 mW	Hewlett Packard Co	8472A	NA	24-Dec-19	24-Dec-21
2358	Power Supply, 2 X 0-36VDC / 5A, 5VDC / 5A	Horizon Electronics	DHR3655 D	767469	25-Jun-20	25-Jun-21
2909	Spectrum analyzer, ESA-E, 100 Hz to 26.5 GHz	Agilent Technologies	E4407B	MY414447 62	12-May-21	12-Jun-22
3339	High Pass Filter, 50 Ohm, 600 to 3000 MHz.	Mini-Circuits	SHP- 600+	NA	05-Jun-19	05-Jun-21
3433	Test Cable , DC-18 GHz, 1.5 m, SMA - SMA	Mini-Circuits	CBL-5FT- SMSM+	25679	19-Apr-21	19-Apr-22
3434	Test Cable , DC-18 GHz, 1.5 m, SMA - SMA	Mini-Circuits	CBL-5FT- SMSM+	25683	19-Apr-21	19-Apr-22
3766	Attenuator, N-type, 20 dB, DC to 18 GHz, 5 W	Mini-Circuits	BW- N20W5+	NA	15-Sep-20	15-Sep-21
3901	Microwave Cable Assembly, 40.0 GHz, 3.5 m, SMA/SMA	Huber-Suhner	SUCOFL EX 102A	1225/2A	06-Apr-21	06-Apr-22
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFL EX 102A	1226/2A	06-Apr-21	06-Apr-22
4280	Test Cable , DC-18 GHz, 4.6 m, N/M - N/M	Mini-Circuits	APC- 15FT- NMNM+	0763A	03-Aug-20	03-Aug-21
4339	High pass Filter, 50 Ohm, 1000 to 18000 MHz, SMA-FM / SMA-M	Micro-Tronics	HPM5011 5-02	001	05-Jun-19	05-Jun-21
4355	Signal and Spectrum Analyzer, 9 kHz to 7 GHz	Rohde & Schwarz	FSV 7	101630	09-Sep-20	09-Sep-21
4360	EMI Test Receiver, 20 Hz to 40 GHz.	Rohde & Schwarz	ESU40	100322	19-Jan-21	19-Jan-22
4366	Directional coupler, 1 GHz to 18 GHz, 10 dB, SMA Female	Tiger Micro- Electronics Institute	TGD- A1101-10	01e- JSDE805- 007	03-Jun-20	03-Jun-22
4914	Bandpass filter, 600 to 1100 MHz, SMA/F-SMA/F	K&L Microwave Inc.	7IB44- 900/U600 -O/O	24	05-Jun-19	05-Jun-21
4933	Active Horn Antenna, 1 GHz to 18 GHz	COM-POWER CORPORATI ON	AHA-118	701046	26-Jan-21	26-Jan-22
5288	Trilog Antenna, 25 MHz - 8 GHz, 100W	Frankonia	ALX- 8000E	00809	08-Feb-19	08-Feb-22

8 APPENDIX A Test equipment and ancillaries used for tests

HL	Description	Manufacturer	Model	Ser. No.	Last Cal./	Due Cal./
No					Check	Check
5369	Digital storage oscilloscope, 350 MHz	Keysight	DSOX303	MY580326	01-Jun-20	01-Aug-21
		Technologies	4T	30		
5371	EXG Analog Signal Generator, 9 kHz -	Keysight	N5173B	MY572805	25-Aug-20	25-Aug-21
	40 GHz	Technologies		40		
5372	MXE EMI receiver, 3 Hz to 44 GHz	Keysight	N9038A	MY572901	15-Mar-21	15-Mar-22
		Technologies		55		
5404	RF cable, 18 GHz, N-N, 6 m	Huber-Suhner	SF118/11	500024/18	19-Nov-20	19-Nov-21
			N(x2)			
5409	RF cable, 40 GHz, SMA-SMA, 2 m	Huber-Suhner	SF102EA/	503973/2E	03-Aug-20	03-Aug-21
			11SK/11S	А		_
			K/2000M			
			Μ			
5472	Power Splitter / Combiner 0.5-1 GHz	Mini Circuits	ZAPD-1	NA	28-Jan-21	28-Jan-23
5623	Precision Fixed Attenuator, 50 Ohm, 5	Mini Circuits	BW-	NA	14-Sep-20	14-Sep-21
	W, 20 dB, DC to 18 GHz		N20W5+			
5902	RF cable, 18 GHz, 6.0m, N-type	Huber-Suhner	SF126EA/		01-Dec-20	01-Dec-21
			11N/11N/			
			6000			

9 APPENDIX B Test equipment correction factors

Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
10	-33.4	±1.0
20	-37.8	±1.0
50	-40.5	±1.0
75	-41.0	±1.0
100	-41.2	±1.0
150	-41.2	±1.0
250	-41.1	±1.0
500	-41.2	±1.0
750	-41.3	±1.0
1000	-41.3	±1.0

HL 0446: Active Loop Antenna EMCO, model: 6502, s/n 2857

Frequency,	Measured antenna factor, dBS/m	Measurement uncertainty, dB
2000	-41.4	±1.0
3000	-41.4	±1.0
4000	-41.5	±1.0
5000	-41.5	±1.0
10000	-41.7	±1.0
15000	-42.1	±1.0
20000	-42.7	±1.0
25000	-44.2	±1.0
30000	-45.8	±1.0

The antenna factor shall be added to receiver reading in $dB_{\mu}V$ to obtain field strength in $dB_{\mu}A/m$.

HL 4933: Active Horn Antenna
COM-POWER CORPORATION, model: AHA-118, s/n 701046

	COMPROVER CORPORATI
Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
1000	-16.1
1500	-15.1
2000	-10.9
2500	-11.9
3000	-11.1
3500	-10.6
4000	-8.6
4500	-8.3
5000	-5.9
5500	-5.7
6000	-3.3
6500	-4.0
7000	-2.2
7500	-1.7
8000	1.1
8500	-0.8
9000	-1.5
9500	-0.2

Frequency, MHz	Measured antenna factor (with preamplifier), dB/m
10000	1.8
10500	1.0
11000	0.3
11500	-0.5
12000	3.1
12500	1.4
13000	-0.3
13500	-0.4
14000	2.5
14500	2.2
15000	1.9
15500	0.5
16000	2.1
16500	1.2
17000	0.6
17500	3.1
18000	4.2

The antenna factor shall be added to receiver reading in $dB_{\mu}V$ to obtain field strength in $dB_{\mu}V/m$.

HL 5288: Trilog Antenna Frankonia, model: ALX-8000E, s/n: 00809 30-1000 MHz

Frequency, MHz	Antenna factor, dB/m
30	14.96
35	15.33
40	16.37
45	17.56
50	17.95
60	16.87
70	13.22
80	10.56
90	13.61
100	15.46
120	14.03
140	12.23

Frequency, MHz	Antenna factor, dB/m
160	12.67
180	13.34
200	15.40
250	16.42
300	17.28
400	19.98
500	21.11
600	22.90
700	24.13
800	25.25
900	26.35
1000	27.18

The antenna factor shall be added to receiver reading in dB μ V to obtain field strength in dB μ V/m. above 1000 MHz

Frequency, MHz	Antenna factor, dB/m
1000	26.9
1100	28.1
1200	28.4
1300	29.6
1400	29.1
1500	30.4
1600	30.7
1700	31.5
1800	32.3
1900	32.6
2000	32.5
2100	32.9
2200	33.5
2300	33.2
2400	33.7
2500	34.6
2600	34.7
2700	34.6
2800	35.0
2900	35.5
3000	36.2
3100	36.8
3200	36.8
3300	37.0
3400	37.5
3500	38.2

Frequency, MHz	Antenna factor, dB/m
3600	38.9
3700	39.4
3800	39.4
3900	39.6
4000	39.7
4100	39.8
4200	40.5
4300	40.9
4400	41.1
4500	41.4
4600	41.3
4700	41.6
4800	41.9
4900	42.3
5000	42.7
5100	43.0
5200	42.9
5300	43.5
5400	43.6
5500	44.3
5600	44.7
5700	45.0
5800	45.0
5900	45.3
6000	45.9

The antenna factor shall be added to receiver reading in dBµV to obtain field strength in dBµV/m.

Set / Applied,	Measured,	Uncertainty,
MHz	dB	dB
0.1	0.01	±0.07
50	0.23	±0.07
100	0.32	±0.07
200	0.45	±0.08
300	0.55	±0.08
400	0.64	±0.08
500	0.71	±0.08
600	0.78	±0.08
700	0.85	±0.08
800	0.91	±0.08
900	0.97	±0.08
1000	1.02	±0.08
1100	1.07	±0.08
1200	1.12	±0.08
1300	1.16	±0.08
1400	1.21	±0.08
1500	1.25	±0.08
1600	1.30	±0.08
1700	1.34	±0.08
1800	1.38	±0.08
1900	1.42	±0.08
2000	1.47	±0.08
2500	1.64	±0.10
3000	1.81	±0.10
3500	1.97	±0.10
4000	2.11	±0.10
4500	2.25	±0.10
5000	2.38	±0.10
5500	2.48	±0.10
6000	2.59	±0.10
6500	2.72	±0.10
7000	2.84	±0.13
7500	2.97	±0.13
8000	3.08	±0.13
8500	3.21	±0.13
9000	3.31	±0.13
9500	3.42	±0.13
10000	3.52	±0.13

HL 5405: RF Cable Huber-Suhner, model: SF118/11N(x2), s/n: 500023/118

10 APPENDIX C Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements
--

Test description	Expanded uncertainty
Transmitter tests	
Carrier power conducted at antenna connector	± 1.7 dB
Carrier power radiated (substitution method)	± 4.5 dB
Occupied bandwidth	±8%
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Spurious emissions radiated 30 MHz – 40 GHz (substitution method)	± 4.5 dB
Frequency error	30 – 300 MHz: ± 50.5 Hz (1.68 ppm)
	300 – 1000 MHz: ± 168 Hz (0.56 ppm)
Transient frequency behaviour	187 Hz
	± 13.9 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %
Unintentional radiator tests	
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB
	150 kHz to 30 MHz: ± 3.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: \pm 6.0 dB
	Double ridged horn antenna: ± 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

11 APPENDIX D Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, Radio, Safety, Environmental and Telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for relevant parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; Recognized by Innovation, Science and Economic Development Canada for wireless and terminal testing (ISED), ISED #2186A, CAB identifier is IL1001; Certified by VCCI, Japan (the registration numbers for OATS are R-10808 for RE measurements below 1 GHz, G-20112 for RE measurements above 1 GHz, R-11082 for anechoic chamber for RE measurements below 1 GHz, G-10869 for RE measurements above 1 GHz, C-10845 for conducted emissions site and T-11606 for conducted emissions at telecommunication ports).

The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing, environmental simulation and calibration (for exact scope please refer to Certificate No. 839.01, 839.03 and 839.04).

Address:P.O. Box 23, Binyamina 3055001, Israel. Telephone: +972 4628 8001 Fax: +972 4628 8277 e-mail: mail@hermonlabs.com website: www.hermonlabs.com

Person for contact: Mr. Michael Nikishin, EMC&Radio group manager

12 **APPENDIX E**

Specification references

FCC 47CFR part 90: 2020

Private land mobile radio services

Frequency allocations and radio treaty matters; general rules and regulations

Land Mobile FM or PM Communications Equipment Measurement and Performance Standards

Land Mobile and Fixed Equipment Equipment Operating in the Frequency Range 27.41-960 MHz

General Requirements for Compliance of Radio Apparatus

FCC 47CFR part 2: 2020

ANSI/TIA/EIA-603-E:2016

RSS-119 Issue 12: 2015 RSS-Gen Issue 5: 2019

13 APPENDIX F Abbreviations and acronyms

AC alternating current AM amplitude modulation AVRG average (detector) BB broad band cm centimeter dB decibel dBm decibel referred to one miliwatt dB(μ V/m) decibel referred to one microvolt per meter dB(μ A) decibel referred to one microwolt per meter dB(μ A) decibel referred to one microwolt per meter dB(μ A) decibel referred to one microwolt per meter dB(μ A) decibel referred to one microwolt per meter dB(μ A) decibel referred to one microwolt per meter dB(μ A) decibel referred to one microwolt per meter dB(μ A) decibel referred to one microwolt per meter dB(μ A) decibel referred to one microwolt per meter dB(μ A) decibel referred to one microwolt per meter dB(μ A) decibel referred to one microwolt per meter dB(μ A) decibel referred to one microwolt per meter dB(μ A) decibel referred to one microwolt per meter EUT equipment under test F frequency GHz gigahertz GND ground H height HL Hermon laboratories Hz hertz k kilo kHz kilohertz LO local oscillator m meter MHz megahertz min minute mm millimeter ms millisecond μ A not applicable NB narrow band OATS open area test site Ω Ohm QP quasi-peak RE radiated emission RF radio frequency rms root mean square Rx receive s second T temperature Tx transmit V volt	A	ampere
AVRGaverage (detector)BBbroad bandcmcentimeterdBdecibeldBmdecibel referred to one miliwattdB(μ V)decibel referred to one microvoltdB(μ V/m)decibel referred to one microvolt per meterdB(μ A)decibel referred to one microampereDCdirect currentEIRPequivalent isotropically radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmQPquasi-peakREradiated emissionRFradiated emission <t< td=""><td>AC</td><td>alternating current</td></t<>	AC	alternating current
BBbroad bandcmcentimeterdBdecibeldBmdecibel referred to one microvoltdB(μ/V)decibel referred to one microvolt per meterdB(μ/Vm)decibel referred to one microvolt per meterdB(μ/M)decibel referred to one microampereDCdirect currentEIRPequivalent isotropically radiated powerEUTequipment under testFfrequencyGNDgroundHheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillisecondμsmicrosecondNAnot applicableNBnarrow bandOATSopen area test siteΩOhmQPquasi-peakREradiated emissionRFradiated e		
CmcentimeterdBdecibeldBmdecibel referred to one milliwattdB(μ V)decibel referred to one microvoltdB(μ V/m)decibel referred to one microvolt per meterdB(μ A)decibel referred to one microvalt per meterGNAgigahertzfrequencyKkilokHzhertzkHzkilokHzkiloMHzmegahertzminminutemmmillimetermsmillisecondNAnot applicableNBnarrow bandOATSopen area test site Ω Ohm<	-	
dBdecibeldBmdecibel referred to one milliwattdB(μV)decibel referred to one microvoltdB(μV/m)decibel referred to one microvolt per meterdB(μA)decibel referred to one microampereDCdirect currentEIRPequivalent isotropically radiated powerERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillisecondμsmicrosecondNAnot applicableNBnarrow bandOATSopen area test siteΩOhmQPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit		
dBmdecibel referred to one milliwattdB(μV)decibel referred to one microvoltdB(μV/m)decibel referred to one microvolt per meterdB(μA)decibel referred to one microampereDCdirect currentEIRPequivalent isotropically radiated powerERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillisecondμs<		
$\begin{array}{lll} dB(\mu V) & decibel referred to one microvolt \\ dB(\mu V/m) & decibel referred to one microvolt per meter \\ dB(\mu A) & decibel referred to one microampere \\ DC & direct current \\ EIRP & equivalent isotropically radiated power \\ ERP & effective radiated power \\ EUT & equipment under test \\ F & frequency \\ GHz & gigahertz \\ GND & ground \\ H & height \\ HL & Hermon laboratories \\ Hz & hertz \\ k & kilo \\ kHz & kilohertz \\ LO & local oscillator \\ m & meter \\ MHz & megahertz \\ min & minute \\ mm & millimeter \\ ms & millisecond \\ \mu s & microsecond \\ NA & not applicable \\ NB & narrow band \\ OATS & open area test site \\ \Omega & Ohm \\ QP & quasi-peak \\ RE & radiated emission \\ RF & radio frequency \\ rms & root mean square \\ Rx & receive \\ s & second \\ T & temperature \\ Tx & transmit \\ \end{array}$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<u>. </u>	
dB(μA)decibel referred to one microampereDCdirect currentEIRPequivalent isotropically radiated powerERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloKHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillisecondμsmicrosecondNAnot applicableNBnarrow bandOATSopen area test siteΩOhmQPquasi-peakREradiated emissionRFradio frequencyrmsrolic frequencyrms		
DCdirect currentEIRPequivalent isotropically radiated powerERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloKHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillimetermsmillisecondμsmicrosecondNAnot applicableNBnarrow bandOATSopen area test siteΩOhmQPquasi-peakREradiated emissionRFradiated emissionRFradiated emissionRFradiated requencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit		
EIRPequivalent isotropically radiated powerERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloKHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecondμsmicrosecondNAnot applicableNBnarrow bandOATSopen area test siteΩOhmQPquasi-peakREradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit		
ERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloKHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmQPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit		
EUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloKHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillimetermsmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmQPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit		
GHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillimetermsmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmQPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit	EUT	
GNDgroundHheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillimetermsmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmQPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit	F	frequency
HheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmQPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit	GHz	gigahertz
HLHergen Hermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmQPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit		•
HzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmQPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit		
kkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmQPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit		
kHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmQPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit		
LOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmQPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit		
mmeterMHzmegahertzminminutemmmillimetermsmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmQPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	mm	millimeter
NAnot applicableNBnarrow bandOATSopen area test site Ω OhmQPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit	ms	millisecond
$\begin{array}{llllllllllllllllllllllllllllllllllll$	μS	microsecond
$\begin{array}{llllllllllllllllllllllllllllllllllll$	NA	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
QPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit		•
REradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit		
RFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmit		
rms root mean square Rx receive s second T temperature Tx transmit		
RxreceivessecondTtemperatureTxtransmit		
s second T temperature Tx transmit	-	
T temperature Tx transmit		
Tx transmit		
V volt	Tx	•
	V	volt

END OF DOCUMENT