

FCC Measurement/Technical Report on

Infotainment Controller VCE CDC

FCC ID: NT8-VCECDC IC: 3043A-VCECDC

Test Report Reference: MDE_VIS_1910_FCC_03

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Sebastian Doose Bernhard Retka

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	5
2	Revision History / Signatures	9
3	Administrative Data	10
3.1	Testing Laboratory	10
3.2	Project Data	10
3.3	Applicant Data	10
3.4	Manufacturer Data	10
4	Test object Data	11
4.1	General EUT Description	11
4.2	EUT Main components	12
4.3	Ancillary Equipment	12
4.4	Auxiliary Equipment	12
4.5	EUT Setups	13
4.6 4.7	Operating Modes / Test Channels DUTY CYCLE	13 13
4.7	Product labelling	15
	-	
5		17
5.1	Occupied Bandwidth (6 dB)	17
5.2 5.3	Occupied Bandwidth (99%) Peak Power Output	21 25
5.4	Spurious RF Conducted Emissions	32
5.5	Transmitter Spurious Radiated Emissions	37
5.6	Band Edge Compliance Conducted	45
5.7	Band Edge Compliance Radiated	52
5.8	Power Density	59
6	Test Equipment	65
6.1	Test Equipment Hardware	65
6.2	Test Equipment Software	69
7	Antenna Factors, Cable Loss and Sample Calculations	70
7.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	70
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	71
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	72
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	73
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	74
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	75
8	Measurement Uncertainties	76
9	Photo Report	77

1. Applied Standards and Test Summary

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-23 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10-2013 is applied.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Dio equipment		
Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5 & AMD 1 & AMD 2: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 3: 5.2 (a)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 3: 5.4 (d)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5 & AMD 1 & AMD 2: 6.13 / 8.9/8.10; RSS-247 Issue 3: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5 & AMD 1 & AMD 2: 6.13 / 8.9/8.10; RSS-247 Issue 3: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 3: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 3: 5.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5 & AMD 1 & AMD 2: 8.3
Receiver spurious emissions	-	-

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

§ 15.247 (a) (2)

Occupied Bandwidth (6 dB)

The measurement was performed according to ANSI C63.10, chapter **Final Result** 11.8.1

OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
WLAN b, high	S01_AF01	2024-03-05	Passed	Passed
WLAN b, low	S01_AF01	2024-03-05	Passed	Passed
WLAN b, mid	S01_AF01	2024-03-05	Passed	Passed
WLAN g, high	S01_AF01	2024-03-05	Passed	Passed
WLAN g, low	S01_AF01	2024-03-05	Passed	Passed
WLAN g, mid	S01_AF01	2024-03-05	Passed	Passed
WLAN n 20 MHz, high	S01_AF01	2024-03-05	Passed	Passed
WLAN n 20 MHz, low	S01_AF01	2024-03-05	Passed	Passed
WLAN n 20 MHz, mid	S01_AF01	2024-03-05	Passed	Passed
WLAN n 40 MHz, high	S01_AF01	2024-03-05	Passed	Passed
WLAN n 40 MHz, low	S01_AF01	2024-03-05	Passed	Passed
WLAN n 40 MHz, mid	S01_AF01	2024-03-05	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

IC RSS-Gen & IC TRC-43; Ch. 6.7 & Ch. 8

Subpart C §15.247				
Occupied Bandwidth (99%) The measurement was performed accor	rding to ANSI C63	10 chanter	Final	Result
6.9.3		, io, enapter	i illar i	(Court
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency				
WLAN b, high	S01_AF01	2024-03-05	N/A	Performed
WLAN b, low	S01_AF01	2024-03-05	N/A	Performed
WLAN b, mid	S01_AF01	2024-03-05	N/A	Performed
WLAN g, high	S01_AF01	2024-03-05	N/A	Performed
WLAN g, low	S01_AF01	2024-03-05	N/A	Performed
WLAN g, mid	S01_AF01	2024-03-05	N/A	Performed
WLAN n 20 MHz, high	S01_AF01	2024-03-05	N/A	Performed
WLAN n 20 MHz, low	S01_AF01	2024-03-05	N/A	Performed
WLAN n 20 MHz, mid	S01_AF01	2024-03-05	N/A	Performed
WLAN n 40 MHz, high	S01_AF01	2024-03-05	N/A	Performed
WLAN n 40 MHz, low	S01_AF01	2024-03-05	N/A	Performed
WLAN n 40 MHz, mid	S01_AF01	2024-03-05	N/A	Performed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

Subpart C §15.247				
Peak Power Output				
The measurement was performed accord	ding to ANSI C63	.10, chapter	Final Re	esult
11.9.1.1/11.9.2.3.2				
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency,	occup	Date		
Measurement method				
WLAN b, high, conducted	S01_AF01	2024-03-05	Passed	Passed
WLAN b, low, conducted	S01_AF01	2024-03-05	Passed	Passed
WLAN b, mid, conducted	S01_AF01	2024-03-05	Passed	Passed
WLAN g, high, conducted	S01_AF01	2024-03-05	Passed	Passed
WLAN g, low, conducted	S01_AF01	2024-03-05	Passed	Passed
WLAN g, mid, conducted	S01_AF01	2024-03-05	Passed	Passed
WLAN n 20 MHz, high, conducted	S01_AF01	2024-03-05	Passed	Passed
WLAN n 20 MHz, low, conducted	S01_AF01	2024-03-05	Passed	Passed
WLAN n 20 MHz, mid, conducted	S01_AF01	2024-03-05	Passed	Passed
WLAN n 40 MHz, high, conducted	S01_AF01	2024-03-05	Passed	Passed
WLAN n 40 MHz, low, conducted	S01_AF01	2024-03-05	Passed	Passed
W/LANL a AO MULTE and describe at				
WLAN n 40 MHz, mid, conducted	S01_AF01	2024-03-05	Passed	Passed
	S01_AF01	2024-03-05	Passed	Passed
47 CFR CHAPTER I FCC PART 15	S01_AF01 § 15.247 (d		Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247			Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions	§ 15.247 (d)		
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed accord	§ 15.247 (d)	Passed Final Re	
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions	§ 15.247 (d)		
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed accord	§ 15.247 (d)		
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed accord 11.11	§ 15.247 (d ding to ANSI C63) .10, chapter	Final Re	esult
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed accord 11.11 OP-Mode	§ 15.247 (d ding to ANSI C63) .10, chapter	Final Re	esult
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed accord 11.11 OP-Mode Radio Technology, Operating Frequency	§ 15.247 (d ding to ANSI C63 Setup) .10, chapter Date	Final Re FCC	esult IC
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed accord 11.11 OP-Mode Radio Technology, Operating Frequency WLAN b, high	§ 15.247 (d ding to ANSI C63 Setup S01_AF01	 D) a.10, chapter Date 2024-03-05 	Final Re FCC Passed	esult IC Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed accord 11.11 OP-Mode Radio Technology, Operating Frequency WLAN b, high WLAN b, low	§ 15.247 (d ding to ANSI C63 Setup S01_AF01 S01_AF01	 Date 2024-03-05 2024-03-05 	Final Re FCC Passed Passed	esult IC Passed Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed accord 11.11 OP-Mode Radio Technology, Operating Frequency WLAN b, high WLAN b, low WLAN b, mid	§ 15.247 (d ding to ANSI C63 Setup S01_AF01 S01_AF01 S01_AF01	Date 2024-03-05 2024-03-05 2024-03-05	Final Re FCC Passed Passed Passed	esult IC Passed Passed Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed accord 11.11 OP-Mode Radio Technology, Operating Frequency WLAN b, high WLAN b, low WLAN b, mid WLAN g, high	§ 15.247 (d ding to ANSI C63 Setup S01_AF01 S01_AF01 S01_AF01 S01_AF01 S01_AF01	 Date 2024-03-05 2024-03-05 2024-03-05 2024-03-05 2024-03-05 2024-03-05 	Final Re FCC Passed Passed Passed Passed	esult IC Passed Passed Passed Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed accord 11.11 OP-Mode Radio Technology, Operating Frequency WLAN b, high WLAN b, low WLAN b, mid WLAN g, high WLAN g, low	§ 15.247 (d ding to ANSI C63 Setup S01_AF01 S01_AF01 S01_AF01 S01_AF01 S01_AF01	 a.10, chapter Date 2024-03-05 2024-03-05 2024-03-05 2024-03-05 2024-03-05 2024-03-05 2024-03-05 	Final Re FCC Passed Passed Passed Passed Passed	esult IC Passed Passed Passed Passed Passed Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed accord 11.11 OP-Mode Radio Technology, Operating Frequency WLAN b, high WLAN b, low WLAN b, mid WLAN g, high WLAN g, low WLAN g, mid	§ 15.247 (d ding to ANSI C63 Setup S01_AF01 S01_AF01 S01_AF01 S01_AF01 S01_AF01 S01_AF01 S01_AF01	2024-03-05 2024-03-05 2024-03-05 2024-03-05 2024-03-05 2024-03-05 2024-03-05 2024-03-05	Final Re FCC Passed Passed Passed Passed Passed Passed Passed	esult IC Passed Passed Passed Passed Passed Passed Passed

S01_AF01

S01_AF01

S01_AF01

S01_AF01

2024-03-05

2024-03-05

2024-03-05

2024-03-05

Passed

Passed

Passed

Passed

WLAN n 20 MHz, mid

WLAN n 40 MHz, high

WLAN n 40 MHz, low

WLAN n 40 MHz, mid

Passed

Passed

Passed

Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

§ 15.247 (d)

Transmitter	Spurious	Radiated	Emissions
rianoniccei	opunious	radiacea	

The measurement was performed according to ANSI C63.10, chapter **Final Result** 6.4, 6.5, 6.6.5

OP-Mode Radio Technology, Operating Frequency, Measurement range	Setup	Date	FCC	IC
WLAN b, high, 1 GHz - 26 GHz	S01_AB01	2024-03-12	Passed	Passed
WLAN b, high, 30 MHz - 1 GHz	S01_AB01	2024-04-12	Passed	Passed
WLAN b, low, 1 GHz - 26 GHz	S01_AB01	2024-02-24	Passed	Passed
WLAN b, low, 30 MHz - 1 GHz	S01_AB01	2024-03-14	Passed	Passed
WLAN b, mid, 1 GHz - 26 GHz	S01_AB01	2024-02-26	Passed	Passed
WLAN b, mid, 30 MHz - 1 GHz	S01_AB01	2024-04-12	Passed	Passed
WLAN b, mid, 9 kHz - 30 MHz	S01_AB01	2024-02-24	Passed	Passed
WLAN g, high, 1 GHz - 26 GHz Remark: 1 - 8 GHz tested	S01_AB01	2024-03-11	Passed	Passed
WLAN g, low, 1 GHz - 26 GHz Remark: 1 - 8 GHz tested	S01_AB01	2024-03-11	Passed	Passed
WLAN g, mid, 1 GHz - 26 GHz Remark: 1 - 8 GHz tested	S01_AB01	2024-03-11	Passed	Passed

47 CFR CHAPTER I FCC PART 15 § 15.247 (d) Subpart C §15.247

Band Edge Compliance Conducted The measurement was performed according to ANSI C63.10, chapter 11.11			Final Result	
OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC
WLAN b, high, high	S01_AF01	2024-03-05	Passed	Passed
WLAN b, low, low	S01_AF01	2024-03-05	Passed	Passed

WLAN b, high, high	S01_AF01	2024-03-05	Passed	Passed
WLAN b, low, low	S01_AF01	2024-03-05	Passed	Passed
WLAN g, high, high	S01_AF01	2024-03-05	Passed	Passed
WLAN g, low, low	S01_AF01	2024-03-05	Passed	Passed
WLAN n 20 MHz, high, high	S01_AF01	2024-03-05	Passed	Passed
WLAN n 20 MHz, low, low	S01_AF01	2024-03-05	Passed	Passed
WLAN n 40 MHz, high, high	S01_AF01	2024-03-05	Passed	Passed
WLAN n 40 MHz, low, low	S01_AF01	2024-03-05	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

Band Edge Compliance Radiated The measurement was performed according to ANSI C63.10, chapter **Final Result** 6.6.5

§ 15.247 (d)

§ 15.247 (e)

OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC
WLAN b, high, high	S01_AB01	2024-03-12	Passed	Passed
WLAN g, high, high	S01_AB01	2024-03-11	Passed	Passed
WLAN n 20 MHz, high, high	S01_AB01	2024-03-11	Passed	Passed
WLAN n 40 MHz, high, high	S01_AB01	2024-03-11	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

Power Density

The measurement was performed according to ANSI C63.10, chapter **Final Result** 11.10.2/11.10.7

OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
WLAN b, high	S01_AF01	2024-03-05	Passed	Passed
WLAN b, low	S01_AF01	2024-03-05	Passed	Passed
WLAN b, mid	S01_AF01	2024-03-05	Passed	Passed
WLAN g, high	S01_AF01	2024-03-05	Passed	Passed
WLAN g, low	S01_AF01	2024-03-05	Passed	Passed
WLAN g, mid	S01_AF01	2024-03-05	Passed	Passed
WLAN n 20 MHz, high	S01_AF01	2024-03-05	Passed	Passed
WLAN n 20 MHz, low	S01_AF01	2024-03-05	Passed	Passed
WLAN n 20 MHz, mid	S01_AF01	2024-03-05	Passed	Passed
WLAN n 40 MHz, high	S01_AF01	2024-03-05	Passed	Passed
WLAN n 40 MHz, low	S01_AF01	2024-03-05	Passed	Passed
WLAN n 40 MHz, mid	S01_AF01	2024-03-05	Passed	Passed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control					
Version	Release date	Change Description	Version validity		
initial	2024-09-19		valid		

COMMENT: -

? Sal

(responsible for accreditation scope) Dipl.-Ing. Robert Machulec

(responsible for testing and report) MSc. Joel Asongwe

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name:	7layers GmbH
Address:	Borsigstr. 11 40880 Ratingen Germany
The test facility is accredited by the fol	lowing accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-01 -02 -03
FCC Designation Number:	DE0015
FCC Test Firm Registration:	929146
ISED CAB Identifier	DE0007; ISED#: 3699A
Responsible for accreditation scope:	DiplIng. Robert Machulec
Report Template Version:	2023-09-29

3.2 PROJECT DATA

Responsible for testing and report:	MSc. Joel Asongwe
Employees who performed the tests:	documented internally at 7Layers
Date of Report:	2024-09-19
Testing Period:	2024-02-24 to 2024-04-12

3.3 APPLICANT DATA

Company Name:	Name: Visteon Corporation	
Address:	One Village Center Drive Van Buren Township, MI, 48111 United States	
Contact Person:	Mr. Martin Tapankov	

Contact Person:

3.4 MANUFACTURER DATA

Company Name:	please see Applicant Data
Address:	
Contact Person:	

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	The device is an Infotainment controller with Bluetooth and WiFi connectivity supporting reception of AM/FM and DAB broadcasts.
Product name	Infotainment Controller
Туре	VCE CDC
Declared EUT data by	the supplier
Voltage Type	DC (vehicular battery)
Voltage Level	14.4 V
Antenna / Gain	External / -1.5 dBi
Tested Modulation Type	WLAN b: DSSS WLAN g/n: OFDM
Specific product description for the EUT	The EUT supports Wi-Fi 2.4 GHz. For WLAN the EUT is supporting followings bands and modes in the 2.4 GHz band: - WLAN b-mode 20 MHz - WLAN g-mode 20 MHz - WLAN n-mode 20 MHz and n 40 MHz
EUT ports (connected cables during testing):	 Wi-Fi/Bluetooth antenna (connected to ANC 1) AM/FM/DAB tuner antenna (connected to ANC 2) Cable harness (connected to AUX 1) 2x USB (connected to AUX 1) 4x Camera (connected to AUX 1) 3x Display (connected to AUX 1) 5x Ethernet 100Base-T1 (connected to AUX 1)
Tested datarates	WLAN b: 1 Mbit WLAN g: 6 Mbit WLAN n: MCS0
Special software used for testing	The Qualcomm Radio Control Tool (QRCT) is used to put the EUT into test mode.

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT ab01	DE1105017ab01 Radiated sample	
Sample Parameter		Value
Serial No.	T23286090	
HW Version	VPMBEF-19C034-AJ	
SW Version	3.16.7	
Comment	-	

Sample Name	Sample Code	Description	
EUT af01	DE1105017af01 Conducted sample		
Sample Parameter	Value		
Serial No.	Т23286087		
HW Version	VPMBEF-19C034-AJ		
SW Version	3.16.7		
Comment	External antenna replaced by SMA connector		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

ANCILLARY EQUIPMENT 4.3

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
ANC 1	TE Connectivity, 23311706/920 638-001, -	Wi-Fi/Bluetooth antenna with cable type: Dacar 302
ANC 2	TE Connectivity, 23311779/920 447-011 (Base) 224 729 86 (Rod, 400 mm), -	Tuner antenna

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it.

But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AUX 1	Visteon, -, Version 1.0, -, -	Test box

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale	
S01_AB01	EUT ab01, ANC 1, ANC 2, AUX 1	Radiated setup	
S01_AF01	EUT af01, ANC 2, AUX 1	Conducted setup	

4.6 OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.

WLAN	2.4 GHz ISM 2400 - 2483.5 MHz		
20 MHz Test Channels:	low	mid	high
Channel:	1	6	11
Frequency [MHz]	2412	2437	2462
40 MHz Test Channels:	low	mid	high
Channel:	3	6	9
Frequency [MHz]	2422	2437	2452

4.7 DUTY CYCLE

Test Mode	T _{on+off} (µs)	T _{on} (µs)	Duty cycle (%)
WLAN b	12347	12188	98
WLAN g	2210	2021	91
WLAN n 20	1035	919	88
WLAN n 40	2042	1890	92

WLAN b)									
Spectru	Im									Ì
Ref Lev	el 20.00	dBm		😑 R	BW 3 MHz					
Att			🔵 SWT 20 ms		BW 3 MHz					
SGL										
Controlled	by EMC	32 🔵 1	LPk Clrw							
							M1[1]			4.80 d
10 dBm—										3.3623
TO UBIII		1011					D2[1]		23	-0.05
0 dBm—									44	12.1884
0 0.0										
-10 dBm—										
-20 dBm—										
-30 dBm—										
-40 dBm—										
-50 dBm—		V							v	
-30 dBm-										
-60 dBm—										
-70 dBm—										
CF 2.412	GHz				691	pts				2.0 m
Marker										
	Ref Tro	: 1	X-value	1	Y-value	1	Function	E	Inction	Result
M1		1	3.3623	ms	4.80 dBr	m				
D2		1	12.1884		-0.05 d					
D3	M1 :	1	12.3478	ms	-0.01 d	в				
							Ready			26.03.2024

Date: 26.MAR.2024 16:16:52

WLAN g

Spect	rum	*										ſ
Ref L	evel	20.00	dBm		BW 3 MHz							
👄 Att		30	i dB 🥌 SW1	F5ms V	BW 3 MHz							
SGL												
Controll	ed by	EMC32	⊖1Pk Clrw									
								D3[1]				1.02
10 dBm	·											2.21014
		M1.						M1[1]	1			0.12 di
water .	whenp	- They	Mul all and and and a second	runnunun	marshrow	Wordman	7	all word	Malan	Julivia	up and a production	V 10000000
-10 dBn	n											
-20 dBn	n											
-20 001												
-30 dBn	n											
-40 dBn	n						+ +					
		hu					lynd					
-50 dBn	n						~ 0					
-60 dBn	n											
00 00.												
-70 dBn	n——											
CF 2.4	12 GF	lz			69	1 pts						500.0 µs
Marker												· · ·
Туре	Ref	Trc	X-va	alue	Y-value	· 1	Fur	ction		Fun	ction Resu	lt
M1		1		695.65 µs	0.12	dBm						
D2	M1			.02174 ms		0 dB						
D3	M1	1	2	.21014 ms	1.0:	2 dB						
								Ready				26.03.2024

Date: 26.MAR.2024 16:11:22

WLAN n 20

Spect	rum	*													
Ref L	evel	20.00 c	lBm		😑 F	RBW	3 MHz								
🗕 Att		30	dB	🔵 SWT 2	ms 🔥	вw	3 MHz								
SGL															
Controlle	ed by	EMC32	0	LPk Clrw											
									D	3[1]					0.00 dB
10 dBm															1.03551 ms
TO GDIII								Í	M	1[1]	_				-6.63 dBm
Q. ABRU				where the off of				<u> </u>			-				357.97 µs
washing	VILL	D.	11 1	Manager	u-hum	Union	Manghang	Med	www.	r~w	1 0	poulun	www.yy	ananth	When prove to broad
-10 dBm	ו—ר		H.					<u> </u>			-				
			ľ.					ĺ							
-20 dBm	ו														
								Í							
-30 dBm	ר 🛉														
-40 dBm								Í							
-40 UBII															
-50 dBm	<u>الم</u>	r MMM									bryphi				
00 00.	·							Í							
-60 dBm	ן—ר							<u> </u>							
								Í							
-70 dBm	ו—ר							<u> </u>							
								ĺ							
CF 2.43	22 Gł						691	pts							200.0 µs/
Marker			_					<u> </u>							
Type	Ref	Trc		X-value			Y-value	1	Func	tion	1	F	uncti	on Resul	t
M1		1			.97 µs		-6.63 dB	m							
D2	M1			919	.57 µs		7.30 0								
D3	M1	. 1		1.035	551 ms		0.00 0	зв							
][]) R	e a d					26.03.2024

Date: 26.MAR.2024 16:22:04

WLAN n 40

Spect	rum	₩															ſ	
Ref Lo Att SGL	evel :			● SWT 5			3 MHz 3 MHz											
Controlle	ed by	ЕМСЗ	2 🔵 1	.Pk Clrw														_
10 dBm											1[1]					-2.14 792	.75	μs
ሳ መይ ሥታ	Henry	M M	fulnys	manually	unyunu	and the	mah hama	nn	2 D	ر المالي	2[1] μικιήμικ	<u>Anne</u>	Maylender	<u> Hyllin</u>	mongh	4.02.2.	59 58	ан р <u>и</u>
-10 dBm	۰ <u> </u>																_	
-20 dBm	י 													_			+	
-30 dBm																		
-40 dBm		w							In								Mary	
-60 dBm																		
-70 dBm	۰ <u> </u>													_				
CF 2.4	12 GH	Iz					691	pts								500.0) hi	5/
Marker Type	Ref	Trc	1	X-value	. 1		Y-value	- 1	Б		tion	1	E	notion	Resul	+		
M1	Rei	1			2.75 μs		-2.14 dB	3m		unc	cion		Fu	netion	Resul	L		
D2 D3	M1 M1	1		1.890	058 ms 275 ms		3.59	dB										
											teady	(26.03.20	24	

Date: 26.MAR.2024 16:24:03

4.8 PRODUCT LABELLING

4.8.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.8.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 OCCUPIED BANDWIDTH (6 DB)

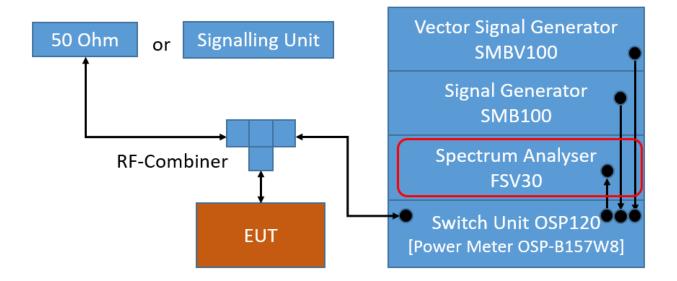
Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 11.8.1

5.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.


The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Span: Two times nominal bandwidth
- Trace: Maxhold
- Sweeps: Till stable (min. 500, max. 15000)
- Sweeptime: Auto
- Detector: Peak

TS8997; Channel Bandwidth

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.1.3 TEST PROTOCOL

Ambient temperature:	23 °C
Air Pressure:	999 hPa
Humidity:	39 %
WLAN b-Mode; 20 MHz;	

1 Mbit/s

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	8.2	0.5	7.7
	6	2437	8.6	0.5	8.1
	11	2462	7.7	0.5	7.2

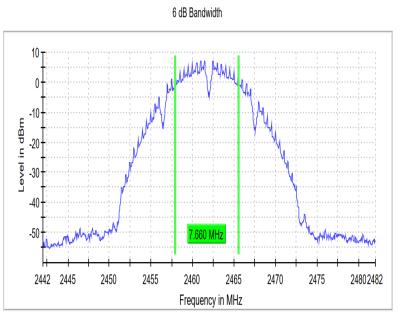
WLAN g-Mode; 20 MHz;

6 Mbit/s

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	15.9	0.5	15.4
	6	2437	16.1	0.5	15.6
	11	2462	16.0	0.5	15.5

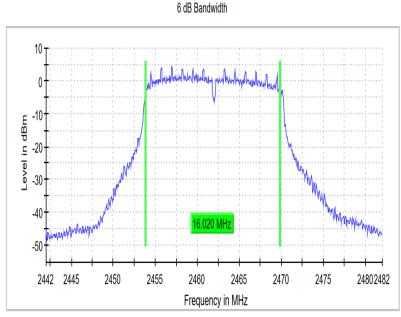
WLAN n-Mode; 20 MHz;

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	16.5	0.5	16.0
	6	2437	16.8	0.5	16.3
	11	2462	15.8	0.5	15.3


WLAN n-Mode; 40 MHz;

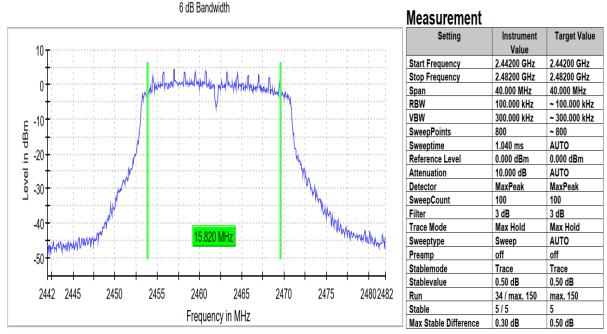
Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	3	2422	35.2	0.5	34.7
	6	2437	36.4	0.5	35.9
	9	2452	35.2	0.5	34.7

Remark: Please see next sub-clause for the measurement plot.

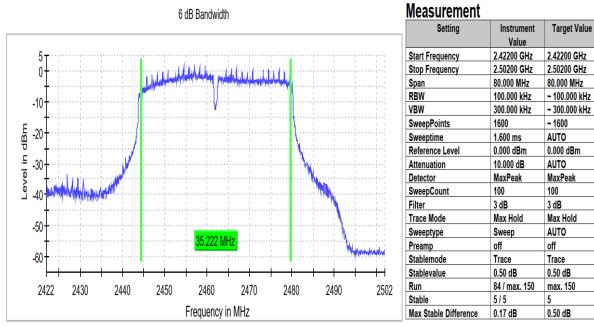

5.1.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = WLAN b, Operating Frequency = high (S01_AF01)

Measurement		
Setting	Instrument Value	Target Value
Start Frequency	2.44200 GHz	2.44200 GHz
Stop Frequency	2.48200 GHz	2.48200 GHz
Span	40.000 MHz	40.000 MHz
RBW	100.000 kHz	~ 100.000 kHz
VBW	300.000 kHz	~ 300.000 kHz
SweepPoints	800	~ 800
Sweeptime	1.040 ms	AUTO
Reference Level	0.000 dBm	0.000 dBm
Attenuation	10.000 dB	AUTO
Detector	MaxPeak	MaxPeak
SweepCount	100	100
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	Sweep	AUTO
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.50 dB	0.50 dB
Run	20 / max. 150	max. 150
Stable	5/5	5
Max Stable Difference	0.23 dB	0.50 dB


Radio Technology = WLAN g, Operating Frequency = high (S01_AF01)

Measurement Setting Instrument Target Value Value Start Frequency 2.44200 GHz 2.44200 GHz Stop Frequency 2.48200 GHz 2.48200 GHz Span 40.000 MHz 40.000 MHz RBW 100.000 kHz ~ 100.000 kHz VBW 300.000 kHz ~ 300.000 kHz ~ 800 SweepPoints 800 AUTO Sweeptime 1.040 ms **Reference Level** 0.000 dBm 0.000 dBm Attenuation 10.000 dB AUTO MaxPeak MaxPeak Detector 100 SweepCount 100 3 dB 3 dB Filter Trace Mode Max Hold Max Hold Sweeptype Sweep AUTO off Preamp off Stablemode Trace Trace Stablevalue 0.50 dB 0.50 dB Run 58 / max. 150 max. 150 Stable 5/5 5 Max Stable Difference 0.35 dB 0.50 dB


TEST REPORT REFERENCE: MDE_VIS_1910_FCC_03

Radio Technology = WLAN n 20 MHz, Operating Frequency = high (S01_AF01)

Radio Technology = WLAN n 40 MHz, Operating Frequency = high (S01_AF01)

5.1.5 TEST EQUIPMENT USED - R&S TS8997

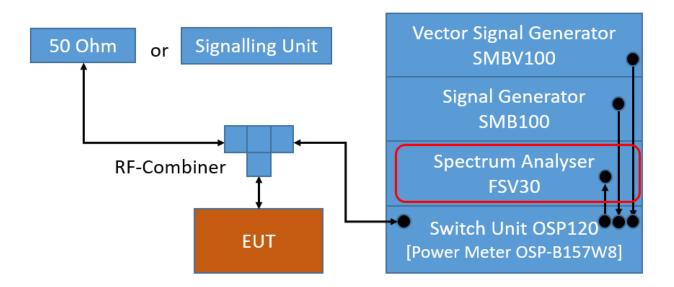
5.2 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 6.9.3

5.2.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Resolution Bandwidth (RBW): 1 to 5 % of the OBW
- Video Bandwidth (VBW): ≥ 3 times the RBW
- Span: 1.5 to 5 times the OBW
- Trace: Maxhold
- Sweeps: Till stable (min. 500, max. 75000)
- Sweeptime: Auto
- Detector: Peak

TS8997; Channel Bandwidth

5.2.2 TEST REQUIREMENTS / LIMITS

No applicable limit:

5.2.3 TEST PROTOCOL

Ambient temperature:	24 °C
Air Pressure:	1005 hPa
Humidity:	38 %
WLAN b-Mode; 20 MHz; 1 Mbit/s	

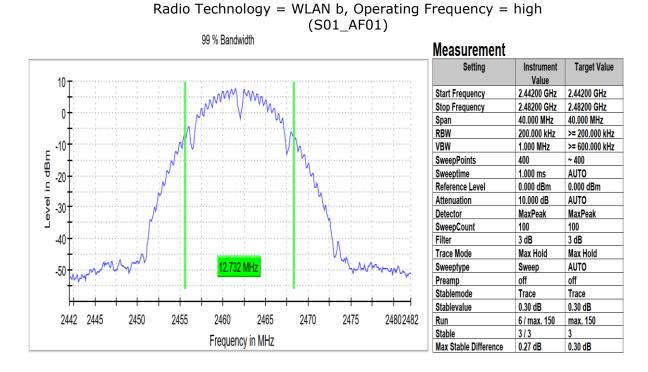
Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412	13.0
	6	2437	13.1
	11	2462	12.7

WLAN g-Mode; 20 MHz; 6 Mbit/s

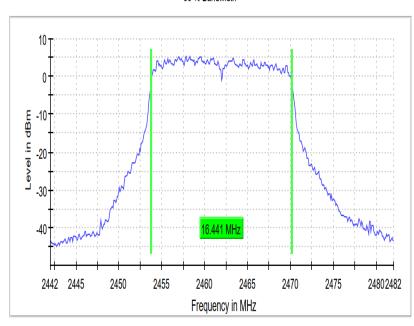
Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412	16.5
	6	2437	16.5
	11	2462	16.4

WLAN n-Mode; 20 MHz; MCS0

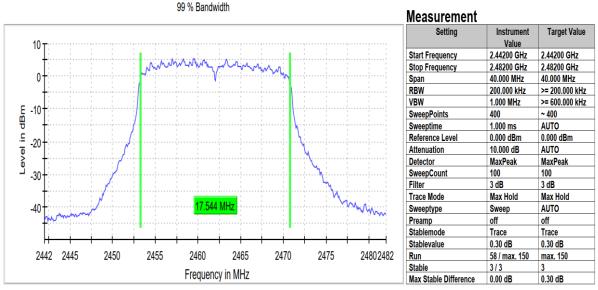
Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412	17.6
	6	2437	17.6
	11	2462	17.5


WLAN n-Mode; 40 MHz; MCS0

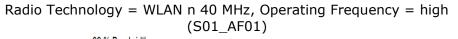
Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	2.4 GHz ISM 3		36.4
	6	2437	36.9
	9	2452	36.1

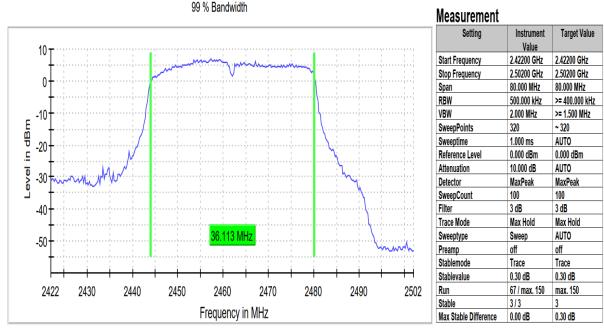

Remark: Please see next sub-clause for the measurement plot.

5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)



Radio Technology = WLAN g, Operating Frequency = high (S01_AF01) 99 % Bandwidth




Measurement					
Setting	Instrument	Target Value			
	Value				
Start Frequency	2.44200 GHz	2.44200 GHz			
Stop Frequency	2.48200 GHz	2.48200 GHz			
Span	40.000 MHz	40.000 MHz			
RBW	200.000 kHz	>= 200.000 kHz			
VBW	1.000 MHz	>= 600.000 kHz			
SweepPoints	400	~ 400			
Sweeptime	1.000 ms	AUTO			
Reference Level	0.000 dBm	0.000 dBm			
Attenuation	10.000 dB	AUTO			
Detector	MaxPeak	MaxPeak			
SweepCount	100	100			
Filter	3 dB	3 dB			
Trace Mode	Max Hold	Max Hold			
Sweeptype	Sweep	AUTO			
Preamp	off	off			
Stablemode	Trace	Trace			
Stablevalue	0.30 dB	0.30 dB			
Run	48 / max. 150	max. 150			
Stable	3/3	3			
Max Stable Difference	0.13 dB	0.30 dB			

Radio Technology = WLAN n 20 MHz, Operating Frequency = high (S01_AF01)

5.2.5 TEST EQUIPMENT USED

- R&S TS8997

5.3 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 11.9.1.1/11.9.2.3.2

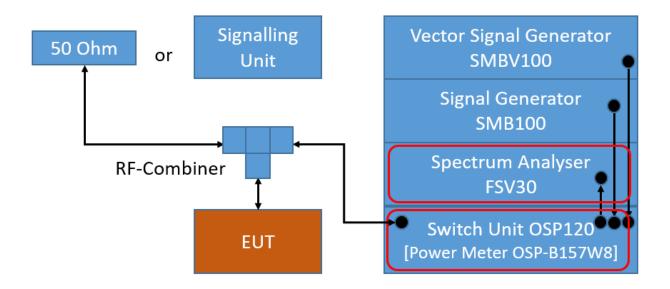
5.3.1 TEST DESCRIPTION

DTS EQUIPMENT:

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power.

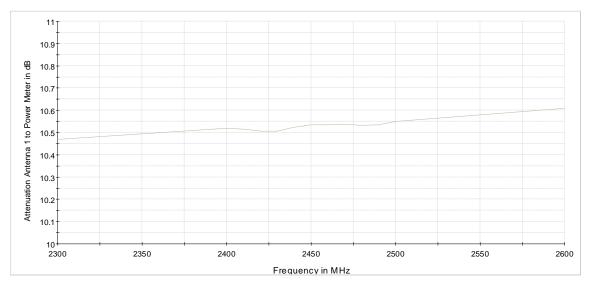
Maximum peak conducted output power (e.g. Bluetooth Low Energy):

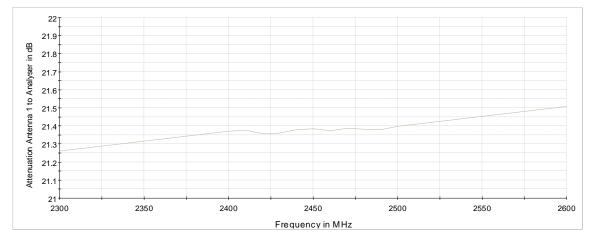
The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered. The reference level of the spectrum analyser was set higher than the output power of the EUT.


Analyser settings:

- Resolution Bandwidth (RBW): ≥ DTS bandwidth
- Video Bandwidth (VBW): ≥ 3 times RBW or maximum of analyzer
- Span: \geq 3 times RBW
- Trace: Maxhold
- Sweeps: Till stable (min. 300, max. 15000)
- Sweeptime: Auto
- Detector: Peak

Maximum conducted average output power (e.g. WLAN):


The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered. Measurement is performed using the gated RF average power meter integrated in the OSP 120 module OSP-B157W8 with signal bandwidth >300 MHz.



TS8997; Output Power

Attenuation of the measurement path to Power Meter

Attenuation of the measurement path to Analyser

5.3.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = $10 \log (\text{Limit (W)}/1\text{mW})$

5.3.3 TEST PROTOCOL

Ambient	24 °C
temperature:	
Air Pressure:	1005 hPa
Humidity:	38 %

WLAN b-Mode;

20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	1	2412	14.1	30.0	15.9	12.6
	6	2437	12.4	30.0	17.6	10.9
	11	2462	15.0	30.0	15.1	13.5

WLAN g-Mode; 20 MHz: 6 Mbit/s

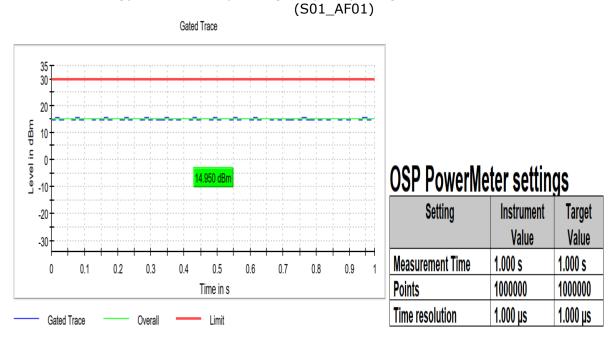
Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	1	2412	13.8	30.0	16.2	12.3
	6	2437	12.4	30.0	17.6	10.9
	11	2462	14.8	30.0	15.2	13.3

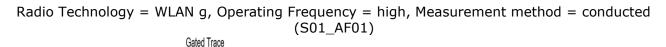
WLAN n-Mode; 20 MHz: MCS0

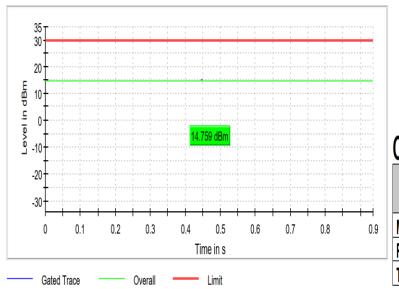
Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	1	2412	13.6	30.0	16.4	12.1
	6	2437	12.2	30.0	17.8	10.7
	11	2462	14.5	30.0	15.5	13.0

WLAN n-Mode;

40	MHz;	MCS0

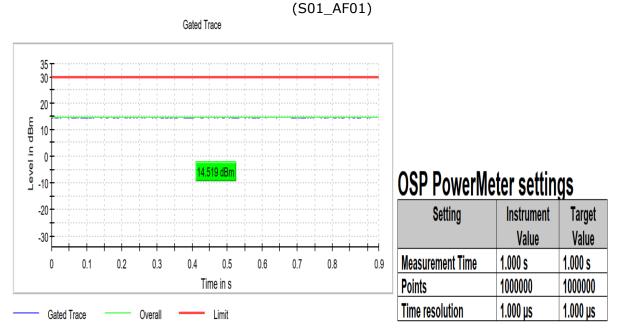

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	3	2422	12.6	30.0	17.4	11.1
	6	2437	12.9	30.0	17.1	11.4
	9	2452	15.1	30.0	14.9	13.6


Remark: Please see next sub-clause for the measurement plot.

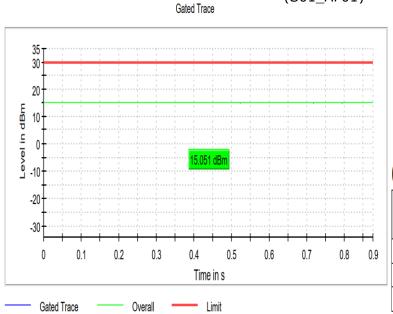


5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = WLAN b, Operating Frequency = high, Measurement method = conducted



OSP PowerMeter settings


Setting	Instrument	Target
	Value	Value
Measurement Time	1.000 s	1.000 s
Points	1000000	1000000
Time resolution	1.000 µs	1.000 µs

Radio Technology = WLAN n 20 MHz, Operating Frequency = high, Measurement method = conducted

Radio Technology = WLAN n 40 MHz, Operating Frequency = high, Measurement method = conducted (S01_AF01)

OSP PowerMeter settings

Setting	Instrument	Target		
	Value	Value		
Measurement Time	1.000 s	1.000 s		
Points	1000000	1000000		
Time resolution	1.000 µs	1.000 µs		

5.3.5 TEST EQUIPMENT USED

- R&S TS8997

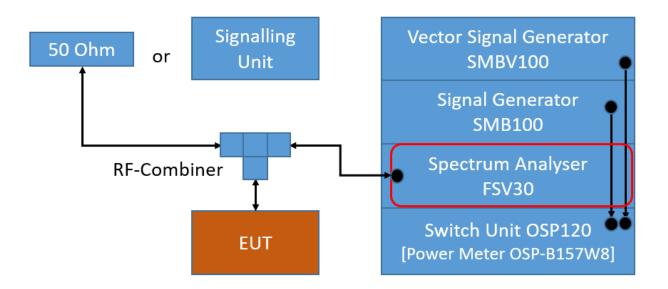
5.4 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

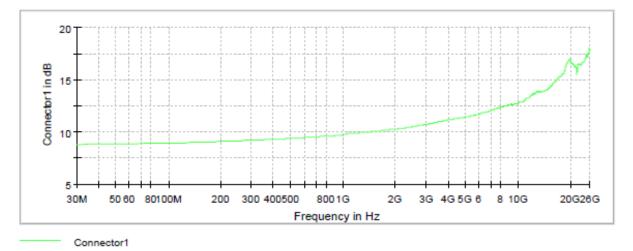
ANSI C63.10, chapter 11.11

5.4.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:


- Frequency range: 30 26000 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Trace: Maxhold
- Sweeps: Till Stable (max. 120)
- Sweep Time: Auto
- Detector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc or 30 dBc limit.

TS8997; Spurious RF Conducted Emissions

Attenuation of the measurement part

5.4.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.4.3 TEST PROTOCOL

Ambient temperature:	24 °C
Air Pressure:	1005 hPa
Humidity:	38 %

WLAN b-Mode; 20 MHz; 1 Mbit/s

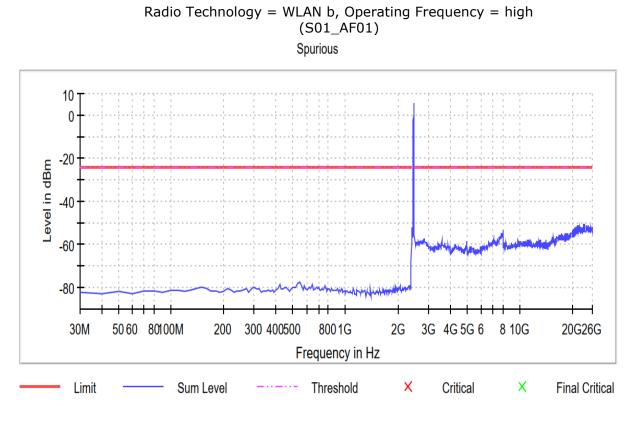
Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	4823.2	-56.9	PEAK	100	6.0	-24.0	32.9
6	2437	2390.0	-61.6	PEAK	100	3.7	-26.3	35.3
11	2462	23400.4	-50.4	PEAK	100	5.7	-24.3	26.1

WLAN g-Mode; 20 MHz; 6 Mbit/s

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2390.0	-53.7	PEAK	100	2.0	-28.0	25.7
6	2437	4873.1	-56.5	PEAK	100	4.9	-25.1	31.4
11	2462	23880.3	-50.2	PEAK	100	3.8	-26.2	24.0

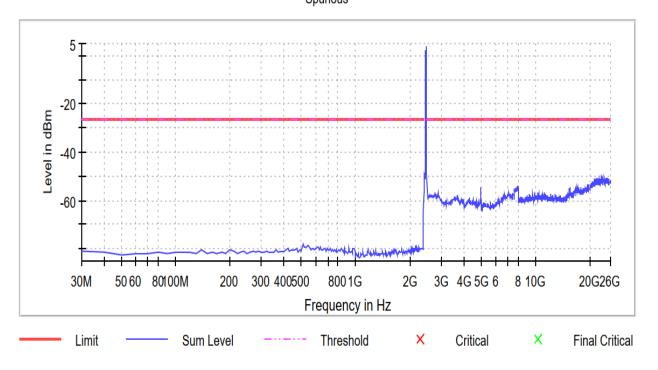
WLAN n-Mode; 20 MHz; MCS0

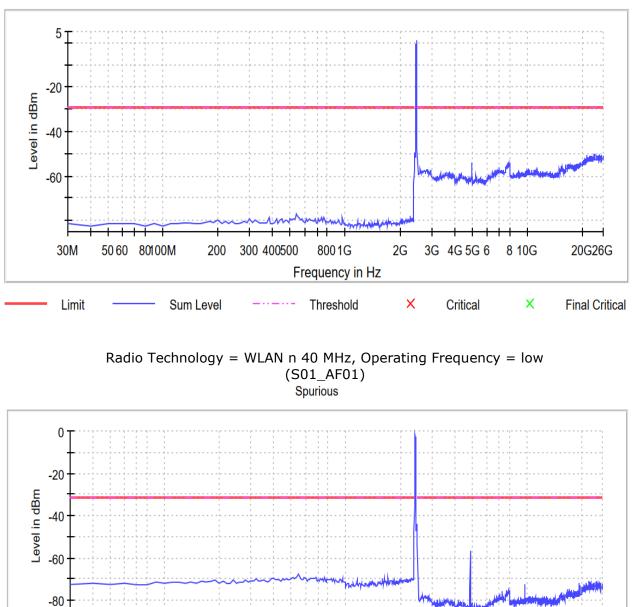
Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2390.0	-51.7	PEAK	100	-0.2	-30.2	21.5
6	2437	4873.1	-56.7	PEAK	100	-0.2	-30.2	26.5
11	2462	23260.4	-50.0	PEAK	100	0.9	-29.1	20.9


WLAN n-Mode; 40 MHz;

MCS0

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
3	2422	2390.0	-47.4	PEAK	100	-1.5	-31.5	15.9
6	2437	2390.0	-54.5	PEAK	100	-0.5	-30.5	24.0
9	2452	23410.4	-49.9	PEAK	100	1.0	-29.0	20.9


Remark: Please see next sub-clause for the measurement plot.



5.4.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = WLAN g, Operating Frequency = high (S01_AF01) Spurious

Radio Technology = WLAN n 20 MHz, Operating Frequency = high (S01_AF01) Spurious

30M 5060 80100M 200 300 400500 8001G 2G 3G 4G 5G 6 8 10G 20G26G Frequency in Hz х Critical X **Final Critical** Limit Sum Level Threshold

TEST EQUIPMENT USED 5.4.5

-R&S TS8997

5.5 TRANSMITTER SPURIOUS RADIATED EMISSIONS

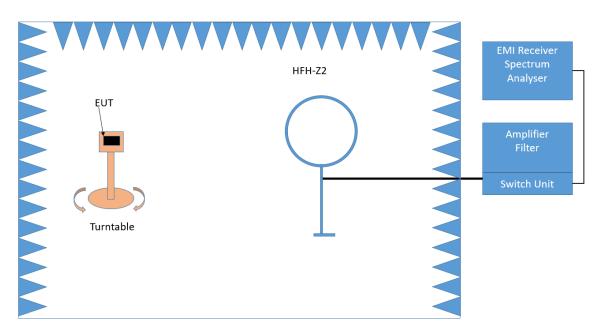
Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 6.4, 6.5, 6.6.5

5.5.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following sub-chapters of ANSI C63.10:


- < 30 MHz: Chapter 6.4
- 30 MHz 1 GHz: Chapter 6.5
- > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

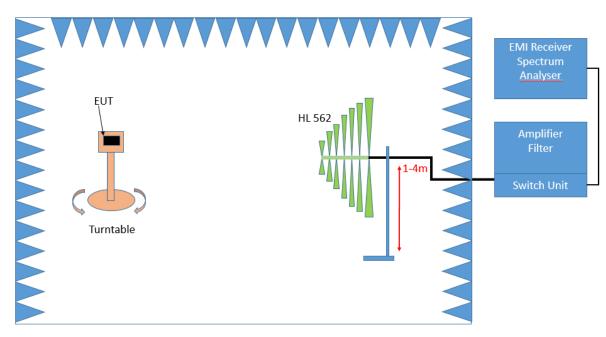
1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz – 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Antenna height: 1 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF–Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)


Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Detector: Quasi-Peak (9 kHz 150 kHz, Peak / Average 150 kHz- 30 MHz)
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 4 m
- Height variation step size: 1.5 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by 360°. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary between 1 - 4 meter. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

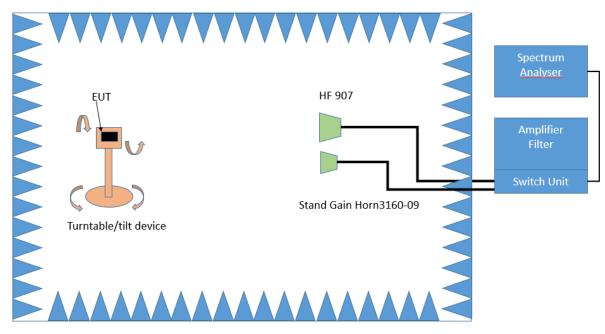
- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: 360 °
- Height variation range: 1 4 m
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed:

- EMI receiver settings for step 3:
- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$. The elevation angle will slowly vary by $\pm 45^{\circ}$ Spectrum analyser settings: - Detector: Peak

Step 3:

- Spectrum analyser settings for step 3:
- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

5.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

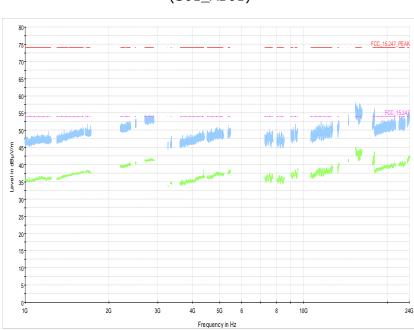
5.5.3 TEST PROTOCOL

Ambient temperature:	23-25 °C
Air Pressure:	1001–1009 hPa
Humidity:	39-46 %

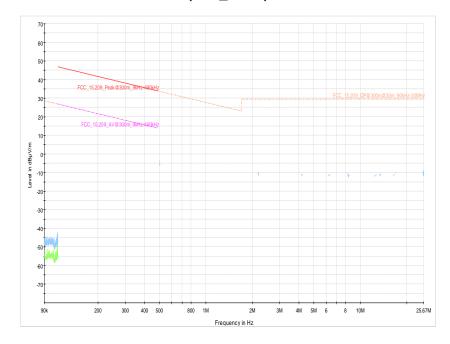
WLAN b-Mode; 20 MHz; 1 Mbit/s Applied duty cycle correction (AV): 0.1 dB

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	37.7	30.1	QP	120	40.0	9.9	RB
1	2412	120.0	30.2	QP	120	43.5	13.3	RB
1	2412	165.0	30.8	QP	120	43.5	12.7	RB
1	2412	255.0	34.3	QP	120	46.0	11.7	RB
1	2412	270.0	35.8	QP	120	46.0	10.2	RB
6	2437	127.4	32.3	QP	120	43.5	11.2	RB
6	2437	240.0	34.4	QP	120	46.0	11.6	RB
6	2437	330.1	34.4	QP	120	46.0	11.6	RB
11	2462	128.4	32.2	QP	120	43.5	11.3	RB
11	2462	330.0	34.4	QP	120	46.0	11.6	RB

WLAN g-Mode; 20 MHz; 6 Mbit/s Applied duty cycle correction (AV): 0.8 dB

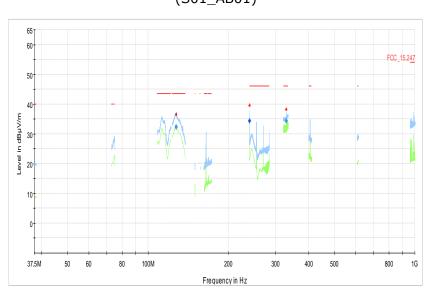

Ch. No.	Ch. Center Freq.	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit	Limit Type
	[MHz]						[dB]	
1	2412	2770.9	39.5	AV	1000	54.0	14.5	RB
1	2412	2770.9	52.2	PEAK	1000	74.0	21.8	RB
1	2412	2786.4	39.6	AV	1000	54.0	14.4	RB
1	2412	2786.4	52.1	PEAK	1000	74.0	21.9	RB
1	2412	2829.4	39.8	AV	1000	54.0	14.2	RB
1	2412	2829.4	52.1	PEAK	1000	74.0	21.9	RB
6	2437	2693.4	39.5	AV	1000	54.0	14.5	RB
6	2437	2693.4	51.8	PEAK	1000	74.0	22.2	RB
6	2437	2713.9	39.5	AV	1000	54.0	14.5	RB
6	2437	2713.9	51.7	PEAK	1000	74.0	22.3	RB
11	2462	2483.5	38.4	AV	1000	54.0	15.6	RB
11	2462	2483.5	50.9	PEAK	1000	74.0	23.1	RB
11	2462	2719.6	39.5	AV	1000	54.0	14.5	RB
11	2462	2719.6	51.4	PEAK	1000	74.0	22.6	RB

Remark: Please see next sub-clause for the measurement plot.

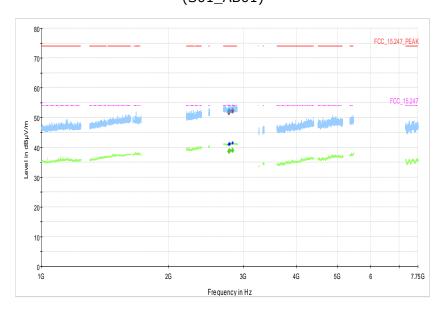


5.5.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 1 GHz - 26



Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S01_AB01)


GHz (S01_AB01)

Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S01_AB01)

Radio Technology = WLAN g, Operating Frequency = low, Measurement range = 1 GHz - 26 GHz (S01_AB01)

5.5.5 TEST EQUIPMENT USED

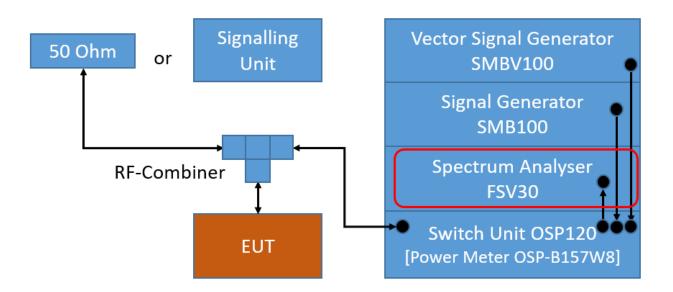
- Radiated Emissions FAR 2.4 GHz FCC
- Radiated Emissions SAC H-Field
- Radiated Emissions SAC up to 1 GHz

5.6 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

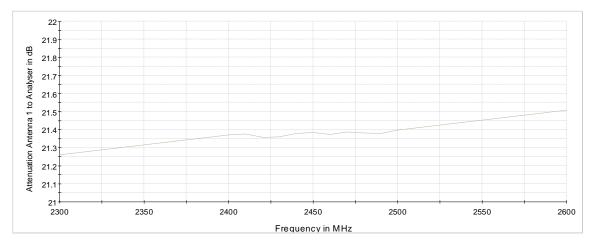
The test was performed according to:

ANSI C63.10, chapter 11.11


5.6.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions".

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.


Analyser settings:

- Lower Band Edge: Measured range: 2310.0 MHz to 2483.5 MHz Upper Band Edge Measured range: 2400.0 MHz to 2500 MHz
- Detector: Peak
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweeptime: Auto
- Sweeps: Till stable (min. 300, max. 15000)
- Trace: Maxhold

TS8997; Band Edge Conducted

Attenuation of the measurement path

5.6.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

5.6.3 TEST PROTOCOL

Ambient temperature:	24 °C
Air Pressure:	1005 hPa
Humidity:	38 %

WLAN b-Mode; 20 MHz;

1	Mbit/:	S

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-43.2	PEAK	100	6.1	-23.9	19.3
11	2462	2483.5	-51.1	PEAK	100	6.8	-23.2	27.9

WLAN g-Mode; 20 MHz;

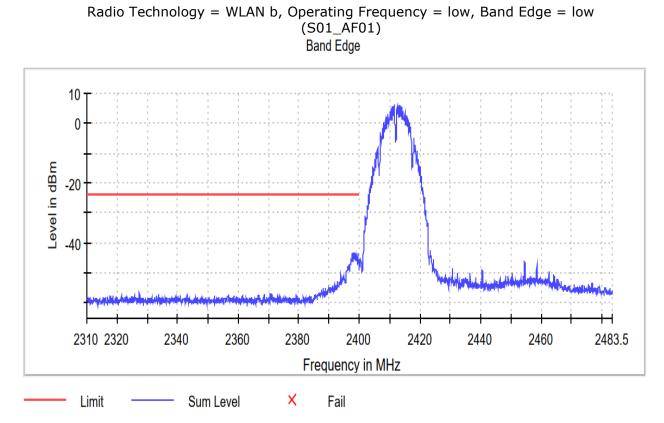
6 Mbit/s

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-32.3	PEAK	100	3.6	-26.4	5.9
11	2462	2483.5	-45.7	PEAK	100	4.2	-25.8	19.9

WLAN n-Mode; 20 MHz;

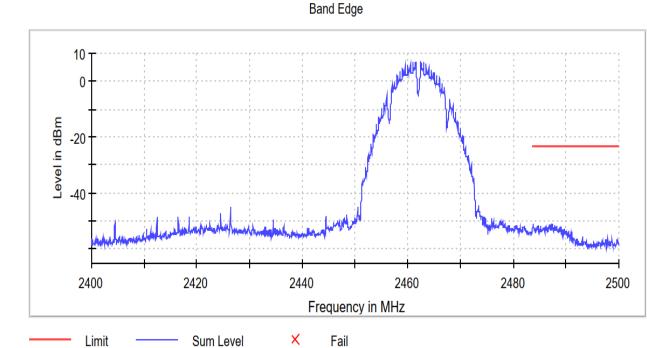
MCS0

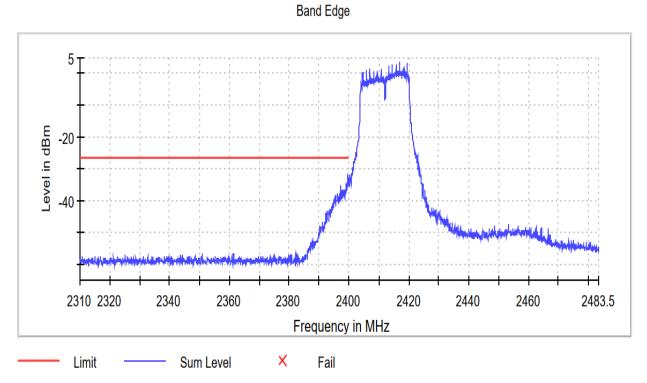
Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400.0	-32.8	PEAK	100	3.7	-26.3	6.5
11	2462	2483.5	-46.1	PEAK	100	4.4	-25.6	20.5


WLAN n-Mode; 40 MHz;

MCS0

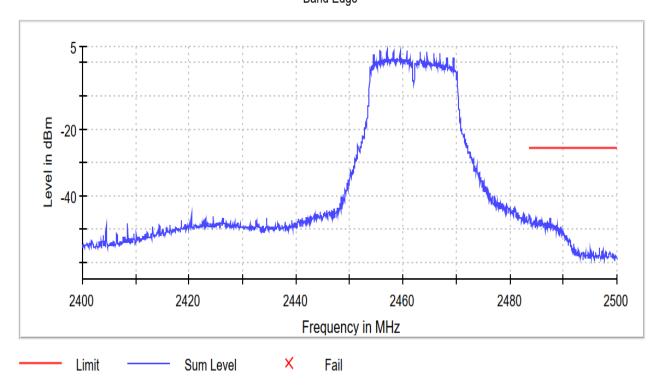
Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
3	2422	2400.0	-32.3	PEAK	100	-0.7	-30.7	1.6
9	2452	2483.5	-28.8	PEAK	100	1.9	-28.1	0.7

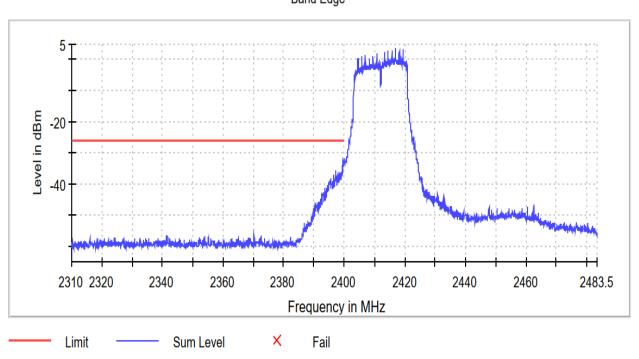

Remark: Please see next sub-clause for the measurement plot.



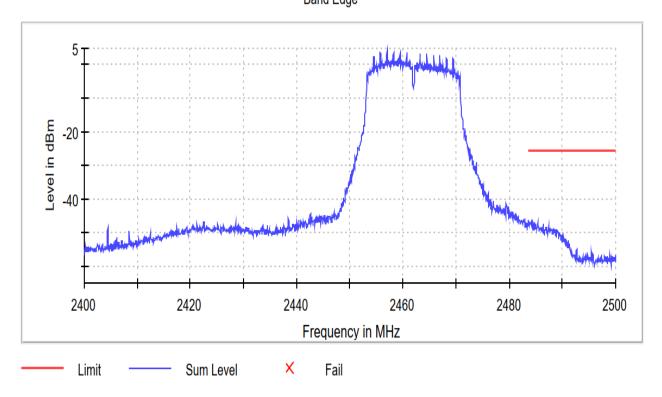
5.6.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

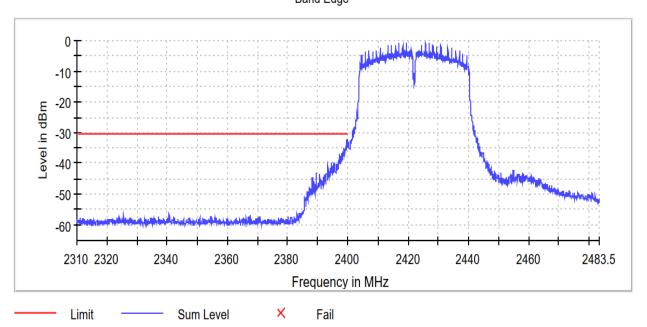
Radio Technology = WLAN b, Operating Frequency = high, Band Edge = high (S01_AF01)





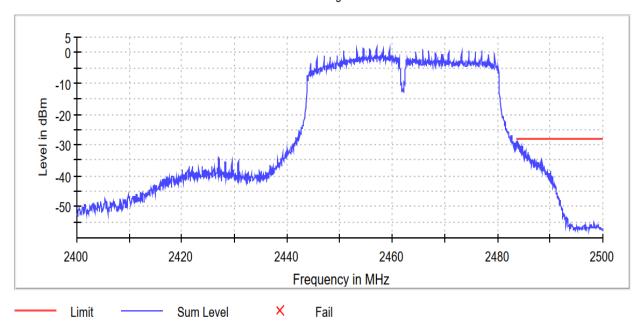
Radio Technology = WLAN g, Operating Frequency = low, Band Edge = low (S01_AF01)





Radio Technology = WLAN n 20 MHz, Operating Frequency = low, Band Edge = low (S01_AF01) Band Edge

Radio Technology = WLAN n 20 MHz, Operating Frequency = high, Band Edge = high (S01_AF01) Band Edge



Radio Technology = WLAN n 40 MHz, Operating Frequency = low, Band Edge = low (S01_AF01) Band Edge

Radio Technology = WLAN n 40 MHz, Operating Frequency = high, Band Edge = high (S01_AF01) Band Edge

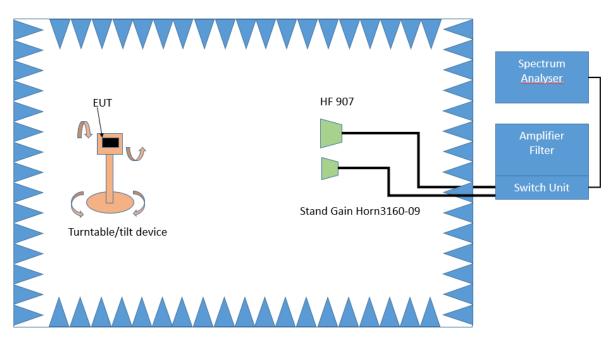
5.6.5 TEST EQUIPMENT USED - R&S TS8997

5.7 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 6.6.5


5.7.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following sub-chapter of ANSI C63.10:

• Chapter 6.10.5

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only (procedure according ANSI C63.10, chapter 6.6.5.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$. The elevation angle will slowly vary by $\pm 45^{\circ}$ Spectrum analyser settings: - Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

5.7.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

5.7.3 TEST PROTOCOL

Ambient temperature:	23 °C
Air Pressure:	995 hPa
Humidity:	40 %

WLAN b-Mode; 20 MHz; 1 Mbit/s Applied duty cycle correction (AV): 0.1 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
11	2462	2483.5	51.2	PEAK	1000	74.0	22.8
11	2462	2483.5	38.0	AV	1000	54.0	16.0

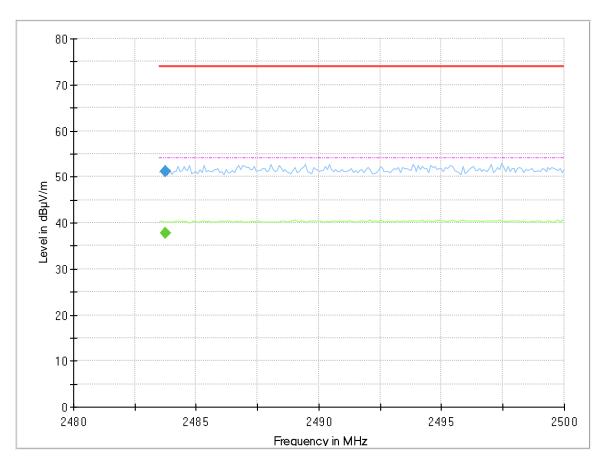
WLAN g-Mode; 20 MHz; 6 Mbit/s Applied duty cycle correction (AV): 0.8 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
11	2462	2483.5	50.9	PEAK	1000	74.0	23.1
11	2462	2483.5	38.4	AV	1000	54.0	15.6

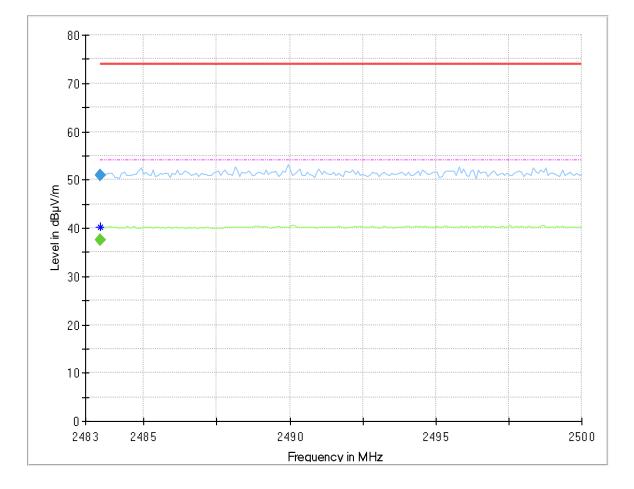
WLAN n-Mode; 20 MHz; MCS0 Applied duty cycle correction (AV): 0.7 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
11	2462	2483.5	51.0	PEAK	1000	74.0	23.0
11	2462	2483.5	38.3	AV	1000	54.0	15.7

WLAN n-Mode; 40 MHz; MCS0 Applied duty cycle correction (AV): 1 dB

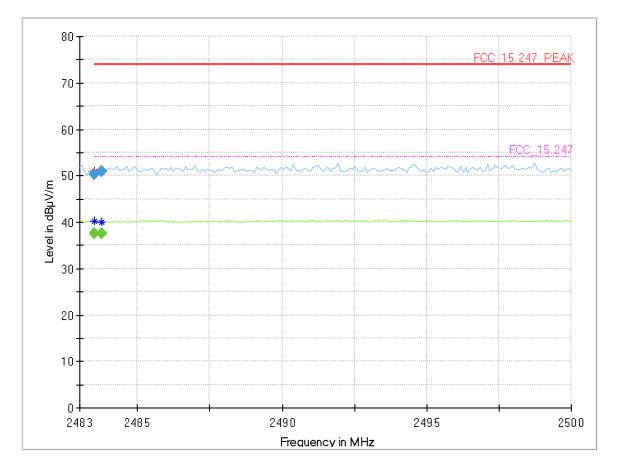

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
9	2452	2483.5	51.4	PEAK	1000	74.0	22.6
9	2452	2483.5	38.7	AV	1000	54.0	15.3

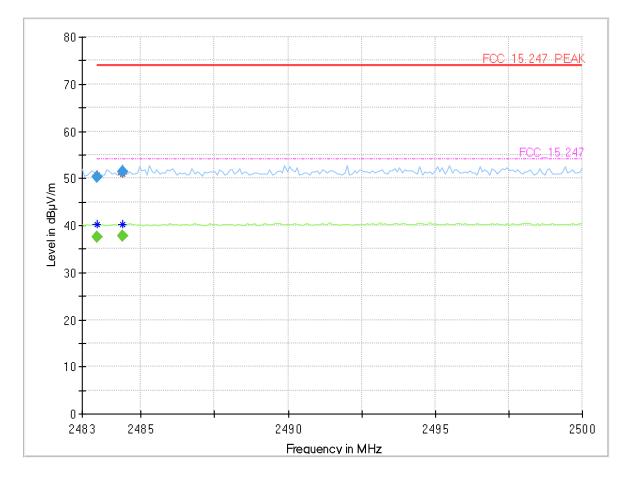
Remark: Please see next sub-clause for the measurement plot.



5.7.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = WLAN b, Operating Frequency = high, Band Edge = high (S01_AB01)




Radio Technology = WLAN g, Operating Frequency = high, Band Edge = high (S01_AB01)

Radio Technology = WLAN n 20 MHz, Operating Frequency = high, Band Edge = high (S01_AB01)

Radio Technology = WLAN n 40 MHz, Operating Frequency = high, Band Edge = high (S01_AB01)

5.7.5 TEST EQUIPMENT USED

- Radiated Emissions FAR 2.4 GHz FCC

5.8 POWER DENSITY

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 11.10.2/11.10.7

5.8.1 TEST DESCRIPTION

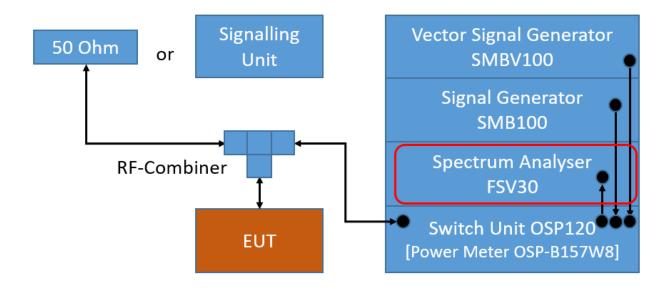
The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

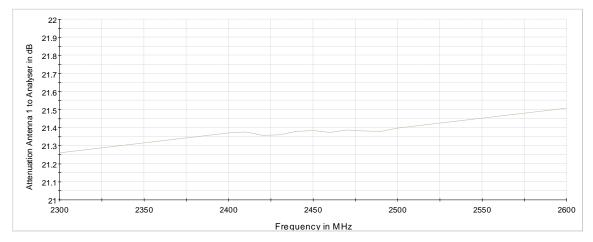
Maximum Peak Power Spectral Density (e.g. Bluetooth low energy):

Analyser settings:


- Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz
- Video Bandwidth (VBW): \geq 3 times RBW
- Trace: Maxhold
- Sweeps: Till stable (min. 200, max. 15000)
- Sweeptime: Auto
- Detector: Peak

Maximum Average Power Spectral Density (e.g. WLAN):

Analyser settings:


- Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz
- Video Bandwidth (VBW): ≥ 3 times RBW
- Sweep Points: ≥ 2 times span / RBW
- Trace: Maxhold
- Sweeps: Till stable (max. 150)
- Sweeptime: \leq Number of Sweep Points x minimum transmission duration
- Detector: RMS

TS8997; Power Spectral Density

Attenuation of the measurement path

5.8.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

....

The same method of determining the conducted output power shall be used to determine the power spectral density.

FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques.

The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

5.8.3 TEST PROTOCOL

Ambient	24 °C
temperature:	
Air Pressure:	1005 hPa
Humidity:	38 %
WLAN b-Mode;	
20 MHz; 1 Mbit/s	

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-1.9	100.0	8.0	9.9
	6	2437	-3.7	100.0	8.0	11.7
	11	2462	-1.2	100.0	8.0	9.2

WLAN g-Mode; 20 MHz; 6 Mbit/s

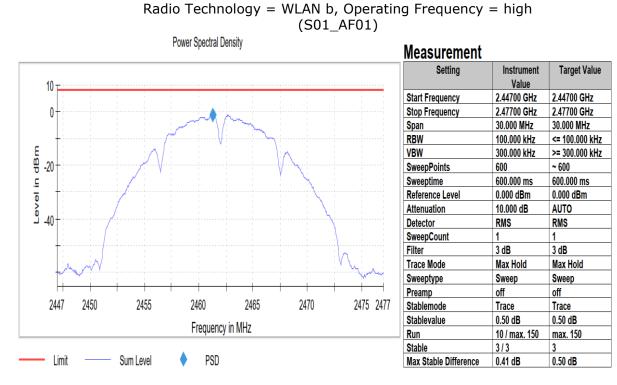
Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-5.2	100.0	8.0	13.2
	6	2437	-7.0	100.0	8.0	15.0
	11	2462	-4.7	100.0	8.0	12.7

WLAN n-Mode;

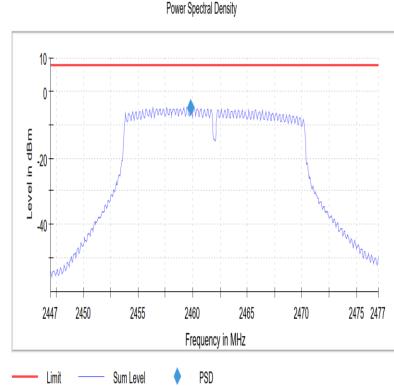
20 MHz; MCS0

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-5.6	100.0	8.0	13.6
	6	2437	-7.4	100.0	8.0	15.4
	11	2462	-5.2	100.0	8.0	13.2

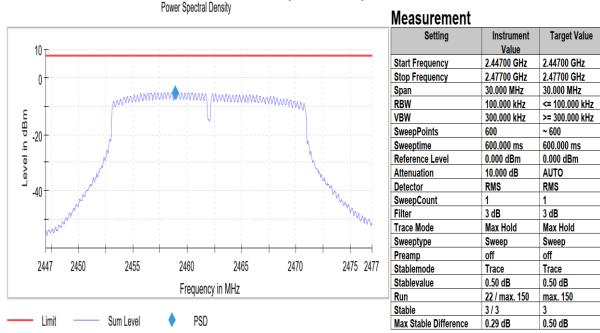
WLAN n-Mode;


40	MH	z; MCS0	

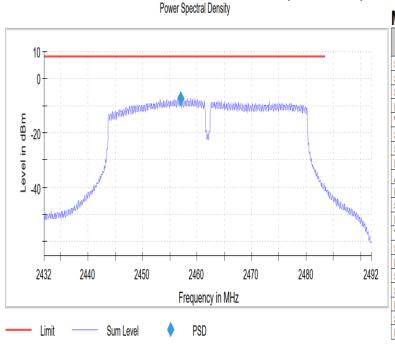
Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	3	2422	-9.8	100.0	8.0	17.8
	6	2437	-9.5	100.0	8.0	17.5
	9	2452	-7.2	100.0	8.0	15.2


Remark: Please see next sub-clause for the measurement plot.

5.8.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


Radio Technology = WLAN g, Operating Frequency = high (S01_AF01)

Measurement


Measurement		
Setting	Instrument Value	Target Value
Start Frequency	2.44700 GHz	2.44700 GHz
Stop Frequency	2.47700 GHz	2.47700 GHz
Span	30.000 MHz	30.000 MHz
RBW	100.000 kHz	<= 100.000 kHz
VBW	300.000 kHz	>= 300.000 kHz
SweepPoints	600	~ 600
Sweeptime	600.000 ms	600.000 ms
Reference Level	0.000 dBm	0.000 dBm
Attenuation	10.000 dB	AUTO
Detector	RMS	RMS
SweepCount	1	1
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	Sweep	Sweep
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.50 dB	0.50 dB
Run	14 / max. 150	max. 150
Stable	3/3	3
Max Stable Difference	0.35 d B	0.50 dB

Radio Technology = WLAN n 20 MHz, Operating Frequency = high (S01_AF01)

Radio Technology = WLAN n 40 MHz, Operating Frequency = high (S01_AF01)

Measurement		
Setting	Instrument Value	Target Value
Start Frequency	2.43200 GHz	2.43200 GHz
Stop Frequency	2.49200 GHz	2.49200 GHz
Span	60.000 MHz	60.000 MHz
RBW	100.000 kHz	<= 100.000 kHz
VBW	300.000 kHz	>= 300.000 kHz
SweepPoints	1200	~ 1200
Sweeptime	1.200 s	1.200 s
Reference Level	0.000 dBm	0.000 dBm
Attenuation	10.000 dB	AUTO
Detector	RMS	RMS
SweepCount	1	1
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	Sweep	Sweep
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.50 dB	0.50 dB
Run	21 / max. 150	max. 150
Stable	3/3	3
Max Stable Difference	0.43 dB	0.50 dB

5.8.5 TEST EQUIPMENT USED

- R&S TS8997

6 TEST EQUIPMENT

6.1 TEST EQUIPMENT HARDWARE

1 R&S TS8997 2.4 and 5 GHz Bands Conducted Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	Opus10 TPR (8253.00)	, 55	Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
1.2	SMB100Á	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2021-06	2024-06
1.3	EX520	Digital Multimeter 12	Extech Instruments Corp	05157876	2022-06	2024-06
1.4	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2023-08	2025-08
1.5	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2022-05	2024-07
1.6	FSW43	Signal Analyser	Rohde & Schwarz GmbH & Co. KG	102013	2023-07	2025-07
1.7	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	13993	2023-12	2025-12
1.8	HMP2020	Programmable	Rohde & Schwarz GmbH & Co. KG	101992	N/A	N/A
1.9	SMBV100A		Rohde & Schwarz	259291	2023-01	2026-01
1.10	OSP120	Contains Power Meter and Switching Unit OSP- B157W8 PLUS	Rohde & Schwarz	101158	2021-08	2024-08
1.11	CS-RUB6	Rubidium Frequency Standard	Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2024-10

2 Radiated Emissions FAR 2.4 GHz FCC Radiated emission tests for 2.4 GHz ISM devices in a fully anechoic room

Ref.No. Device Name		Description	Manufacturer	Serial Number	Last Calibration	Calibration Due	
2.1	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH			2025-12	
2.2	Innco Systems CO3000		innco systems GmbH	CO3000/1460/54 740522/P	N/A	N/A	
2.3	AMF- 7D00101800- 30-10P-R	Broadband Amplifier 100 MHz - 18 GHz	Miteq		N/A	N/A	
2.4		FAR, 8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001- PRB	N/A	N/A	
2.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08	
2.6		Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785	N/A	N/A	
2.7	FSW43	Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	103779	2023-04	2025-04	
2.8	EP 1200/B, NA/B1	AC Source, Amplifier with	Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A	
2.9	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069	N/A	N/A	
2.10	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright Instruments GmbH	09	N/A	N/A	
2.11		Bore Sight Antenna Mast	innco systems GmbH	9210522	N/A	N/A	
2.12		Turn Table	Maturo GmbH	-	N/A	N/A	
2.13	5HC3500/18000 -1.2-KK		Trilithic	200035008	N/A	N/A	
2.14	Opus 20 THI	ThermoHygro	Lufft Mess- und Regeltechnik GmbH	115.0318.0802.0 33	2023-08	2025-08	
2.15		EUT Tilt Device (Rohacell)		TD1.5- N/A 10kg/024/37907 09		N/A	
2.16	AFS42- 00101800-25-S- 42		Miteq	2035324	N/A	N/A	
2.17	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2021-09	2024-09	

3 Radiated Emissions SAC H-Field Radiated emission tests in the H-Field in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.1	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515	N/A	N/A
3.2	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
3.3	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2024-03	2026-03
3.4	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia Germany EMC Solution GmbH		N/A	N/A
3.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
3.6	Opus10 THI (8152.00)	T/H Logger 10	Lufft Mess- und Regeltechnik GmbH	12488	2023-12	2025-12
3.7	(8152.00) EP 1200/B, AC Source, NA/B1 Amplifier with integrated variable Oscillator		Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
3.8	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99	N/A	N/A
3.9	HFH2-Z2		Rohde & Schwarz GmbH & Co. KG	829324/006		
3.10	CS-RUB6	Rubidium Frequency Standard	Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2024-10

4 Radiated Emissions SAC up to 1 GHz Radiated emission tests up to 1 GHz in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
4.1	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515	N/A	N/A
4.2	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
4.3	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2024-03	2026-03
4.4	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia Germany EMC Solution GmbH	none	N/A	N/A
4.5	HL 562 ULTRALOG	Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2021-09	2024-09
4.6	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
4.7	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12488	2023-12	2025-12
4.8	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
4.9	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99	N/A	N/A
4.10	CS-RUB6	Rubidium Frequency Standard	Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2024-10
4.11	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513	N/A	N/A

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6.2 TEST EQUIPMENT SOFTWARE

Semi-Anechoic Chamber:	
Software	Version
EMC32 Measurement Software	10.60.10
INNCO Mast Controller	1.02.62
MATURO Mast Controller	12.19
MATURO Turn-Table Controller	30.10
Fully-Anechoic Chamber:	
Software	Version
EMC32 Measurement Software	10.60.10
MATURO Turn-Unit Controller	11.10
MATURO Mast Controller	12.10
MATURO Turntable Controller	12.11
INNCO Mast Controller	1.02.62
TS 8997	
WMC32 Measurement Software	11.40.00
Conducted AC Emissions:	
Software	Version
EMC32 Measurement Software	10.60.20

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

			cable
			loss
		LISN	(incl. 10
		insertion	dB
		loss	atten-
Frequency	Corr.	ESH3-Z5	uator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	11.2	0.5	10.7
28	11.2	0.5	10.7
30	11.3	0.5	10.8

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

	1		-		-			1	
				cable loss	cable	cable	distance	dLimit	dused
	AF		cable loss	2	loss 3	loss 4	corr.	(meas.	(meas.
	HFH-		1 (inside	(outside	(switch	(to	(-40 dB/	distance	distance
Frequency	Z2)	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6	0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6	0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6	0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6	0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5	0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5	0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4	0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4	0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4	0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3	0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3	0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3	0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3	0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2	0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1	0.4	0.1	0.3	0.1	-40	30	3

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

 $(\underline{d_{\text{Limit}}} = 3 \text{ m})$

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

(<u>d_{Limit} = 10 m)</u>

	·/								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

used

15.247

cable loss 6

(to

receiver) dB

1.46

1.53

1.60

1.67

1.70

1.73

1.83

1.77

1.83

1.85

2.00

1.91

1.44

1.51

1.53

1.55

for FCC

ANTENNA R&S HF907 (1 GHZ - 18 GHZ) 7.4

					cable loss			
			cable loss		3 (switch			
	AF		1 (relay	cable loss	unit,			
	AF R&S		+ cable inside	2 (outside	atten- uator &	cable loss 4 (to		
Frequency	HF907	Corr.	chamber)	chamber)	pre-amp)	receiver)		
rrequericy	dB	Corr.	chamber)	chambery	pre amp)	receivery		
MHz	(1/m)	dB	dB	dB	dB	dB		
1000	24.4	-19.4	0.99	0.31	-21.51	0.79		
2000	28.5	-17.4	1.44	0.44	-20.63	1.38		
3000	31.0	-16.1	1.87	0.53	-19.85	1.33		
4000	33.1	-14.7	2.41	0.67	-19.13	1.31		
5000	34.4	-13.7	2.78	0.86	-18.71	1.40		
6000	34.7	-12.7	2.74	0.90	-17.83	1.47		
7000	35.6	-11.0	2.82	0.86	-16.19	1.46		
						cable loss		
						4 (switch		
			cable loss		cable loss	ùnit,		
	AF		1 (relay	cable loss	3	atten-	cable loss	
	R&S		inside	2 (inside	(outside	uator &	5 (to	
Frequency	HF907	Corr.	chamber)	chamber)	chamber)	pre-amp)	receiver)	
	dB	dB	dB	dB	dB	dB	dB	
								-
MHz	(1/m) 31.0		0 47	1 07	0 5 2	27 50	1 2 2	
3000	31.0	-23.4	0.47	1.87	0.53	-27.58	1.33	
3000 4000	31.0 33.1	-23.4 -23.3	0.56	2.41	0.67	-28.23	1.31	
3000 4000 5000	31.0 33.1 34.4	-23.4 -23.3 -21.7	0.56 0.61	2.41 2.78	0.67 0.86	-28.23 -27.35	1.31 1.40	
3000 4000 5000 6000	31.0 33.1 34.4 34.7	-23.4 -23.3 -21.7 -21.2	0.56 0.61 0.58	2.41 2.78 2.74	0.67 0.86 0.90	-28.23 -27.35 -26.89	1.31 1.40 1.47	
3000 4000 5000	31.0 33.1 34.4	-23.4 -23.3 -21.7	0.56 0.61	2.41 2.78	0.67 0.86	-28.23 -27.35	1.31 1.40	
3000 4000 5000 6000	31.0 33.1 34.4 34.7	-23.4 -23.3 -21.7 -21.2	0.56 0.61 0.58 0.66	2.41 2.78 2.74	0.67 0.86 0.90	-28.23 -27.35 -26.89	1.31 1.40 1.47 1.46	
3000 4000 5000 6000	31.0 33.1 34.4 34.7 35.6	-23.4 -23.3 -21.7 -21.2	0.56 0.61 0.58 0.66 cable loss	2.41 2.78 2.74 2.82	0.67 0.86 0.90 0.86	-28.23 -27.35 -26.89 -25.58	1.31 1.40 1.47 1.46 cable loss	
3000 4000 5000 6000	31.0 33.1 34.4 34.7 35.6 AF	-23.4 -23.3 -21.7 -21.2	0.56 0.61 0.58 0.66 cable loss 1 (relay	2.41 2.78 2.74 2.82 cable loss	0.67 0.86 0.90 0.86 cable loss	-28.23 -27.35 -26.89 -25.58 cable loss	1.31 1.40 1.47 1.46 cable loss 5	
3000 4000 5000 6000 7000	31.0 33.1 34.4 34.7 35.6 AF R&S	-23.4 -23.3 -21.7 -21.2 -19.8	0.56 0.61 0.58 0.66 cable loss 1 (relay inside	2.41 2.78 2.74 2.82 cable loss 2 (High	0.67 0.86 0.90 0.86 cable loss 3 (pre-	-28.23 -27.35 -26.89 -25.58 cable loss 4 (inside	1.31 1.40 1.47 1.46 cable loss 5 (outside	
3000 4000 5000 6000	31.0 33.1 34.4 34.7 35.6 AF R&S HF907	-23.4 -23.3 -21.7 -21.2	0.56 0.61 0.58 0.66 cable loss 1 (relay	2.41 2.78 2.74 2.82 cable loss	0.67 0.86 0.90 0.86 cable loss	-28.23 -27.35 -26.89 -25.58 cable loss	1.31 1.40 1.47 1.46 cable loss 5	
3000 4000 5000 6000 7000	31.0 33.1 34.4 34.7 35.6 AF R&S	-23.4 -23.3 -21.7 -21.2 -19.8	0.56 0.61 0.58 0.66 cable loss 1 (relay inside	2.41 2.78 2.74 2.82 cable loss 2 (High	0.67 0.86 0.90 0.86 cable loss 3 (pre-	-28.23 -27.35 -26.89 -25.58 cable loss 4 (inside	1.31 1.40 1.47 1.46 cable loss 5 (outside	
3000 4000 5000 7000 Frequency	31.0 33.1 34.4 34.7 35.6 AF R&S HF907 dB	-23.4 -23.3 -21.7 -21.2 -19.8	0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber)	2.41 2.78 2.74 2.82 cable loss 2 (High Pass)	0.67 0.86 0.90 0.86 cable loss 3 (pre- amp)	-28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber)	1.31 1.40 1.47 1.46 cable loss 5 (outside chamber)	
3000 4000 5000 7000 Frequency MHz	31.0 33.1 34.4 34.7 35.6 AF R&S HF907 dB (1/m)	-23.4 -23.3 -21.7 -21.2 -19.8 Corr.	0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB	2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB	0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB	-28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB	1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB	
3000 4000 5000 7000 Frequency MHz 7000	31.0 33.1 34.4 34.7 35.6 AF R&S HF907 dB (1/m) 35.6 36.3 37.1	-23.4 -23.3 -21.7 -21.2 -19.8 Corr. dB -57.3	0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB 0.56	2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB 1.28	0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB -62.72	-28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB 2.66	1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB 0.94	
3000 4000 5000 7000 Frequency MHz 7000 8000	31.0 33.1 34.4 35.6 AF R&S HF907 dB (1/m) 35.6 36.3 37.1 37.5	-23.4 -23.3 -21.7 -21.2 -19.8 Corr. dB -57.3 -56.3 -55.3 -56.2	0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB 0.56 0.69	2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB 1.28 0.71	0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB -62.72 -61.49	-28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB 2.66 2.84	1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB 0.94 1.00	
3000 4000 5000 7000 Frequency MHz 7000 8000 9000	31.0 33.1 34.4 35.6 AF R&S HF907 dB (1/m) 35.6 36.3 37.1 37.5 37.5	-23.4 -23.3 -21.7 -21.2 -19.8 Corr. dB -57.3 -56.3 -55.3	0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB 0.56 0.69 0.68	2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB 1.28 0.71 0.65	0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB -62.72 -61.49 -60.80	-28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB 2.66 2.84 3.06	1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB 0.94 1.00 1.09	
3000 4000 5000 7000 Frequency MHz 7000 8000 9000 10000	31.0 33.1 34.4 35.6 AF R&S HF907 dB (1/m) 35.6 36.3 37.1 37.5	-23.4 -23.3 -21.7 -21.2 -19.8 Corr. dB -57.3 -56.3 -55.3 -56.2	0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB 0.56 0.69 0.68 0.70	2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB 1.28 0.71 0.65 0.54	0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB -62.72 -61.49 -60.80 -61.91	-28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB 2.66 2.84 3.06 3.28	1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB 0.94 1.00 1.09 1.20	
3000 4000 5000 7000 Frequency MHz 7000 8000 9000 10000 11000	31.0 33.1 34.4 35.6 AF R&S HF907 dB (1/m) 35.6 36.3 37.1 37.5 37.5 37.6 38.2	-23.4 -23.3 -21.7 -21.2 -19.8 Corr. dB -57.3 -56.3 -55.3 -55.3 -56.2 -55.3	0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB 0.56 0.69 0.68 0.70 0.80	2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB 1.28 0.71 0.65 0.54 0.61	0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB -62.72 -61.49 -60.80 -61.91 -61.40	-28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB 2.66 2.84 3.06 3.28 3.43	1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB 0.94 1.00 1.09 1.20 1.27	
3000 4000 5000 7000 Frequency MHz 7000 8000 9000 10000 11000 12000	31.0 33.1 34.4 34.7 35.6 AF R&S HF907 dB (1/m) 35.6 36.3 37.1 37.5 37.5 37.6	-23.4 -23.3 -21.7 -21.2 -19.8 Corr. dB -57.3 -56.3 -55.3 -55.3 -55.3 -55.3 -55.3 -55.3 -55.3	0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB 0.56 0.69 0.68 0.70 0.80 0.84	2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB 1.28 0.71 0.65 0.54 0.61 0.42	0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB -62.72 -61.49 -60.80 -61.91 -61.40 -59.70	-28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB 2.66 2.84 3.06 3.28 3.43 3.53	1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB 0.94 1.00 1.09 1.20 1.27 1.26	

0.98 1.23

1.36

1.70

Sample calculation

15000

16000

17000

18000

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

-54.1

-54.1

-54.4

-54.7

40.9

41.3

42.8

44.2

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

0.54

0.49

0.76

0.53

-61.05

-61.51

-62.36

-62.88

4.02

4.17

4.34

4.41

				•		,		
	45				cable		cable	cable
	AF			cable loss	loss 2	cable loss	loss 4	loss 5
	EMCO			1 (inside	(pre-	3 (inside	(switch	(to
Frequency	3160-09	Corr.		chamber)	amp)	chamber)	unit)	receiver)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB
18000	40.2	-23.5		0.72	-35.85	6.20	2.81	2.65
18500	40.2	-23.2		0.69	-35.71	6.46	2.76	2.59
19000	40.2	-22.0		0.76	-35.44	6.69	3.15	2.79
19500	40.3	-21.3		0.74	-35.07	7.04	3.11	2.91
20000	40.3	-20.3		0.72	-34.49	7.30	3.07	3.05
20500	40.3	-19.9		0.78	-34.46	7.48	3.12	3.15
21000	40.3	-19.1		0.87	-34.07	7.61	3.20	3.33
21500	40.3	-19.1		0.90	-33.96	7.47	3.28	3.19
22000	40.3	-18.7		0.89	-33.57	7.34	3.35	3.28
22500	40.4	-19.0		0.87	-33.66	7.06	3.75	2.94
23000	40.4	-19.5		0.88	-33.75	6.92	3.77	2.70
23500	40.4	-19.3		0.90	-33.35	6.99	3.52	2.66
24000	40.4	-19.8		0.88	-33.99	6.88	3.88	2.58
24500	40.4	-19.5		0.91	-33.89	7.01	3.93	2.51
25000	40.4	-19.3		0.88	-33.00	6.72	3.96	2.14
25500	40.5	-20.4		0.89	-34.07	6.90	3.66	2.22
26000	40.5	-21.3		0.86	-35.11	7.02	3.69	2.28
26500	40.5	-21.1		0.90	-35.20	7.15	3.91	2.36
20000	1015		I	0150	20120	7115	5151	2150

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

	AF EMCO		cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
Frequency	3160-10	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4				-9.5	3	1.0
27.0	43.4	-11.2	4.4				-9.5	3	1.0
28.0	43.4	-11.1	4.5				-9.5	3	1.0
29.0	43.5	-11.0	4.6				-9.5	3	1.0
30.0	43.5	-10.9	4.7				-9.5	3	1.0
31.0	43.5	-10.8	4.7				-9.5	3	1.0
32.0	43.5	-10.7	4.8				-9.5	3	1.0
33.0	43.6	-10.7	4.9				-9.5	3	1.0
34.0	43.6	-10.6	5.0				-9.5	3	1.0
35.0	43.6	-10.5	5.1				-9.5	3	1.0
36.0	43.6	-10.4	5.1				-9.5	3	1.0
37.0	43.7	-10.3	5.2				-9.5	3	1.0
38.0	43.7	-10.2	5.3				-9.5	3	1.0
39.0	43.7	-10.2	5.4				-9.5	3	1.0
40.0	43.8	-10.1	5.5				-9.5	3	1.0

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Sample calculation

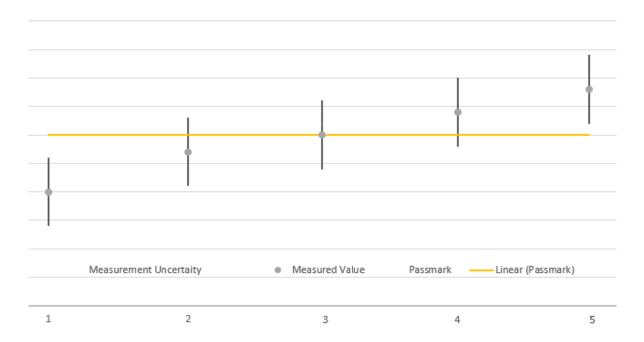
 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG ($d_{\text{Limit}}/d_{\text{used}}$) Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	on pass mark	within pass mark	Passed
4	above pass mark	within pass mark	Failed
5	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

9 PHOTO REPORT

Please see separate photo report.