

FCC Measurement/Technical Report on

In Vehicle Infotainment

SMART CRONY IVI

FCC ID: NT8-SMARTCRONYIVI IC: -

Test Report Reference: MDE_VIS_1916_FCC_02

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Co	ontents
-------------	---------

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	5
2	Revision History / Signatures	8
3	Administrative Data	9
3.1	Testing Laboratory	9
3.2	Project Data	9
3.3	Applicant Data	9
3.4	Manufacturer Data	9
4	Test object Data	10
4.1	General EUT Description	10
4.2	EUT Main components	11
4.3	Ancillary Equipment	11
4.4	Auxiliary Equipment	11
4.5	EUT Setups	12
4.6 4.7	Operating Modes / Test Channels	12 12
	Product labelling	
5	Test Results	13
5.1	26 dB Bandwidth	13
5.2 5.3	6 dB Bandwidth 99 % Bandwidth	17
5.3 5.4	Maximum Conducted Output Power	21 25
5.5	Peak Power Spectral Density	31
5.6	Undesirable Emissions; General Field Strength Limits	38
5.7	Band Edge	50
6	Test Equipment	57
7	Antenna Factors, Cable Loss and Sample Calculations	61
7.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	61
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	62
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	63
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	64
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	65
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	66
8	Measurement Uncertainties	67
9	Photo Report	68

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-19 Edition) and 15 (10-1-19 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- Part 15, Subpart E Unlicensed National Information Infrastructure Devices
- § 15.403 Definitions
- § 15.407 General technical requirements

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, 789033 D02 General U-NII Test Procedures New Rules v02r01, 2017-12-14".

ANSI C63.10-2013 is applied.

FCC ET Docket No. 13-49, FIRST REPORT AND ORDER, April 1, 2014 ("new rules") is applied.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for UNII / LE-LAN (e.g. WLAN 5 GHz) equipment from FCC and IC

UNII equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.403 (i) (26 dB) / § 15.407 (e) (6 dB)	RSS-247 Issue 2: 6.2.1.1, 6.2.2.1, 6.2.3.1 (99%) RSS-247 Issue 2: 6.2.4.1 (6 dB)
Maximum conducted output power	§ 15.407 (a) (1),(2),(3),(4)	RSS-247 Issue 2: 6.2.1.1, 6.2.2.1, 6.2.3.1, 6.2.4.1
Maximum power spectral density	§ 15.407 (a) (1),(2),(3),(5)	RSS-247 Issue 2: 6.2.1.1, 6.2.2.1, 6.2.3.1, 6.2.4.1
Transmitter undesirable emissions; General Field Strength Limits, Restricted Bands	§ 15.407 (b) § 15.209 (a)	RSS-Gen Issue 5: 6.13/8.9/8.10; RSS-247 Issue 2: 3.3/6.2 6.2.1.2, 6.2.2.2, 6.2.3.2, 6.2.4.2
Frequency stability	§ 15.407 (g)	RSS-Gen Issue 5: 6.11/8.11
Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)	§ 15.407 (h)	RSS-247 Issue 2: 6.2.2.1, 6.2.3.1, 6.3
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	-	-

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15 FCC §15.31, §15.403 (i) Subpart E §15.407 26 dB Bandwidth The measurement was performed according to ANSI C63.10 **Final Result OP-Mode** FCC IC Setup Date Radio Technology, Operating Frequency, Subband WLAN a, high, U-NII-3 S01_AE01 2021-06-30 Performed N/A WLAN a, low, U-NII-3 S01 AE01 2021-06-30 Performed N/A WLAN a, mid, U-NII-3 S01_AE01 2021-06-30 Performed N/A WLAN ac 80 MHz, mid, U-NII-3 S01_AE01 2021-06-30 Performed N/A 2021-06-30 WLAN n 20 MHz, high, U-NII-3 S01 AE01 Performed N/A S01_AE01 2021-06-30 WLAN n 20 MHz, low, U-NII-3 Performed N/A S01_AE01 2021-06-30 Performed WLAN n 20 MHz, mid, U-NII-3 N/A WLAN n 40 MHz, high, U-NII-3 S01_AE01 2021-06-30 Performed N/A S01_AE01 2021-06-30 WLAN n 40 MHz, low, U-NII-3 Performed N/A **47 CFR CHAPTER I FCC PART 15** FCC §15.31, §15.407 (e) Subpart E §15.407 6 dB Bandwidth **Final Result** The measurement was performed according to ANSI C63.10 FCC **OP-Mode** Setup Date IC Radio Technology, Operating Frequency, Subband WLAN a, high, U-NII-3 S01_AE01 2021-06-30 Passed Passed WLAN a, low, U-NII-3 S01_AE01 2021-06-30 Passed Passed WLAN a, mid, U-NII-3 S01 AE01 2021-06-30 Passed Passed WLAN ac 80 MHz, mid, U-NII-3 S01_AE01 2021-06-30 Passed Passed WLAN n 20 MHz, high, U-NII-3 S01_AE01 2021-06-30 Passed Passed WLAN n 20 MHz, low, U-NII-3 S01_AE01 2021-06-30 Passed Passed S01_AE01 2021-06-30 WLAN n 20 MHz, mid, U-NII-3 Passed Passed WLAN n 40 MHz, high, U-NII-3 S01_AE01 2021-06-30 Passed Passed 2021-06-30 WLAN n 40 MHz, low, U-NII-3 S01_AE01 Passed Passed **47 CFR CHAPTER I FCC PART 15** FCC §15.31, IC RSS 247 Ch. 6.2.x Subpart E §15.407 99 % Bandwidth The measurement was performed according to ANSI C63.10 **Final Result OP-Mode** Date FCC IC Setup Radio Technology, Operating Frequency, Subband S01_AE01 2021-06-30 Performed WLAN a, high, U-NII-3 N/A S01_AE01 2021-06-30 Performed WLAN a, low, U-NII-3 N/A WLAN a, mid, U-NII-3 S01_AE01 2021-06-30 Performed N/A

S01_AE01

2021-06-30

N/A

WLAN ac 80 MHz, mid, U-NII-3

Performed

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407

FCC §15.31, IC RSS 247 Ch. 6.2.x

Subpart E §15.407				
99 % Bandwidth				
The measurement was performed according to ANSI C63.10 Final Result				
OP-Mode Radio Technology, Operating Frequency, Subband	Setup	Date	FCC	IC
WLAN n 20 MHz, high, U-NII-3	S01_AE01	2021-06-30	N/A	Performed
WLAN n 20 MHz, low, U-NII-3	S01_AE01	2021-06-30	N/A	Performed
WLAN n 20 MHz, mid, U-NII-3	S01_AE01	2021-06-30	N/A	Performed
WLAN n 40 MHz, high, U-NII-3	S01_AE01	2021-06-30	N/A	Performed
WLAN n 40 MHz, low, U-NII-3	S01_AE01	2021-06-30	N/A	Performed
47 CFR CHAPTER I FCC PART 15 Subpart E §15.407	FCC §15.31	, §15.407 (a)(1)	
Subbarr E 813.407				
Maximum Conducted Output Power The measurement was performed accor	ding to ANSI C63	5.10	Final R	lesult
Maximum Conducted Output Power	ding to ANSI C63 Setup	.10 Date	Final R FCC	lesult IC
Maximum Conducted Output Power The measurement was performed accor OP-Mode Radio Technology, Operating Frequency,	2		-	
Maximum Conducted Output Power The measurement was performed accor OP-Mode Radio Technology, Operating Frequency, Subband	Setup	Date	FCC	IC
Maximum Conducted Output Power The measurement was performed accor OP-Mode Radio Technology, Operating Frequency, Subband WLAN a, high, U-NII-3	Setup	Date 2021-06-30	FCC Passed	IC Passed
Maximum Conducted Output Power The measurement was performed accor OP-Mode Radio Technology, Operating Frequency, Subband WLAN a, high, U-NII-3 WLAN a, low, U-NII-3	Setup S01_AE01 S01_AE01	Date 2021-06-30 2021-06-30	FCC Passed Passed	IC Passed Passed
Maximum Conducted Output Power The measurement was performed accor OP-Mode Radio Technology, Operating Frequency, Subband WLAN a, high, U-NII-3 WLAN a, low, U-NII-3 WLAN a, mid, U-NII-3	Setup S01_AE01 S01_AE01 S01_AE01	Date 2021-06-30 2021-06-30 2021-06-30	FCC Passed Passed Passed	IC Passed Passed Passed
Maximum Conducted Output Power The measurement was performed accor OP-Mode Radio Technology, Operating Frequency, Subband WLAN a, high, U-NII-3 WLAN a, low, U-NII-3 WLAN a, mid, U-NII-3 WLAN ac 80 MHz, mid, U-NII-3	Setup S01_AE01 S01_AE01 S01_AE01 S01_AE01	Date 2021-06-30 2021-06-30 2021-06-30 2021-06-30	FCC Passed Passed Passed Passed	IC Passed Passed Passed Passed
Maximum Conducted Output Power The measurement was performed accor OP-Mode Radio Technology, Operating Frequency, Subband WLAN a, high, U-NII-3 WLAN a, low, U-NII-3 WLAN a, mid, U-NII-3 WLAN ac 80 MHz, mid, U-NII-3 WLAN n 20 MHz, high, U-NII-3	Setup S01_AE01 S01_AE01 S01_AE01 S01_AE01 S01_AE01	Date 2021-06-30 2021-06-30 2021-06-30 2021-06-30 2021-06-30	FCC Passed Passed Passed Passed Passed	IC Passed Passed Passed Passed Passed

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407

FCC §15.31, §15.407 (a) (1),(5)

S01_AE01 2021-06-30 Passed

Peak Power Spectral Density

WLAN n 40 MHz, low, U-NII-3

The measurement was performed according to ANSI C63.10

OP-Mode Radio Technology, Operating Frequency, Subband	Setup	Date	FCC	IC
WLAN a, high, U-NII-3	S01_AE01	2021-06-30	Passed	Passed
WLAN a, low, U-NII-3	S01_AE01	2021-06-30	Passed	Passed
WLAN a, mid, U-NII-3	S01_AE01	2021-06-30	Passed	Passed
WLAN ac 80 MHz, mid, U-NII-3	S01_AE01	2021-06-30	Passed	Passed
WLAN n 20 MHz, high, U-NII-3	S01_AE01	2021-06-30	Passed	Passed
WLAN n 20 MHz, low, U-NII-3	S01_AE01	2021-06-30	Passed	Passed
WLAN n 20 MHz, mid, U-NII-3	S01_AE01	2021-06-30	Passed	Passed
WLAN n 40 MHz, high, U-NII-3	S01_AE01	2021-06-30	Passed	Passed
WLAN n 40 MHz, low, U-NII-3	S01_AE01	2021-06-30	Passed	Passed

Passed

Final Result

Final Result

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407

FCC §15.407 (b), (1),(2),(3),(4); FCC §15.205, §15.209, §15.407 (b) (5),(6)

Undesirable Emissions; General Field Strength Limits The measurement was performed according to ANSI C63.10

1 5				
OP-Mode Radio Technology, Operating Frequency, Measurement range, Subband	Setup	Date	FCC	IC
WLAN a, high, 1GHz - 26GHz, U-NII-3	S01_AD01	2021-06-27	Passed	Passed
WLAN a, low, 1GHz - 26GHz, U-NII-3	S01_AD01	2021-06-26	Passed	Passed
WLAN a, mid, 1GHz - 26GHz, U-NII-3	S01_AD01	2021-06-27	Passed	Passed
WLAN a, mid, 26GHz - 40GHz, U-NII-3	S01_AD01	2021-07-06	Passed	Passed
WLAN a, mid, 30MHz - 1GHz, U-NII-3	S01_AD01	2021-06-24	Passed	Passed
WLAN a, mid, 9kHz - 30MHz, U-NII-3	S01_AD01	2021-06-25	Passed	Passed
WLAN n 20 MHz, high, 1GHz - 26GHz, U-NII-3 Remark: tested 1-18 GHz	S01_AD01	2021-07-02	Passed	Passed
WLAN n 20 MHz, low, 1GHz - 26GHz, U-NII-3 Remark: tested 1-18 GHz	S01_AD01	2021-06-27	Passed	Passed
WLAN n 20 MHz, mid, 1GHz - 26GHz, U-NII-3 Remark: tested 1-18 GHz	S01_AD01	2021-06-30	Passed	Passed
WLAN n 20 MHz, mid, 26GHz - 40GHz, U-NII-3	S01_AD01	2021-07-06	Passed	Passed
WLAN n 40 MHz, high, 1GHz - 26GHz, U-NII-3	S01_AD01	2021-07-03	Passed	Passed
WLAN n 40 MHz, low, 1GHz - 26GHz, U-NII-3	S01_AD01	2021-07-02	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart E §15.407

FCC §15.407 (b), (1),(2),(3),(4)

Band Edge The measurement was performed according to ANSI C63.10			Final Re	esult
OP-Mode Radio Technology, Operating Freque Subband	Setup ncy,	Date	FCC	IC
WLAN a, high, U-NII-3	S01_AD01	2021-06-27	Passed	Passed
WLAN a, low, U-NII-3	S01_AD01	2021-06-26	Passed	Passed
WLAN ac 80 MHz, mid, U-NII-3	S01_AD01	2021-07-30	Passed	Passed
WLAN n 20 MHz, high, U-NII-3	S01_AD01	2021-07-30	Passed	Passed
WLAN n 20 MHz, low, U-NII-3	S01_AD01	2021-06-27	Passed	Passed
WLAN n 40 MHz, high, U-NII-3	S01_AD01	2021-07-03	Passed	Passed
WLAN n 40 MHz, low, U-NII-3	S01_AD01	2021-07-03	Passed	Passed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control			
Version	Release date	Change Description	Version validity
initial	2021-08-23		valid

COMMENT: -

(responsible for accreditation scope) Dipl.-Ing. Marco Kullik

(responsible for testing and report) M.Sc. Joel Asongwe

layers 7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name:

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-01 -02 -03
FCC Designation Number:	DE0015
FCC Test Firm Registration:	929146
ISED CAB Identifier	DE0007; ISED#: 3699A
Responsible for accreditation scope:	DiplIng. Marco Kullik
Report Template Version:	2021-01-13

3.2 PROJECT DATA

Responsible for testing and report:	M.Sc. Joel Asongwe
Employees who performed the tests:	documented internally at 7Layers
Date of Report:	2021-08-23
Testing Period:	2021-06-24 to 2021-07-30

3.3 APPLICANT DATA

Company Name:	Visteon Corporation
Address:	One Village Center Drive Van Buren Township, MI, 48111, U.S.A
Contact Person:	Heidi Sepanik, Corporate Secretary

3.4 MANUFACTURER DATA

Company Name: Address:	please see Applicant Data
Contact Person:	

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	This system consists of 10.25" TFT display with capacitive touch screen.
	RF features FM/AM, USB, BT, WiFi, in built GPS Navigation, RVC modes. It consists of a Class AB power amplifier and a DSP tuner for media & radio entertainment.
Product name	In Vehicle Infotainment
Туре	SMART CRONY IVI
Declared EUT data by	the supplier
Voltage Type	Car battery
Voltage Level	13.5 V DC
Tested Modulation Type	OFDM, BPSK
Specific product description	SMART CRONY IVI In-vehicle infotainment system that combines entertainment and information delivery for driver and passengers. This system consists of features like AM/FM Radio, GPS, RVC, USB, & BT/WiFi interfaces with 10.25 Inch TFT & Touch screen interface.
	This Infotainment can allow a driver to perform a number of tasks, such as standard radio and listen to music over USB flash drive or Bluetooth, hands-free phone connections to make phone calls, vehicle voice commands and other types of Interactive audio or video.
	Heart of the IVI is NXP I.MX8 application is the automotive processor (SOC) and Hero DSP TEF6635 Digital Signal Processor (DSP).DSP acts as an AM/FM receiver and tone control unit. Communication between DSP and SOC is done through I2C, I2S interfaces.
Ports of the device	Cable Harness including DC USB AM/FM GPS
Antenna 1	Gain: 3.5 dBi
Tested Datarates	WLAN a: 6 Mbps WLAN n/ac: MCS0
Special software used for testing	VMF Analyser software provided by the Applicant

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description			
EUT D	DE1105011ad01	Radiated Sample			
Sample Parameter	Value				
Serial No.	-				
HW Version	25761				
SW Version	4.62				
Comment	Sample with integral Antenna				

Sample Name	Sample Code	Description				
EUT E	DE1105011ae01	Conducted Sample				
Sample Parameter	Value					
Serial No.	-					
HW Version	25761					
SW Version	4.62					
Comment	Sample with temporary external Antenna connector					

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
-	-	-

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale	
S01_AE01	EUT E,	Conducted Setup	
S01_AD01	EUT D,	Radiated setup	

4.6 OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.

1	ubband 5850 MH	-	Nom. BW
low	mid	high	20 MHz
149	157	165	ChNo.
5745	5785	5825	MHz

low	mid	high	40 MHz
151	-	159	ChNo.
5755	-	5795	MHz
low	mid	high	80 MHz
-	155	-	ChNo.
-	5775	-	MHz

4.7 PRODUCT LABELLING

4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 26 DB BANDWIDTH

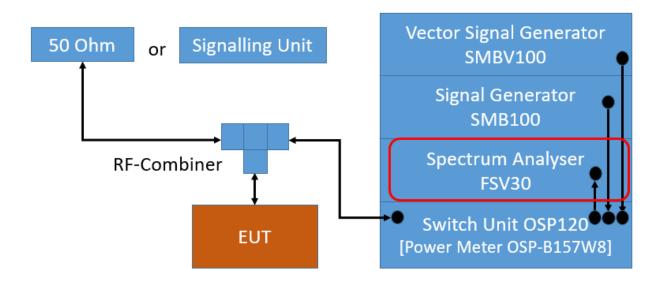
Standard FCC Part 15 Subpart E

The test was performed according to: ANSI C63.10

5.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.


The results recorded were measured with the modulation which produce the worst-case (widest) emission bandwidth.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyzer settings:

- Resolution Bandwidth (RBW): initially approx. 1 % of nominal emission bandwidth
- Video Bandwidth (VBW): > RBW
- Span: 40 / 80 / 160 / 320 MHz (for 20 / 40 / 80 / 160 MHz nominal bandwidth)
- Trace: Maxhold
- Sweeps: Until the trace is stable
- Sweeptime: Auto
- Detector: Peak

TS8997; Occupied Channel Bandwidth 6 dB / 26 dB / 99 %

5.1.2 TEST REQUIREMENTS / LIMITS

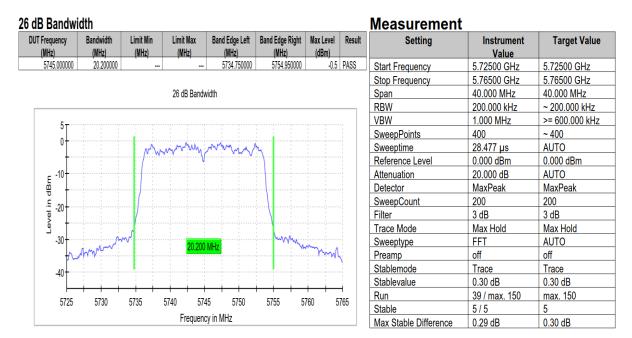
FCC Part 15, Subpart E, §15.403 (i)

There exist no applicable limits for the U-NII subbands 1, 2A and 2C. The test was performed to determine the limits for the "Maximum Conducted Output Power" test case. Therefore no result was applied.

5.1.3 TEST PROTOCOL

Ambient temperature: Air Pressure: Humidity:	25 °C 990 hPa 43 %		
Radio Technology	Operating Frequency	Subband	26 dB Bandwidth [MHz]
WLAN a	low	U-NII-3	19.9
WLAN a	mid	U-NII-3	19.8
WLAN a	high	U-NII-3	19.8
WLAN n 20 MHz	low	U-NII-3	20.2
WLAN n 20 MHz	mid	U-NII-3	20.2
WLAN n 20 MHz	high	U-NII-3	20.4
WLAN n 40 MHz	low	U-NII-3	48.0
WLAN n 40 MHz	high	U-NII-3	40.8
WLAN ac 80 MHz	mid	U-NII-3	84.0

Remark: Please see next sub-clause for the measurement plot.



5.1.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = WLAN a, Operating Frequency = high, Subband = U-NII-3 (S01_AE01)

dB B	andw	idth								Measurement		
DUT Frequ (MHz		Bandwidth (MHz)	Limit Mir (MHz)		t Max Hz)	Band Edge Left (MHz)	Band Edge Right (MHz)	Max Level (dBm)	Result	Setting	Instrument Value	Target Value
582	5.000000	19.800000		`		5814.850000	5834.650000	-0.7	PASS	Start Frequency	5.80500 GHz	5.80500 GHz
										Stop Frequency	5.84500 GHz	5.84500 GHz
				26 c	IB Bandw	idth				Span	40.000 MHz	40.000 MHz
										RBW	200.000 kHz	~ 200.000 kHz
	5 									VBW	1.000 MHz	>= 600.000 kHz
	5T									SweepPoints	400	~ 400
	0			Aunt	m	mond				Sweeptime	28.477 µs	AUTO
	+			w•γ •	Y	• • • • •				Reference Level	-10.000 dBm	-10.000 dBm
	-10+		;f	÷			· · · · · · · · · · · · · · · · · · ·		4	Attenuation	10.000 dB	AUTO
dBn dB	1									Detector	MaxPeak	MaxPeak
	20									SweepCount	200	200
Level in	-20		(Filter	3 dB	3 dB
Le	† · · ·		1							Trace Mode	Max Hold	Max Hold
	-30+…		i Arri	÷			÷			Sweeptype	FFT	AUTO
	+	m	~~		19.800	VHz	·····	\sim	~	Preamp	off	off
	-40	WY Y Y						hung		Stablemode	Trace	Trace
	TV									Stablevalue	0.30 dB	0.30 dB
	E00E	5810	5815	5820	582	5 5830	5835 5	5840 5	045	Run	39 / max. 150	max. 150
	5805	0100	0010				0000 0	0040 0	845	Stable	5/5	5
				F	requenc	y in MHz				Max Stable Difference	0.00 dB	0.30 dB

Radio Technology = WLAN n 20 MHz, Operating Frequency = low, Subband = U-NII-3 (S01_AE01)

Radio Technology = WLAN n 40 MHz, Operating Frequency = high, Subband = U-NII-3 (S01_AE01)

6 dB Bandw	idth							Measurement		
DUT Frequency	Bandwidth	Limit Min	Limit Max	Band Edge Left	Band Edge Right	Max Level	Result	Setting	Instrument Value	Target Value
(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(dBm)		Start Frequency	5.75500 GHz	5.75500 GHz
5795.000000	40.825516			5774.136961	5814.962477	-2.5	PASS	Stop Frequency	5.83500 GHz	5.83500 GHz
								Span	80.000 MHz	80.000 MHz
			26 dB Bandv	vidth				RBW	300.000 kHz	~ 400.000 kHz
								VBW	1.000 MHz	>= 900.000 kHz
5 T ···								SweepPoints	533	~ 533
0+								Sweeptime	31.621 µs	AUTO
Ľ		m	man	month march	m			Reference Level	-10.000 dBm	-10.000 dBm
			10000	V				Attenuation	10.000 dB	AUTO
면 -10 - ····								Detector	MaxPeak	MaxPeak
								SweepCount	200	200
<u>-</u> -20 - ····								Filter	3 dB	3 dB
8								Trace Mode	Max Hold	Max Hold
-30					<u>.</u>			Sweeptype	FFT	AUTO
	mm	\mathbf{M}	40.826	MHz	Y.M	n n An		Preamp	off	off
~~					V V	whyne (×	Stablemode	Trace	Trace
-40 -								Stablevalue	0.30 dB	0.30 dB
	+ + +	+ +				+ +	-	Run	105 / max. 150	max. 150
5755	5760 5770) 5780	5790		310 5820	5830 5	835	Stable	5/5	5
			Frequence	cy in MHz				Max Stable Difference	0.00 dB	0.30 dB

Radio Technology = WLAN ac 80 MHz, Operating Frequency = mid, Subband = U-NII-3 (S01_AE01)

i dB Bandwi	dth							Measurement		
DUT Frequency (MHz)	Bandwidth (MHz)	Limit Min (MHz)	Limit Max (MHz)	Band Edge Left (MHz)	Band Edge Right (MHz)	Max Level (dBm)	Result	Setting	Instrument Value	Target Value
5775.000000	84.000000	· /		5733.250000	5817.250000		PASS	Start Frequency	5.69500 GHz	5.69500 GHz
								Stop Frequency	5.85500 GHz	5.85500 GHz
			26 dB Bandv	vidth				Span	160.000 MHz	160.000 MHz
								RBW	1.000 MHz	~ 800.000 kHz
5								VBW	3.000 MHz	>= 3.000 MHz
5								SweepPoints	320	~ 320
0	1 1	1 1 1						Sweeptime	22.875 µs	AUTO
-					~			Reference Level	-10.000 dBm	-10.000 dBm
10+ ····								Attenuation	10.000 dB	AUTO
ер-10 								Detector	MaxPeak	MaxPeak
								SweepCount	200	200
드 -20-								Filter	3 dB	3 dB
l è + · ·		· • • • • • • • •						Trace Mode	Max Hold	Max Hold
-30+								Sweeptype	FFT	AUTO
								Preamp	off	off
M	Mul		84.000	MHZ	hn	m	V I	Stablemode	Trace	Trace
-40	444				Y i			Stablevalue	0.30 dB	0.30 dB
H		+ + +		+ + +	+ + +	+ +	-	Run	64 / max. 150	max. 150
5695	5720	5740	5760	5780 5800	5820	5840 5	855	Stable	5/5	5
			Frequen	cy in MHz				Max Stable Difference	0.16 dB	0.30 dB

5.1.5 TEST EQUIPMENT USED

- R&S TS8997

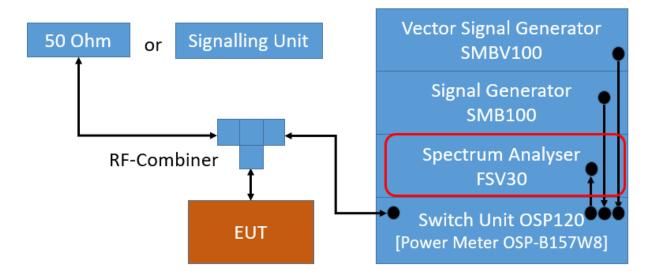
5.2 6 DB BANDWIDTH

Standard FCC Part 15 Subpart E

The test was performed according to: ANSI C63.10

5.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.


The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Span: 40 / 80 / 160 / 320 MHz (for 20 / 40 / 80 / 160 MHz nominal bandwidth))
- Trace: Maxhold
- Sweeps: Until the trace is stable
- Sweeptime: Auto
- Detector: Peak

TS8997; Occupied Channel Bandwidth 6 dB / 26 dB / 99 %

5.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart E, §15.407 (e)

Within the 5.725-5.850 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

5.2.3 TEST PROTOCOL

Ambient temperature:	25 °C					
Air Pressure: Humidity:	990 hPa 43 %					
Radio Technology	Operating Frequency	6 dB Bandwidth [MHz]	Limit [MHz]	Margin [MHz]	Min. 6 dB Frequency [MHz]	Max. 6 dB Frequency [MHz]
WLAN a	low	16.40	0.5	15.90	5736.63	5753.03
WLAN a	mid	16.40	0.5	15.90	5776.63	5793.03
WLAN a	high	16.40	0.5	15.90	5816.63	5833.03
WLAN n 20 MHz	low	17.65	0.5	17.15	5735.98	5753.63
WLAN n 20 MHz	mid	17.65	0.5	17.15	5775.98	5793.63
WLAN n 20 MHz	high	17.65	0.5	17.15	5815.98	5833.63
WLAN n 40 MHz	low	35.70	0.5	35.20	5737.03	5772.73
WLAN n 40 MHz	high	35.70	0.5	35.20	5777.03	5812.73
WLAN ac 80 MHz	mid	76.40	0.5	75.90	5736.63	5813.03

Remark: Please see next sub-clause for the measurement plot.

Limit Min

5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


Band Edge Left

Radio Technology = WLAN a, Operating Frequency = low, Subband = U-NII-3 (S01_AE01)

Band Edge Right

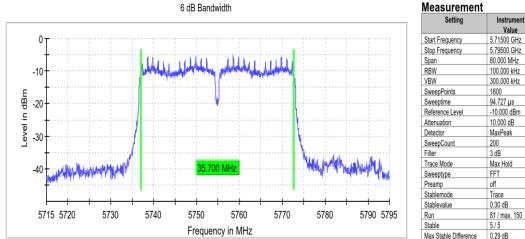
Max Level

Result

Limit Max

6 dB Bandwidth

Bandwidth



Radio Technology = WLAN n 20 MHz, Operating Frequency = low, Subband = U-NII-3 (S01_AE01)

DUT Frequency Bandwidth Limit Min Limit Max Band Edge Left Band Edge Right Max Level Result (MHz) (MHz) (MHz) (dBm) (MHz) (MHz) (MHz) 5745.000000 -1.5 PASS 17.650000 0.500000 5735.975000 5753.625000 6 dB Bandwidth Measurement Setting Instrument Target Value Value 5-Start Frequency 5.72500 GHz 5.72500 GHz Stop Frequency 5.76500 GHz 5.76500 GHz 0-Span 40.000 MHz 40.000 MHz RBW 100.000 kHz ~ 100.000 kHz VBW 300.000 kHz ~ 300.000 kHz -10 SweepPoints ~ 800 800 Level in dBm Sweeptime 56.836 µs AUTO -20 Reference Level -10.000 dBm -10.000 dBm 10.000 dB AUTO Attenuation MaxPeak Detector MaxPeak -30 SweepCount 200 200 when white white white 3 dB Max Hold Filter 3 dB hippy Trace Mode Max Hold 17.650 MHz -40 FFT Sweeptype AUTO Preamp off off Stablemode Trace Trace Stablevalue 0.30 dB 0.30 dB 5735 5740 5745 5755 Run 85 / max. 150 5725 5730 5750 5760 5765 max. 150 Stable 5/5 Frequency in MHz Max Stable Difference 0.30 dB 0.06 dB

Radio Technology = WLAN n 40 MHz, Operating Frequency = low, Subband = U-NII-3 (S01_AE01)

6 dB Bandwidth Bandwidth **DUT Frequency** Limit Min Limit Max Band Edge Left Band Edge Right Max Level Result (MHz) (MHz) (MHz) (MHz) (MHz) (MHz) (dBm) 5755.000000 35.700000 0.500000 5737.025000 5772.725000 -5.4 PASS

6 dB Bandwidth

Target Value

5.71500 GHz

5.79500 GHz

~ 100.000 kHz

~ 300.000 kHz

~ 1600

AUTO -10.000 dBm

AUTO

200

3 dB

MaxPeak

Max Hold

AUTO

off

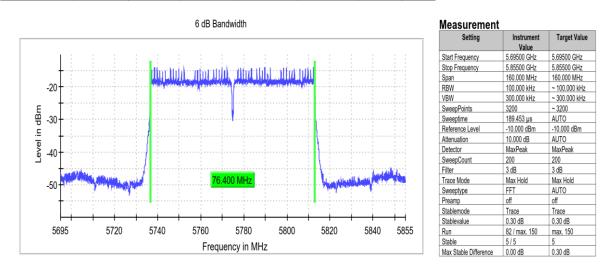
Trace

0.30 dB

max. 150

0.30 dB

5


80.000 MHz

Radio Technology = WLAN ac 80 MHz, Operating Frequency = mid, Subband = U-NII-3 (S01_AE01)

6 dB Bandwidth

DUT Frequency (MHz)	Bandwidth (MHz)	Limit Min (MHz)	Limit Max (MHz)	Band Edge Left (MHz)	Band Edge Right (MHz)	Max Level (dBm)	Result
5775.000000	76.400000	0.500000		5736.625000	5813.025000	-13.9	PASS

5.2.5 TEST EQUIPMENT USED - R&S TS8997

5.3 99 % BANDWIDTH

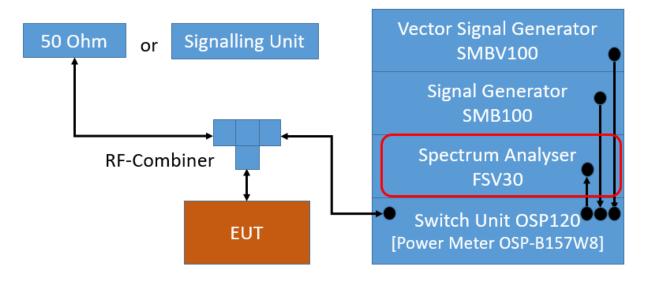
Standard FCC Part 15 Subpart E

The test was performed according to: ANSI C63.10

5.3.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.


The results recorded were measured with the modulation which produce the worst-case (widest) emission bandwidth.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyzer settings:

- Resolution Bandwidth (RBW): approx. ≥ 1 % of the span, but not below
- Video Bandwidth (VBW): ≥ 3 times the RBW
- Span: 40 / 80 / 160 / 320 MHz (for 20 / 40 / 80 / 160 MHz nominal bandwidth)
- Trace: Maxhold
- Sweeps: Until the trace is stable
- Sweeptime: Auto
- Detector: Peak

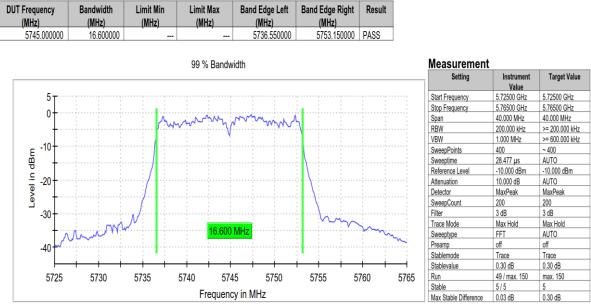
The 99 % measurement function of the spectrum analyser function was used to determine the 99 % bandwidth.

TS8997; Occupied Channel Bandwidth 6 dB / 26 dB / 99 %

5.3.2 TEST REQUIREMENTS / LIMITS

No applicable limit:

5.3.3 TEST PROTOCOL

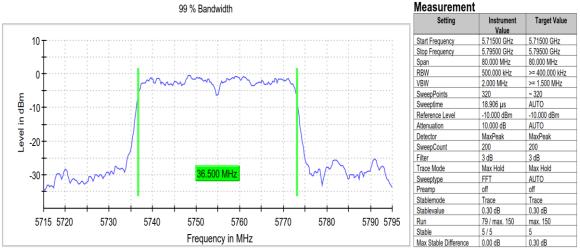

Ambient temperature: Air Pressure: Humidity:	25 °C 990 hPa 43 %		
Radio Technology	Operating Frequency	Subband	99% Bandwidth [MHz]
WLAN a	low	U-NII-3	16.6
WLAN a	mid	U-NII-3	16.6
WLAN a	high	U-NII-3	16.6
WLAN n 20 MHz	low	U-NII-3	17.7
WLAN n 20 MHz	mid	U-NII-3	17.8
WLAN n 20 MHz	high	U-NII-3	17.8
WLAN n 40 MHz	low	U-NII-3	36.5
WLAN n 40 MHz	high	U-NII-3	36.5
WLAN ac 80 MHz	mid	U-NII-3	77.0

Remark: Please see next sub-clause for the measurement plot.

5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = WLAN a, Operating Frequency = low, Subband = U-NII-3 (S01_AE01)

99 % Bandwidth

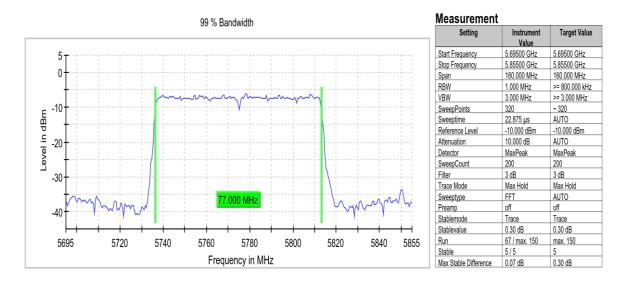

Radio Technology = WLAN n 20 MHz, Operating Frequency = low, Subband = U-NII-3 (S01_AE01)

OUT Frequency (MHz)	Bandwidth (MHz)	Limit Min (MHz)	Limit Max (MHz)	Band Edge Left (MHz)	Band Edge Right (MHz)	Result			
5745.000000	17.700000	· · ·		5735.950000	5753.650000	PASS			
			99 % Bandv	vidth			Measureme		T
							Setting	Instrument Value	Target Valu
5			,			,	Start Frequency	5.72500 GHz	5.72500 GHz
							Stop Frequency	5.76500 GHz	5.76500 GHz
0+			moun	Mr. L	H. : :		Span	40.000 MHz	40.000 MHz
↓ ↓		γw	YW Y	where we want	<u></u>		RBW	200.000 kHz	>= 200.000 kHz
							VBW	1.000 MHz	>= 600.000 kH;
F -10 + ···				1 1			SweepPoints	400	~ 400
<u> </u>							Sweeptime	28.477 µs	AUTO
e l							Reference Level	-10.000 dBm	-10.000 dBm
Ecel in dB		/			÷•••••••••••••••••••••••••••••••••••••		Attenuation	10.000 dB	AUTO
							Detector	MaxPeak	MaxPeak
L L L							SweepCount	200	200
-30+	www	~~		·····	mm	^	Filter	3 dB	3 dB
L	marro		17.700	MHz		m	Trace Mode	Max Hold	Max Hold
~	w -					1	Sweeptype	FFT	AUTO
-40 +		••••••			••••••••••••••••••••••••••••••••••••••	••••	Preamp	off	off
						-i -i	Stablemode	Trace	Trace
	5700	5705	5740 57	1 5750			Stablevalue	0.30 dB	0.30 dB
5725	5730	5735	5740 574	45 5750	5755	5760	5765 Run	66 / max. 150	max. 150
			Frequen	cy in MHz			Stable	5/5	5
			. roquoni	.,			Max Stable Differen	ce 0.03 dB	0.30 dB

Radio Technology = WLAN n 40 MHz, Operating Frequency = low, Subband = U-NII-3 (S01_AE01)

99 % Bandwid	dth					
DUT Frequency (MHz)	Bandwidth (MHz)	Limit Min (MHz)	Limit Max (MHz)	Band Edge Left (MHz)	Band Edge Right (MHz)	Result
5755.000000	36.500000			5736.625000	5773.125000	PASS

99 % Bandwidth



Radio Technology = WLAN ac 80 MHz, Operating Frequency = mid, Subband = U-NII-3 (S01_AE01)

99 % Bandwidth

DUT Frequency	Bandwidth	Limit Min	Limit Max	Band Edge Left	Band Edge Right	Result
(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	
5775.000000	77.000000			5736,250000	5813,250000	PASS

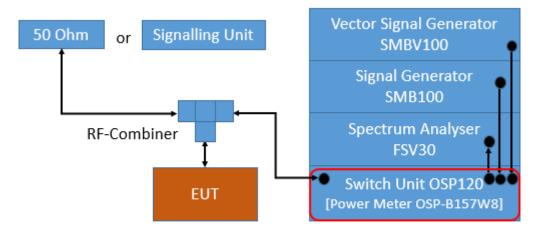
5.3.5 TEST EQUIPMENT USED - R&S TS8997

5.4 MAXIMUM CONDUCTED OUTPUT POWER

Standard FCC Part 15 Subpart E

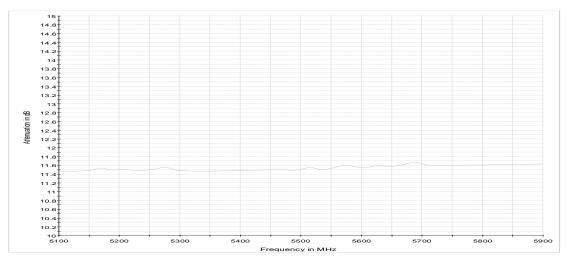
The test was performed according to: ANSI C63.10

5.4.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

The OSP-B157W is a gated RF average power meter with a signal bandwidth > 300 MHz.


Note:

The measurement was performed according FCC Public Note "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, 789033 D02", method **PM-G**.

TS8997; Maximum Conducted Output Power

Attenuation of measurement path

5.4.2 TEST REQUIREMENTS / LIMITS

A) FCC

For systems using digital modulation techniques in the 5.15 – 5.25 GHz bands: §15.407 (a) (1)

Limit: 50 mW (17 dBm) or 4 dBm + 10 log (26 dB bandwidth/MHz) whatever is the lesser.

FCC ET Docket No. 13-49, FIRST REPORT AND ORDER, April 1, 2014 ("new rules"): §15.407 (a) (1) (i): Outdoor access point:

Limit: 1 W (30 dBm) provided the maximum antenna gain does not exceed 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

§15.407 (a) (1) (ii): Indoor access point:

Limit: 1 W (30 dBm) provided the maximum antenna gain does not exceed 6 dBi.

§15.407 (a) (1) (iv): Mobile and portable client devices:

Limit: 250 mW (24 dBm) provided the maximum antenna gain does not exceed 6 dBi.

For systems using digital modulation techniques in the 5.25 – 5.35 GHz and 5.47 – 5.725 GHz bands:

§15.407 (a) (2)

Limit: 250 mW (24 dBm) or 11 dBm + 10 log (26 dB bandwidth/MHz) whatever is the lesser.

For systems using digital modulation techniques in the 5.725 – 5.850 GHz bands: §15.407 (a) (3) Limit: 1 W (30 dBm) or 17 dBm + 10 log (26 dB bandwidth/MHz) whatever is the lesser. FCC ET Docket No. 13-49, FIRST REPORT AND ORDER, April 1, 2014 ("new rules"): §15.407 (a) (3): Limit: 1 W (30 dBm).

§15.407 (a) (4):

The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

B) IC

Different frequency bands and limits apply, as compared to the FCC requirements.

RSS-247, 6.2.1 (1), Band 5150-5250 MHz, indoor operation only: Limit (e.i.r.p.): 200 mW (23 dBm) or 10 + 10 log10 B [dBm], whichever power is less. B is the 99% emission bandwidth in MHz.

RSS-247, 6.2.2 (1), Band 5250-5350 MHz: Limits: Maximum conducted Power: 250 mW (24 dBm) or 11 + 10 log10 B [dBm], whichever power is less.

e.i.r.p.: 1.0 W (30 dBm) or 17 + 10 log10 B [dBm], whichever power is less.

Note: For EUTs operating at a higher e.i.r.p. than 200 mW (23 dBm), compliance with the e.i.r.p. elevation mask is required.

RSS-247, 6.2.3 (1), Bands 5470-5600 MHz and 5650-5725 MHz: Limits: Maximum conducted Power: 250 mW (24 dBm) or 11 + 10 log10 B [dBm], whichever power is less. e.i.r.p.: 1.0 W (30 dBm) or 17 + 10 log10 B [dBm], whichever power is less.

RSS-247, 6.2.4 (1), Band 5725-5825 MHz:

Limits: Maximum conducted Power: 1W (30 dBm) or 17 + 10 log10 B [dBm], whichever power is less. e.i.r.p.: 4.0 W (36 dBm) or 23 + 10 log10 B [dBm], whichever power is less.

All frequency bands: B is the 99% emission bandwidth in MHz.

5.4.3 TEST PROTOCOL

Ambient temperature:	25 °C
Air Pressure:	990 hPa
Humidity:	43 %
WLAN a-Mode: 20 MHz: 6 Mbit/s	

U-NII- Subband	Ch. No.	Freq. [MHz]	Cond. Power [dBm]	EIRP [dBm]	FCC Cond. Limit [dBm]	Margin [dB]	IC Cond. Limit [dBm]	Margin [dB]	IC EIRP Limit [dBm]	Margin [dB]	
3	149	5745	9.4	12.9	30.0	20.6	30.0	20.6	36.0	23.1	
	157	5785	9.2	12.7	30.0	20.8	30.0	20.8	36.0	23.3	
	165	5825	9.1	12.6	30.0	20.9	30.0	20.9	36.0	23.4	

WLAN n-Mode; 20 MHz; MCS0; SISO

U-NII- Subband	Ch. No.	Freq. [MHz]	Cond. Power [dBm]	EIRP [dBm]	FCC Cond. Limit [dBm]	Margin [dB]	IC Cond. Limit [dBm]	Margin [dB]	IC EIRP Limit [dBm]	Margin [dB]
3	149	5745	9.4	12.9	30.0	20.6	30.0	20.6	36.0	23.1
	157	5785	9.5	13.0	30.0	20.5	30.0	20.5	36.0	23.0
	165	5825	9.0	12.5	30.0	21.0	30.0	21.0	36.0	23.5

WLAN n-Mode; 40 MHz; MCS0; SISO

U-NII- Subband	Ch. No.	Freq. [MHz]	Cond. Power [dBm]	EIRP [dBm]	FCC Cond. Limit [dBm]	Margin [dB]	IC Cond. Limit [dBm]	Margin [dB]	IC EIRP Limit [dBm]	Margin [dB]
3	151	5755	8.5	12.0	30.0	21.5	30.0	21.5	36.0	24.0
	159	5795	8.4	11.9	30.0	21.6	30.0	21.6	36.0	24.1

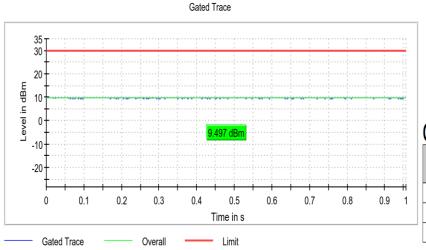
WLAN ac-Mode; 80 MHz; MCS8; SISO

U-NII- Subband	Ch. No.	Freq. [MHz]	Cond. Power [dBm]	EIRP [dBm]	FCC Cond. Limit [dBm]	Margin [dB]	IC Cond. Limit [dBm]	Margin [dB]	IC EIRP Limit [dBm]	Margin [dB]	
3	155	5775	2.9	6.4	30.0	27.1	30.0	27.1	36.0	29.6	

Remark: Please see next sub-clause for the measurement plot.

5.4.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = WLAN a, Operating Frequency = low, Subband = U-NII-3 (S01_AE01)


DUT Frequency (MHz)	Gated RMS (dBm)	Limit Max (dBm)	Gated EIRP (dBm)	DutyCycle (%)	Result								
5745.000000	9.4	30.0	9.4	96.170	PASS								
			G	Gated Trace							-		
³⁵ 30													
20 - E													
Fevel in dBm													
				9.369 dl	3m			·····					
-10+		1 1									OSP PowerM	eter sett	ings
-20											Setting	Instrument Value	Target Value
0	0.1	0.2	0.3 (D.4 0.	5).6	0.7	0.8	0.9	1	Measurement Time	1.000 s	1.000 s
				Time i	ns						Points	1000000	100000
Gate	d Trace	C	Verall	Lim	it						Time resolution	1.000 µs	1.000 µs

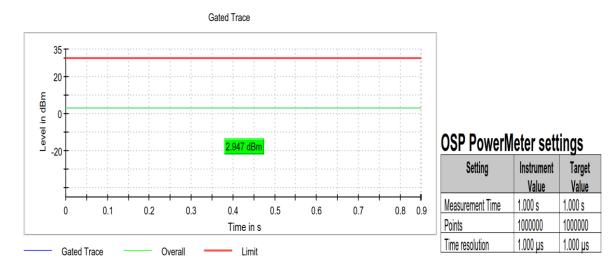
Radio Technology = WLAN n 20 MHz, Operating Frequency = mid, Subband = U-NII-3 (S01_AE01)

Result

DUT Frequency	Gated RMS	Limit Max	Gated EIRP	DutyCycle	Result
(MHz)	(dBm)	(dBm)	(dBm)	(%)	
5785.000000	9.5	30.0	9.5	95.919	PASS

OSP PowerMeter settings

Setting	Instrument Value	Target Value
Measurement Time	1.000 s	1.000 s
Points	1000000	1000000
Time resolution	1.000 µs	1.000 µs


Radio Technology = WLAN n 40 MHz, Operating Frequency = high, Subband = U-NII-3 (S01_AE01) Result

UT Frequency (MHz)	Gated RMS (dBm)	Limit Max (dBm)	Gated EIRP (dBm)	DutyCycle (%)	Result						
5755.000000	8.5	30.0	8.5	92.115	PASS						
			G	Gated Trace					_		
35 - 30 -											
20 E											
Level in dBm				0.457.15					OSP Power	lotor coti	inac
-10				<mark>8.457 d</mark> E	sm :						
-20									Setting	Instrument Value	Targe Value
	0.1	0.2	0.3	0.4	0.5	0.7	0.8	0.9	Measurement Time	1.000 s	1.000 s
0	0.1	0.2	0.0	Time in		0.7	5.0	0.0	Points	1000000	1000000
									Time resolution	1.000 µs	1.000 µs

Radio Technology = WLAN ac 80 MHz, Operating Frequency = mid, Subband = U-NII-3 (S01_AE01)

Result

DUT Frequency	Gated RMS	Limit Max	Gated EIRP	DutyCycle	Result
(MHz)	(dBm)	(dBm)	(dBm)	(%)	
5775.000000	2.9	30.0	2.9	85.386	PASS

5.4.5 TEST EQUIPMENT USED

- R&S TS8997

5.5 PEAK POWER SPECTRAL DENSITY

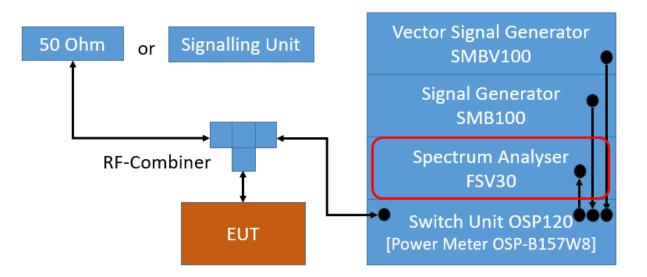
Standard FCC Part 15 Subpart E

The test was performed according to: ANSI C63.10

5.5.1 TEST DESCRIPTION

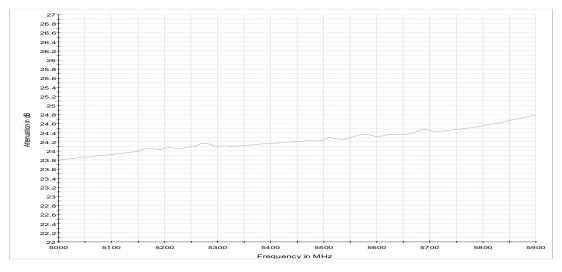
The Equipment Under Test (EUT) was set up in a shielded room to perform the Maximum Power Spectral Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) output power.


The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyzer settings:

- Resolution Bandwidth (RBW): 1 MHz (for subband 3: 500 kHz)
- Video Bandwidth (VBW): 3 MHz (for subband 3: 2 MHz)
- Trace: Average, RMS power averaging mode
- Sweeps: 100
- Sweeptime: 5 ms
- Detector: RMS
- Trigger: gated mode


Note:

The analyser settings are according FCC Public Note "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, 789033 D02", method **SA-3**.

TS8997; Maximum Power Spectral Density

Attenuation of the measurement path

5.5.2 TEST REQUIREMENTS / LIMITS

A) FCC

FCC Part 15, Subpart E, §15.407 (a) (1)

For systems using digital modulation techniques in the 5.15 – 5.25 GHz bands: (i) and (ii), outdoor and indoor access points: Limit: 17 dBm/MHz. (iv), mobile and portable client devices: Limit: 11 dBm/MHz.

FCC Part 15, Subpart E, §15.407 (a) (2) For systems using digital modulation techniques in the 5.25 – 5.35 GHz and 5.47 – 5.725 GHz bands: Limit: 11 dBm/MHz.

FCC Part 15, Subpart E, §15.407 (a) (3) For systems using digital modulation techniques in the 5.725 – 5.850 GHz bands: Limit: 30 dBm/500 kHz.

Note: The limit will be also fulfilled when measuring at any bandwidth greater than 500 kHz. This applies to signals where the maximum conducted output power was measured at a bandwidth exceeding 500 kHz and which fulfil that limit of 30 dBm.

B) IC

Different frequency bands and limits apply, as compared to the FCC requirements.

RSS-247, 6.2.1 (1), Band 5150-5250 MHz, indoor operation only: Limit (e.i.r.p.): 10 dBm/MHz.

RSS-247, 6.2.2 (1), Band 5250-5350 MHz: Limit: 11 dBm/MHz.

RSS-247, 6.2.3 (1), Bands 5470-5600 MHz and 5650-5725 MHz: Limit: 11 dBm/MHz.

RSS-247, 6.2.4 (1), Band 5725-5850 MHz: Limit: 30 dBm/500 kHz.

5.5.3 TEST PROTOCOL

U-NII- Subband	Ch. No.	Freq. [MHz]	MPSD [dBm/ MHz]	FCC Limit [dBm/MHz]	Margin [dB]	IC Limit [dBm/MHz]	Margin [dB]	IC EIRP MPSD
3	149	5745	-4.8	30.0	34.8	30.0	34.8	
	157	5785	-5.0	30.0	35.0	30.0	35.0	
	165	5825	-4.9	30.0	34.9	30.0	34.9	

WLAN n-Mode; 20 MHz; MCS0; SISO

U-NII- Subband	Ch. No.	Freq. [MHz]	MPSD [dBm/ MHz]	FCC Limit [dBm/MHz]	Margin [dB]	IC Limit [dBm/MHz]	Margin [dB]	IC EIRP MPSD
3	149	5745	-5.0	30.0	35.0	30.0	35.0	
	157	5785	-4.9	30.0	34.9	30.0	34.9	
	165	5825	-4.9	30.0	34.9	30.0	34.9	

WLAN n-Mode; 40 MHz; MCS0; SISO

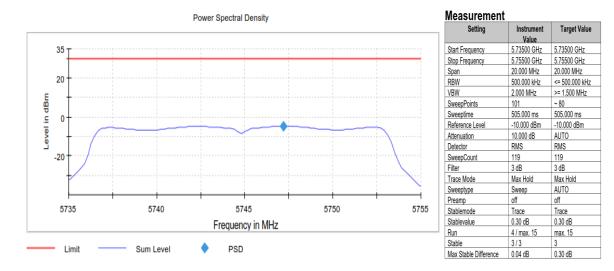
U-NII- Subband	Ch. No.	Freq. [MHz]	MPSD [dBm/ MHz]	FCC Limit [dBm/MHz]	Margin [dB]	IC Limit [dBm/MHz]	Margin [dB]	IC EIRP MPSD
3	151	5755	-4.8	30.0	34.8	30.0	34.8	
	159	5795	-5.1	30.0	35.1	30.0	35.1	

WLAN ac-Mode; 80 MHz; MCS8; SISO

U-NII- Subband	Ch. No.	Freq. [MHz]	MPSD [dBm/ MHz]	FCC Limit [dBm/MHz]	Margin [dB]	IC Limit [dBm/MHz]	Margin [dB]	IC EIRP MPSD
2	155	5775	-13.1	30.0	43.1	30.0	43.1	

Remark: Please see next sub-clause for the measurement plot.

5.5.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

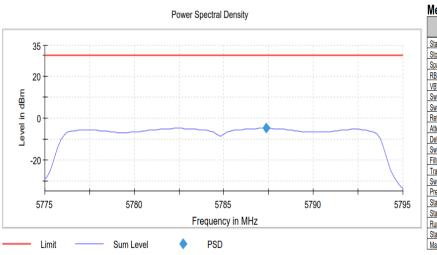

Radio Technology = WLAN a, Operating Frequency = low, Subband = U-NII-3 (S01_AE01)

Result					
	DUT Frequency (MHz)	Frequency (MHz)	PSD (dBm)	Limit Max (dBm)	Result
	5745.000000	5747,178218	-4.768	30.0	PASS

Ports

Port	Duty Cycle (%)
1	0.000

...


Radio Technology = WLAN n 20 MHz, Operating Frequency = mid, Subband = U-NII-3 (S01_AE01)

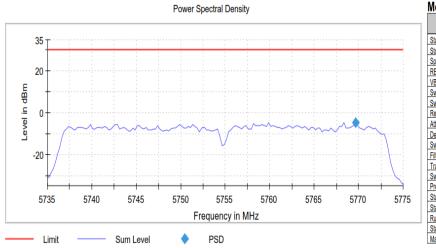
Result

DUT Frequency (MHz)	Frequency (MHz)	PSD (dBm)	Limit Max (dBm)	Result
5785.000000	5787.376238	-4.920	30.0	PASS

Ports

Port	Duty Cycle (%)		
1	0.000		

leasurement				
Instrument Value	Target Value			
5.77500 GHz	5.77500 GHz			
5.79500 GHz	5.79500 GHz			
20.000 MHz	20.000 MHz			
500.000 kHz	<= 500.000 kHz			
2.000 MHz	>= 1.500 MHz			
101	~ 80			
505.000 ms	505.000 ms			
-10.000 dBm	-10.000 dBm			
10.000 dB	AUTO			
RMS	RMS			
119	119			
3 dB	3 dB			
Max Hold	Max Hold			
Sweep	AUTO			
off	off			
Trace	Trace			
0.30 dB	0.30 dB			
4 / max. 15	max. 15			
3/3	3			
0.02 dB	0.30 dB			
	Value 5.77500 GHz 5.79500 GHz 20.000 MHz 20.000 MHz 20.000 MHz 101 505.000 ms -10.000 dBm 10.000 dBm 10.000 dBm 119 3 dB Max Hold Sweep off Trace 0.30 dB 4./max 15 3 / 3			


Radio Technology = WLAN n 40 MHz, Operating Frequency = low, Subband = U-NII-3 (S01_AE01)

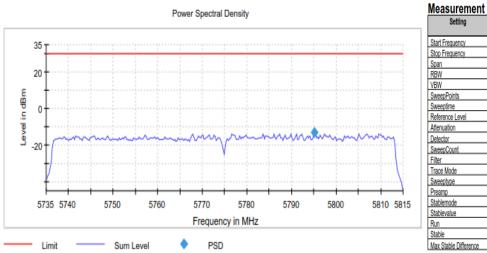
Result

DUT Frequenc (MHz)	у	Frequency (MHz)	PSD (dBm)	Limit Max (dBm)	Result
5755.000	0000	5769.625000	-4.771	30.0	PASS

Ports

Port	Duty Cycle (%)		
1	0.000		

Measurement					
Setting	Instrument Value	Target Value			
Start Frequency	5.73500 GHz	5.73500 GHz			
Stop Frequency	5.77500 GHz	5.77500 GHz			
Span	40.000 MHz	40.000 MHz			
RBW	500.000 kHz	<= 500.000 kHz			
VBW	2.000 MHz	>= 1.500 MHz			
SweepPoints	160	~ 160			
Sweeptime	16.000 µs	16.000 µs			
Reference Level	-10.000 dBm	-10.000 dBm			
Attenuation	10.000 dB	AUTO			
Detector	RMS	RMS			
SweepCount	0	3750001			
Filter	3 dB	3 dB			
Trace Mode	Max Hold	Max Hold			
Sweeptype	FFT	AUTO			
Preamp	off	off			
Stablemode	Trace	Trace			
Stablevalue	0.30 dB	0.30 dB			
Run	15 / max. 15	max. 15			
Stable	3/3	3			
Max Stable Difference	0.00 dB	0.30 dB			



Radio Technology = WLAN ac 80 MHz, Operating Frequency = mid, Subband = U-NII-3 (S01_AE01)

Result								
DUT Frequency (MHz)	Frequency (MHz)	PSD (dBm)	Limit Max (dBm)	Result				
5775.000000	5795.125000	-13.130	30.0	PASS				

Ports

_		
Port	Duty Cycle	
1	0.000	

Setting	Instrument Value	Target Value
Start Frequency	5.73500 GHz	5.73500 GHz
Stop Frequency	5.81500 GHz	5.81500 GHz
Span	80.000 MHz	80.000 MHz
RBW	500.000 kHz	<= 500.000 kHz
/BW	2.000 MHz	>= 1.500 MHz
SweepPoints	320	~ 320
Sweeptime	32.000 µs	32.000 µs
Reference Level	-10.000 dBm	-10.000 dBm
Attenuation	10.000 dB	AUTO
Detector	RMS	RMS
SweepCount	0	1875001
Filter	3 dB	3 dB
Trace Mode	Max Hold	Max Hold
Sweeptype	FFT	AUTO
Preamp	off	off
Stablemode	Trace	Trace
Stablevalue	0.30 dB	0.30 dB
Run	15 / max. 15	max. 15
Stable	3/3	3
Max Stable Difference	0.00 dB	0.30 dB

5.5.5 TEST EQUIPMENT USED - R&S TS8997

5.6 UNDESIRABLE EMISSIONS; GENERAL FIELD STRENGTH LIMITS

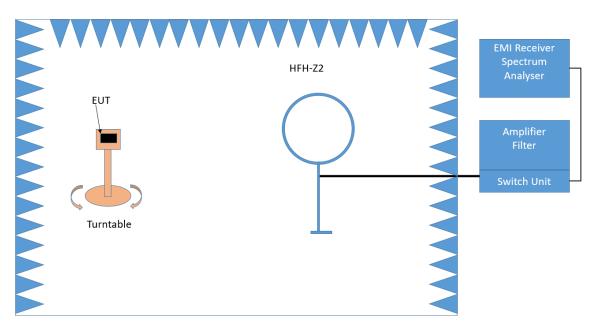
Standard FCC Part 15 Subpart E

The test was performed according to: ANSI C63.10

ANSI C03.10

5.6.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following sub-chapters of ANSI C63.10:


- < 30 MHz: Chapter 6.4
- 30 MHz 1 GHz: Chapter 6.5
- > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

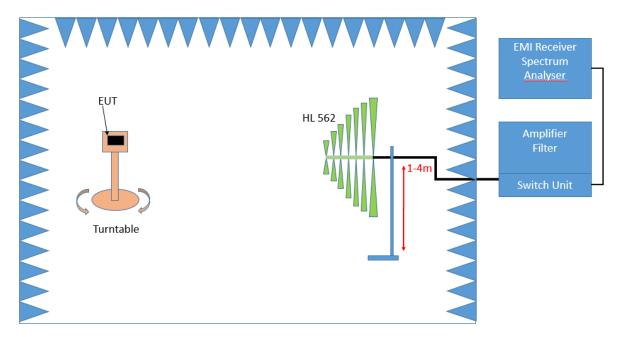
1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz - 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)


Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- -- Height variation range: 1 4 m
- Height variation step size: 1.5 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

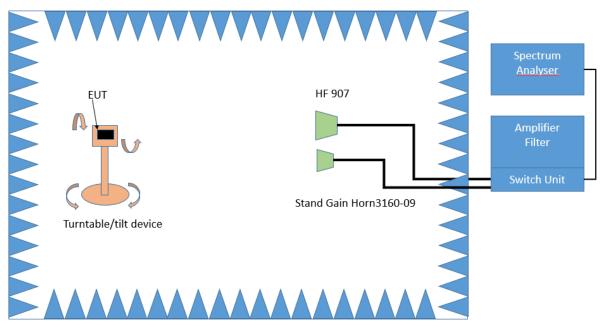
- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: 360 °
- Height variation range: 1 4 m
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed:

- EMI receiver settings for step 3:
- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement 1 GHz up to 26.5 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only. The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 1 s

4. Measurement above 26.5 GHz up to 40 GHz

The following modifications, compared to the frequency range 1 GHz – 26.5 GHz, apply to the measurement procedure for the frequency range above 26.5 GHz:

• Measurement distance: 1m

Test Setup; Spurious Emission Radiated (FAC), 26.5 – 40 GHz

5.6.2 TEST REQUIREMENTS / LIMITS

A) FCC

FCC Part 15 Subpart E, §15.407 (b)(1) For transmitters operating in the 5150–5250 MHz band: Limit: -27 dBm/MHz EIRP outside of the band 5150–5350 MHz.

FCC Part 15 Subpart E, §15.407 (b)(2) For transmitters operating in the 5250–5350 MHz band: Limit: -27 dBm/MHz EIRP outside of the band 5150–5350 MHz.

FCC Part 15 Subpart E, §15.407 (b)(3) For transmitters operating in the 5470–5725 MHz band: Limit: -27 dBm/MHz EIRP outside of the band 5470–5725 MHz.

FCC Part 15 Subpart E, §15.407 (b)(4)
For transmitters operating in the 5725–5850 MHz band:
Limit: -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge increasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edge increasing linearly to 27 dBm/MHz at the band edge.

B) IC

Different frequency bands and limits apply, as compared to the FCC requirements.

RSS-247, 6.2.1.2, Emissions outside the band 5150-5250 MHz, indoor operation only: Limit: -27 dBm/MHz EIRP outside of the band 5150-5250 MHz.

RSS-247, 6.2.2.2, Emissions outside the band 5250-5350 MHz: Limit: -27 dBm/MHz EIRP outside of the band 5250-5350 MHz.

RSS-247, 6.2.3.2, Emissions outside the bands 5470-5600 MHz and 5650-5725 MHz: Limit: -27 dBm/MHz EIRP outside of the band 5470-5725 MHz. However, devices with bandwidth overlapping the band edge of 5725 MHz can meet the emission limit of -27 dBm/MHz e.i.r.p.at 5850 MHz instead of 5725 MHz. Note: No operation is permitted for the frequency range 5600-5650 MHz.

RSS-247, 6.2.4.2, Emissions outside the band 5725-5850 MHz:

- a. 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 Bm/MHz at 5 MHz above or below the band edges;
- b. 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges;
- c. 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27 dBm/MHz at 75 MHz above or below the band edges; and
- d. -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges.

C) FCC & IC

FCC Part 15 Subpart E, §15.405 The provisions of §§ 15.203 and 15.205 are included.

§15.407 (b)(6)

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.

§15.407 (b)(7)

The provisions of §15.205 apply to intentional radiators operating under this section

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor:

- Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$
- Limit (dBµV/m) = EIRP [dBm] 20 log (d [m]) + 104.8

Limit types (in result tables on next page): RB – Emissions falls into a "Restricted Band" according FCC §§15.205 and 15.209 *) UE – "Undesirable Emission Limit" according FCC §15.407 BE-RB – Band Edge Limit basing on "Restricted Band Limits" BE-UE – Band Edge Limit basing on "Undesirable Emission Limit" *) Below 1 GHz the limits of §15.209 are applied for all frequencies.

5.6.3 TEST PROTOCOL

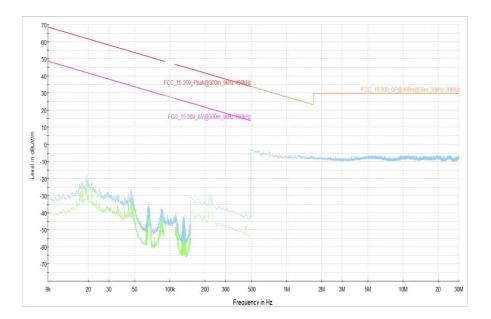
Ambient temperature: Air Pressure:	26 - 28 °C 999 - 1007 hPa
Humidity:	37 - 39 %
WLAN a-Mode; 20 MHz; 6 Mbit/s	
Applied duty cycle correction (AV): 0 dB	

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]	Limit Type
157	5785	155.3	22.2	QP	120	43.5	21.3	UE
157	5785	551.6	43.7	QP	120	46.0	2.3	UE
157	5785	600.0	43.0	QP	120	46.0	3.0	UE
157	5785	930.0	42.0	QP	120	46.0	4.0	UE
157	5785	1000.0	43.2	QP	120	54.0	10.8	UE

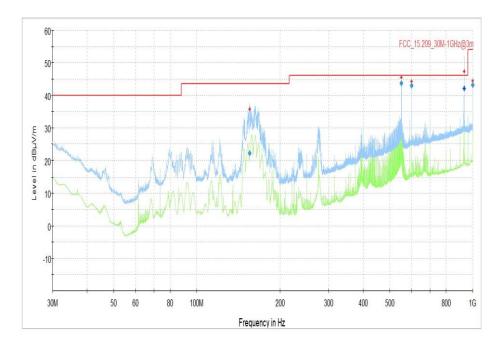
WLAN n-Mode; 20 MHz; MCS0; SISO Applied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]	Limit Type
149	5745	-	-	-	-	-	> 20	-
157	5785	-	-	-	-	-	> 20	-
165	5825	2790.2	55.8	PEAK	1000	74.0	18.2	RB
165	5825	2789.8	37.6	AV	1000	54.0	16.4	RB

WLAN n-Mode; 40 MHz; MCS0; SISO Applied duty cycle correction (AV): 0 dB

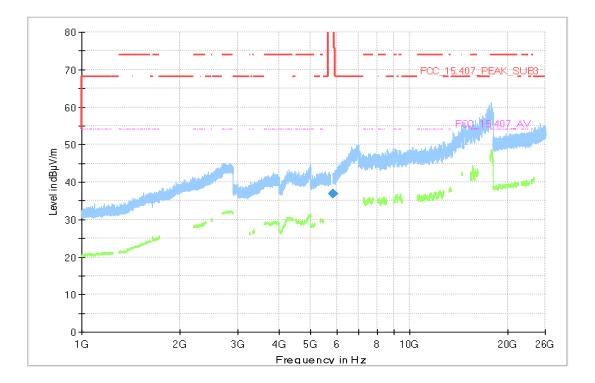

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]	Limit Type
151	5755	-	-	-	-	-	> 20	-
159	5795	2790.2	55.5	Peak	1000	74.0	18.5	RB
159	5795	2790.0	37.9	AV	1000	54.0	16.1	RB

Remark: Please see next sub-clause for the measurement plot.

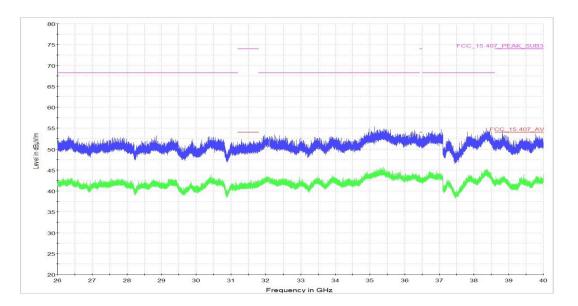


5.6.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

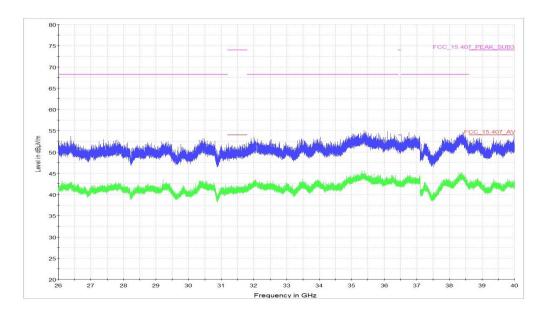
Radio Technology = WLAN a, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz, Subband = U-NII-3 (S01_AD01)



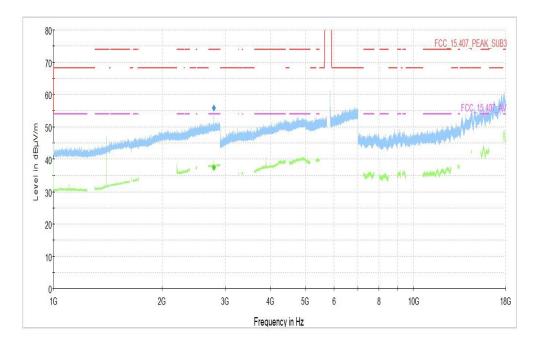
Radio Technology = WLAN a, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz, Subband = U-NII-3 (S01_AD01)

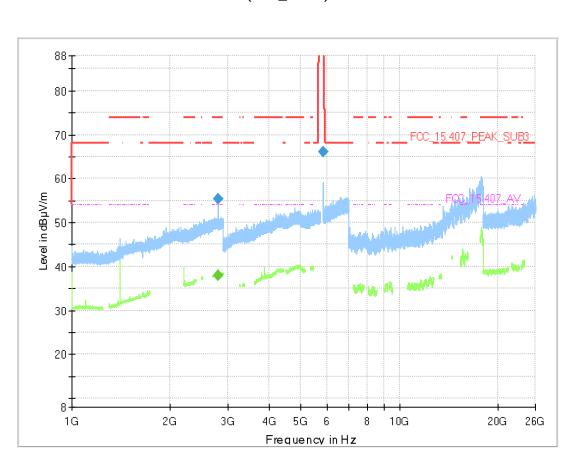


Radio Technology = WLAN a, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz, Subband = U-NII-3 (S01_AD01)



Radio Technology = WLAN a, Operating Frequency = mid, Measurement range = 26 GHz - 40 GHz, Subband = U-NII-3 (S01_AD01)




Radio Technology = WLAN n 20 MHz, Operating Frequency = mid, Measurement range = 26 GHz - 40 GHz, Subband = U-NII-3 (S01_AD01)

Radio Technology = WLAN n 20 MHz, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz, Subband = U-NII-3 (S01_AD01)

Radio Technology = WLAN n 40 MHz, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz, Subband = U-NII-3 (S01_AD01)

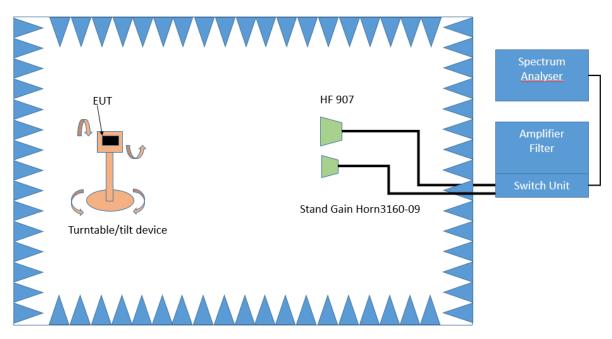
5.6.5 TEST EQUIPMENT USED

- Radiated Emissions

5.7 BAND EDGE

Standard FCC Part 15 Subpart E

The test was performed according to: ANSI C63.10


5.7.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following sub-chapter of ANSI C63.10:

• Chapter 6.10.5

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only (procedure according ANSI C63.10, chapter 6.6.5.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2: The turn table azimuth will slowly vary by ± 22.5°. The elevation angle will slowly vary by ± 45° Spectrum analyser settings: - Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

5.7.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz			Limits (dBµV/m)		
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m		
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m		
1.705 - 30	30@30m	3	29.5@30m		

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)	
30 - 88	100@3m	3	40.0@3m	
88 - 216	150@3m	3	43.5@3m	
216 - 960	200@3m	3	46.0@3m	
960 - 26000	500@3m	3	54.0@3m	
26000 - 40000	500@3m	1	54.0@3m	

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

5.7.3 TEST PROTOCOL

Ambient temperature:28 °CAir Pressure:1007 hPaHumidity:37 %WLAN a-Mode; 20 MHz; 6 Mbit/s

Applied dut U-NII- Subband	Ch. No.	correctio Ch. Center Freg.	n (AV): 0 dB Band Edge Freg.	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]	Limit Type	FCC /IC?
3	149	[MHz] 5745	[MHz] 5725.0	35.5	PEAK	1000	120.6	85.1	BE- UE	FCC&IC
	165	5825	5850.0	36.8	PEAK	1000	121.2	84.4	BE- UE	FCC&IC

WLAN n-Mode; 20 MHz; MCS0; SISO Applied duty cycle correction (AV): 0 dB

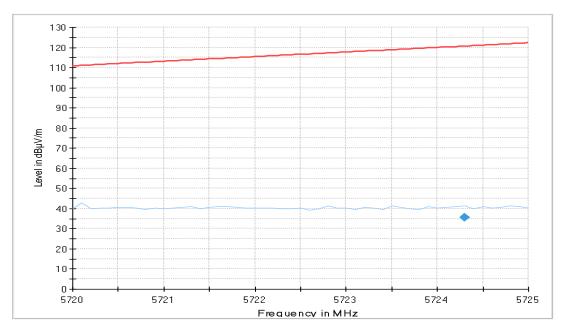
U-NII- Subband	Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]	Limit Type	FCC /IC?
3	149	5745	5725.0	36.1	PEAK	1000	121.9	85.8	BE- UE	FCC&IC
	165	5825	5850.0	69.5	PEAK	1000	118.3	48.8	BE- UE	FCC&IC

WLAN n-Mode; 40 MHz; MCS0; SISO Applied duty cycle correction (AV): 0 dB

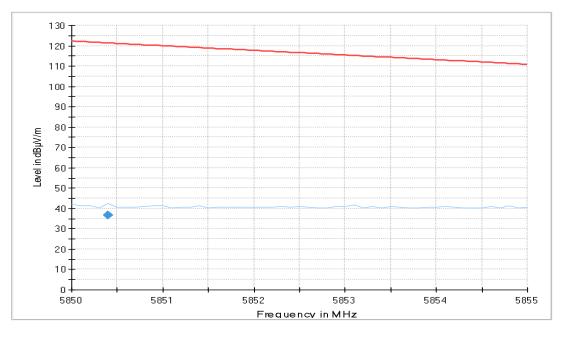
U-NII- Subband	Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]	Limit Type	FCC /IC?
3	151	5755	5725.0	73.1	PEAK	1000	119.6	46.5	BE- UE	FCC&IC
	159	5795	5850.0	66.1	PEAK	1000	120.3	54.2	BE- UE	FCC&IC

WLAN ac-Mode; 80 MHz; MCS8; SISO

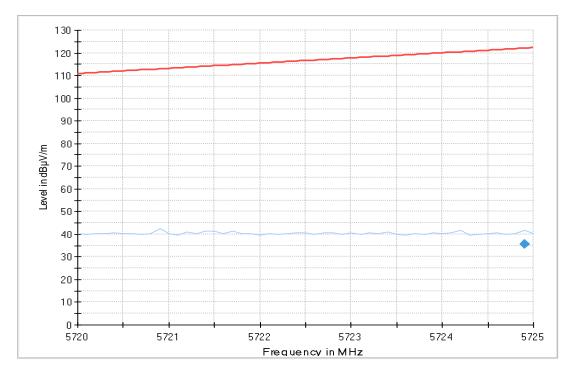
Applied duty cycle correction (AV): 0 dB


U-NII- Subband	Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin [dB]	Limit Type	FCC /IC?
3	155	5775	5725.0	59.9	PEAK	1000	118.5	58.6	BE- UE	FCC&IC
	155	5775	5850.0	66.5	PEAK	1000	118.3	51.8	BE- UE	FCC&IC

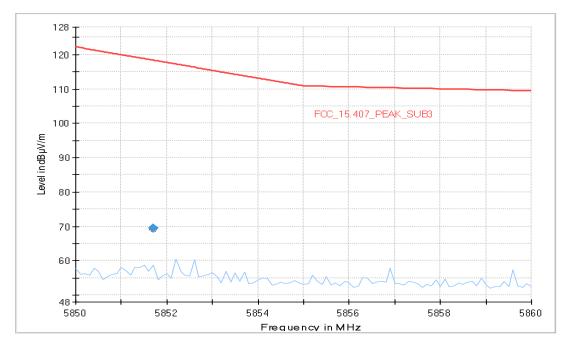
Remark: Please see next sub-clause for the measurement plot.

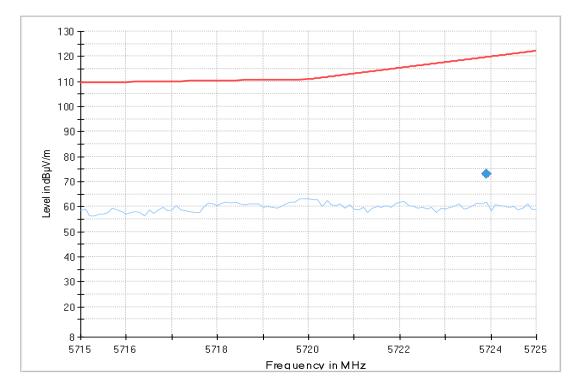


5.7.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


Radio Technology = WLAN a, Operating Frequency = low, Subband = U-NII-3 (S01_AD01)

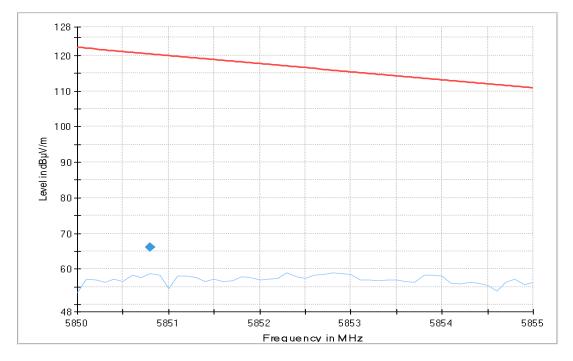
Radio Technology = WLAN a, Operating Frequency = high, Subband = U-NII-3 (S01_AD01)

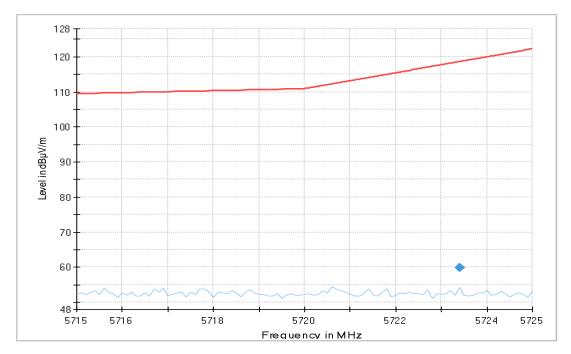


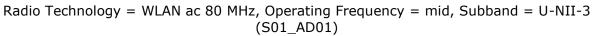


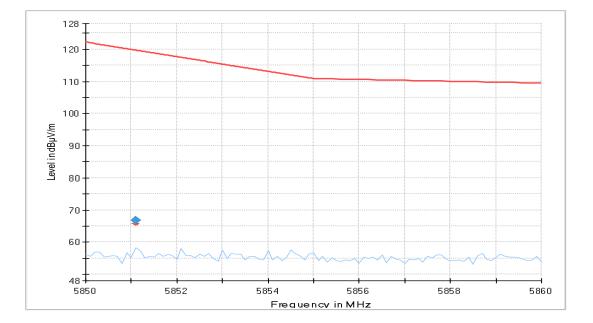
Radio Technology = WLAN n 20 MHz, Operating Frequency = low, Subband = U-NII-3 (S01_AD01)

Radio Technology = WLAN n 20 MHz, Operating Frequency = high, Subband = U-NII-3 (S01_AD01)






Radio Technology = WLAN n 40 MHz, Operating Frequency = low, Subband = U-NII-3 (S01_AD01)


Radio Technology = WLAN n 40 MHz, Operating Frequency = high, Subband = U-NII-3 (S01_AD01)

5.7.5 TEST EQUIPMENT USED

- Radiated Emissions

6 TEST EQUIPMENT

1 R&S TS8997

2.4 and 5 GHz Bands Conducted Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2020-11	2021-11
	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2021-06	2024-06
1.3	EX520	Digital Multimeter 12		05157876	2020-04	2022-04
1.4	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2020-05	2022-05
1.5	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	13985	2019-06	2021-08
1.6	NGSM 32/10		Rohde & Schwarz GmbH & Co. KG	3456	2020-01	2022-01
1.7	Temperature Chamber KWP 120/70	Temperature Chamber Weiss 01	Weiss	59226012190010	2020-05	2022-05
1.8	SMB100A	- 5 -	Rohde & Schwarz Vertriebs-GmbH	181486	2019-11	2021-11
	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2020-05	2022-05
1.10	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	13993		
1.11	OSP120	Contains Power Meter and Switching Unit OSP- B157W8	Rohde & Schwarz	101158	2021-06	2024-06

2 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	-	Rubidium Frequency Normal MFS	Datum GmbH	002	2020-11	2021-11
2.2	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515		
2.3	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936		
2.4		,	Rohde & Schwarz GmbH & Co. KG	101603	2019-12	2021-12
-	Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none	2021-04	2023-04

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
	ULTRALOG	Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2018-07	2021-07
	7D00101800-	Broadband Amplifier 100 MHz - 18 GHz	Miteq			
2.8	5HC2700/12750 -1.5-KK	High Pass Filter	Trilithic	9942012		
2.9	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
2.10	Anechoic FAR, 8.80m x Chamber 03 4.60m x 4.05m (l x w x h)		Albatross Projects	P26971-647-001- PRB	2021-04	2023-04
2.11		Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2020-04	2022-04
2.12	Opus10 THI (8152.00)	T/H Logger 10	Lufft Mess- und Regeltechnik GmbH	12488	2019-06	2021-08
2.13	PONTIS PONTIS Con4101 Camera Controller			6061510370		
2.14	NRVD	Power Meter	Rohde & Schwarz GmbH & Co. KG	828110/016	2020-08	2021-08
2.15		Double-ridged horn	Rohde & Schwarz	357357/002	2018-09	2021-09
		Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
2.17	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2021-06	2023-06
	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278		
2.19	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
		High Pass Filter	Wainwright Instruments GmbH	09		
2.21	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
2.22	4HC1600/12750 -1.5-KK		Trilithic	9942011		
	Temperature Chamber KWP 120/70	Temperature Chamber Weiss 01	Weiss	59226012190010	2020-05	2022-05
2.24	42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
2.25	TT 1.5 WI	Turn Table	Maturo GmbH	-		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
	ULTRALOG	per Antenna (30 MHz - 3 GHz)	Rohde & Schwarz GmbH & Co. KG	100609	2019-05	2022-05
2.27	HF 906	Double-ridged horn	Rohde & Schwarz	357357/001		
2.28	FS-Z325	Harmonic Mixer 220 - 325 GHz	Rohde & Schwarz Messgerätebau GmbH	101006	2020-03	2023-03
2.29	CMU 200 "CMU1" Universal Radio Communicatio n Tester		Rohde & Schwarz GmbH & Co. KG	102366	2021-02	2024-02
2.30		Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
2.31		Bore Sight Antenna Mast	innco systems GmbH	none		
	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2020-05	2022-05
2.33	СВТ	Bluetooth Tester "CBT- 02" incl. BLE- Option	Rohde & Schwarz	100302	2021-05	2024-05
2.34		Low Pass Filter DC650 MHz	Mini-Circuits	15542		
2.35	JUN-AIR Mod. 6- 15		JUN-AIR Deutschland GmbH	612582		
2.36	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008		
2.37	FS-Z140	Harmonic Mixer 90 -140 GHz	Rohde & Schwarz Messgerätebau GmbH	101007	2020-03	2023-03
2.38	HFH2-Z2	Loop Antenna + 3 Axis Tripod	Rohde & Schwarz GmbH & Co. KG	829324/006	2021-01	2024-01
		Digital Multimeter 01 (Multimeter)	Conrad	1J096055		
2.40	CMW500	callbox, 2G, 3G, LTE, WLAN, BT, Audio	Rohde & Schwarz GmbH & Co. KG	149268-Qf		
2.41	ESR 7		Rohde & Schwarz	101424	2021-01	2023-01
	SB4-	Air compressor (oil-free)	airWin Kompressoren UG	901/00503		
2.43	UNI-T UT195E	True RMS Digital Multimeter	UNI-T UNI-TREND TECHNOLOGY (CHINA) CO., LTD.	C190729561		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.44		Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
2.45	AS 620 P	Antenna Mast (pneumatic polarisation)	HD GmbH	620/37		
2.46	CMW500		Rohde & Schwarz GmbH & Co. KG	167766-By	2019-07	2022-07
2.47	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/37907 09		
2.48	Innco Systems CO3000		innco systems GmbH	CO3000/967/393 71016/L		
2.49	NRV-Z1		Rohde & Schwarz GmbH & Co. KG	827753/006	2020-08	2021-08
2.50	HF 907-2	Double-ridged horn	Rohde & Schwarz	102817	2019-04	2022-04
2.51	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
2.52	AFS42- 00101800-25-S-	Broadband	Miteq	2035324		
2.53	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513		
2.54	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

			cable
		LISN	loss
		insertion	(incl. 10
		loss	dB
		ESH3-	atten-
Frequency	Corr.	Z5	uator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	11.2	0.5	10.7
28	11.2	0.5	10.7
30	11.3	0.5	10.8
	 -		

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

				cable	cable	cable	cable	distance	dLimit	dused
	. –			loss 1	loss 2	loss 3	loss 4	corr.	(meas	(meas.
_	AF			(inside	(outside	(switch	(to	(-40 dB/	distance	distance
	HFH-Z2)	Corr.	-	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
	dB (1/m)	dB	-	dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6	-	0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6	_	0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6	_	0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6	_	0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6	_	0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6		0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6		0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6		0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6		0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6		0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6	Ī	0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5	Ī	0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5	Ī	0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5	Ī	0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5	Ī	0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4	Ī	0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4	Ī	0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4	Ī	0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3	Ī	0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3	Ī	0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3	Ī	0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3	ľ	0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3	ľ	0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3	ŀ	0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2	ľ	0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1	ľ	0.4	0.1	0.3	0.1	-40	30	3

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

(<u>d_{Limit} = 3 m)</u>

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 $(d_{\text{Limit}} = 10 \text{ m})$

	•/								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

			``		/				
						cable			
				cable		loss 3			
				loss 1		(switch			
				(relay +	cable	`unit,			
	AF			cable	loss 2	atten-	cable		
	R&S			inside	(outside	uator &	loss 4 (to		
Frequency	HF907	Corr.		chamber)	chamber)	pre-amp)	receiver)		
MHz	dB (1/m)	dB		dB	dB	dB	dB		
1000	24.4	-19.4		0.99	0.31	-21.51	0.79		
2000	28.5	-17.4		1.44	0.44	-20.63	1.38		
3000	31.0	-16.1		1.87	0.53	-19.85	1.33		
4000	33.1	-14.7		2.41	0.67	-19.13	1.31		
5000	34.4	-13.7		2.78	0.86	-18.71	1.40		
6000	34.7	-12.7		2.74	0.90	-17.83	1.47		
7000	35.6	-11.0		2.82	0.86	-16.19	1.46		
7000	55.0	11.0		2.02	0.00	10.15	1.40		
							cable		[]
							loss 4		
				cable			(switch		
				loss 1	cable	cable	unit,		used
	AF			(relay	loss 2	loss 3	atten-	cable	for
	R&S			inside	(inside	(outside	uator &	loss 5 (to	FCC
Frequency	HF907	Corr.		chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
Frequency									13.247
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	
3000	31.0	-23.4		0.47	1.87	0.53	-27.58	1.33	
4000	33.1	-23.3		0.56	2.41	0.67	-28.23	1.31	
5000	34.4	-21.7		0.61	2.78	0.86	-27.35	1.40	
6000	34.7	-21.2		0.58	2.74	0.90	-26.89	1.47	
7000	35.6	-19.8		0.66	2.82	0.86	-25.58	1.46	
				cable					
				loss 1	cable	cable	cable	cable	cable
	AF			(relay	loss 2	loss 3	loss 4	loss 5	loss 6
	R&S			inside	(High	(pre-	(inside	(outside	(to
Frequency	HF907	Corr.		chamber)	Pass)	amp)	chamber)	chamber)	receiver)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	dB
7000	35.6	-57.3		0.56	1.28	-62.72	2.66	0.94	1.46
8000	36.3	-56.3		0.69	0.71	-61.49	2.84	1.00	1.53
9000	37.1	-55.3		0.69	0.65	-60.80	3.06	1.00	1.60
10000	37.1								
		-56.2		0.70	0.54	-61.91	3.28	1.20	1.67
11000	37.5	-55.3		0.80	0.61	-61.40	3.43	1.27	1.70
12000	37.6	-53.7		0.84	0.42	-59.70	3.53	1.26	1.73
13000	38.2	-53.5		0.83	0.44	-59.81	3.75	1.32	1.83
14000	39.9	-56.3		0.91	0.53	-63.03	3.91	1.40	1.77
15000	40.9	-54.1		0.98	0.54	-61.05	4.02	1.44	1.83
16000	41.3	-54.1		1.23	0.49	-61.51	4.17	1.51	1.85
17000	42.8	-54.4		1.36	0.76	-62.36	4.34	1.53	2.00
18000	44.2						4.34	1.55	
18000	44.Z	-54.7		1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

. –			cable	cable	cable	cable	cable
							loss 5
			``		``		(to
3160-09	Corr.		chamber)	amp)	chamber)	unit)	receiver)
dB (1/m)	dB		dB	dB	dB	dB	dB
40.2	-23.5		0.72	-35.85	6.20	2.81	2.65
40.2	-23.2		0.69	-35.71	6.46	2.76	2.59
40.2	-22.0		0.76	-35.44	6.69	3.15	2.79
40.3	-21.3		0.74	-35.07	7.04	3.11	2.91
40.3	-20.3		0.72	-34.49	7.30	3.07	3.05
40.3	-19.9		0.78	-34.46	7.48	3.12	3.15
40.3	-19.1		0.87	-34.07	7.61	3.20	3.33
40.3	-19.1		0.90	-33.96	7.47	3.28	3.19
40.3	-18.7		0.89	-33.57	7.34	3.35	3.28
40.4	-19.0		0.87	-33.66	7.06	3.75	2.94
40.4	-19.5		0.88	-33.75	6.92	3.77	2.70
40.4	-19.3		0.90	-33.35	6.99	3.52	2.66
40.4	-19.8		0.88	-33.99	6.88	3.88	2.58
40.4	-19.5		0.91	-33.89	7.01	3.93	2.51
40.4	-19.3		0.88	-33.00	6.72	3.96	2.14
40.5	-20.4		0.89	-34.07	6.90	3.66	2.22
40.5	-21.3		0.86	-35.11	7.02	3.69	2.28
40.5	-21.1		0.90	-35.20	7.15	3.91	2.36
	40.2 40.2 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3	EMCO 3160-09 Corr. dB (1/m) dB 40.2 -23.5 40.2 -23.2 40.2 -23.2 40.2 -23.2 40.2 -23.2 40.3 -21.3 40.3 -20.3 40.3 -19.1 40.3 -19.1 40.3 -19.1 40.3 -19.1 40.3 -19.1 40.4 -19.0 40.4 -19.5 40.4 -19.3 40.4 -19.3 40.4 -19.3 40.4 -19.3 40.4 -19.3 40.4 -19.3 40.4 -19.3 40.4 -19.3 40.4 -19.3 40.4 -19.3 40.5 -20.4	EMCO3160-09Corr.dB (1/m)dB40.2-23.540.2-23.240.3-21.340.3-20.340.3-19.940.3-19.140.3-19.140.3-19.140.4-19.040.4-19.540.4-19.540.4-19.540.4-19.540.4-19.340.5-20.440.5-21.3	AF loss 1 EMCO (inside 3160-09 Corr. (inside dB (1/m) dB dB 40.2 -23.5 0.72 40.2 -23.2 0.69 40.2 -22.0 0.76 40.3 -21.3 0.74 40.3 -20.3 0.72 40.3 -19.9 0.78 40.3 -19.1 0.87 40.3 -19.1 0.90 40.3 -19.1 0.90 40.4 -19.0 0.87 40.4 -19.5 0.88 40.4 -19.3 0.90 40.4 -19.3 0.91 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.5 -20.4 0.89	AF Ioss 1 Ioss 2 EMC0 (inside (pre- chamber) amp) dB (1/m) dB dB dB 40.2 -23.5 0.72 -35.85 40.2 -23.2 0.69 -35.71 40.2 -22.0 0.76 -35.44 40.3 -21.3 0.74 -35.07 40.3 -20.3 0.72 -34.49 40.3 -19.9 0.78 -34.46 40.3 -19.9 0.78 -34.46 40.3 -19.1 0.87 -34.67 40.3 -19.1 0.87 -33.66 40.3 -19.1 0.87 -33.66 40.4 -19.0 0.88 -33.57 40.4 -19.3 0.88 -33.355 40.4 -19.3 0.88 -33.99 40.4 -19.3 0.88 -33.99 40.4 -19.3 0.88 -33.90 40.4 -19.3 0.88	AF EMCOIoss 1 (inside (inside chamber)Ioss 2 (pre- (inside chamber)3160-09Corr.dBdBdB40.2-23.50.72-35.856.2040.2-23.20.69-35.716.4640.2-22.00.76-35.446.6940.3-21.30.72-34.497.3040.3-20.30.72-34.497.3040.3-19.90.78-34.467.4840.3-19.10.87-34.077.6140.3-19.10.87-33.577.3440.3-19.10.88-33.577.3440.4-19.00.88-33.576.9240.4-19.30.90-33.356.9940.4-19.30.90-33.897.0140.4-19.30.88-33.006.7240.4-19.30.88-33.006.7240.5-20.40.89-34.076.9040.5-20.40.89-34.076.9040.5-20.40.89-34.076.90	AF EMCOIoss 1 (insideloss 2 (insideloss 3 (insideloss 4 (switch3160-09Corr.(inside (chamber)(mmber)amp)chamber)unit)dB (1/m)dBdBdBdBdBdB40.2-23.50.72-35.856.202.8140.2-22.00.69-35.716.462.7640.3-21.30.74-35.077.043.1140.3-20.30.72-34.497.303.0740.3-19.10.87-34.467.483.1240.3-19.10.87-34.077.613.2040.3-19.10.89-33.577.343.3540.4-19.00.87-33.667.063.7540.4-19.30.90-33.356.993.5240.4-19.30.90-33.356.993.5240.4-19.30.90-33.897.013.9340.4-19.30.88-33.006.723.9640.4-19.30.88-33.006.723.9640.4-19.30.88-33.006.723.9640.4-19.30.88-33.006.723.9640.4-19.30.88-33.006.723.9640.5-20.40.89-34.076.903.6640.5-21.30.86-35.117.023.69

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

	AF EMCO		cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
Frequency	3160-10	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4				-9.5	3	1.0
27.0	43.4	-11.2	4.4				-9.5	3	1.0
28.0	43.4	-11.1	4.5				-9.5	3	1.0
29.0	43.5	-11.0	4.6				-9.5	3	1.0
30.0	43.5	-10.9	4.7				-9.5	3	1.0
31.0	43.5	-10.8	4.7				-9.5	3	1.0
32.0	43.5	-10.7	4.8				-9.5	3	1.0
33.0	43.6	-10.7	4.9				-9.5	3	1.0
34.0	43.6	-10.6	5.0				-9.5	3	1.0
35.0	43.6	-10.5	5.1				-9.5	3	1.0
36.0	43.6	-10.4	5.1				-9.5	3	1.0
37.0	43.7	-10.3	5.2				-9.5	3	1.0
38.0	43.7	-10.2	5.3				-9.5	3	1.0
39.0	43.7	-10.2	5.4				-9.5	3	1.0
40.0	43.8	-10.1	5.5				-9.5	3	1.0

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Sample calculation

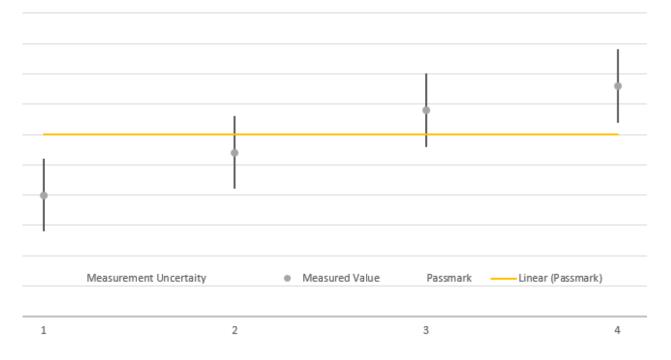
 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG ($d_{\text{Limit}}/d_{\text{used}}$) Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.

9 PHOTO REPORT

Please see separate photo report.