The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 764-0500

Measured Radio Frequency Emissions From

Visteon TCSM RKE Receiver PN: 1L1T-15K602-AE

(Also covers PNs: 1L3T-15K602-AE, 1L2T-15K602-AF, 1L2T-15K602-CF)

Report No. 415031-097 October 5, 2001

Copyright © 2001

For: Visteon Automotive Systems 17000 Rotunda Drive Dearborn, Michigan 48121

Contact: Ron Schuchard Tel: (313) 775-6267 PO: ABG P001 027440

Measurements made by:

Valdis V. Liepa Joseph Brunett Tests supervised by: Report approved by:

Research Scientist

Summary

Tests for compliance with FCC Regulations Part 15, Subpart B, and with Industry Canada Regulations, RSS-210, were performed on Visteon TCSM RKE Receiver. The device is subject to the Rules and Regulations as a Receiver. As a Digital Device it is exempt, but such measurements were made to assess the receiver's overall emissions.

In testing performed on September 4, 2001, the device tested in the worst case met the specifications for radiated emissions by 14.0 dB (see p. 6). Since the device is powered from an automotive 12 VDC system, the line conductive emission tests do not apply.

1. Introduction

Visteon TCSM RKE Receiver was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989, and with Industry Canada RSS-210, Issue 2, dated February 14, 1998. The tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-1992 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland (FCC Reg. No: 91050) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057).

2. Test Procedure and Equipment Used

The pertinent test equipment commonly used in our facility for measurements is listed in Table 2.1 below. The middle column identifies the specific equipment used in these tests.

Table 2.1. Test equipment.

Test Instrument Eqpt Used Manufacturer/Model	
Test Instrument Eqpt Used Manufacturer/Model	
Spectrum Analyzer (0.1-1500 MHz) Hewlett-Packard, 182T/8558B	
Spectrum Analyzer (9kHz-22GHz) X Hewlett-Packard 8593A SN: 3107A01358	8
Spectrum Analyzer (9kHz-26GHz) X Hewlett-Packard 8593E, SN: 3412A0113	31
Spectrum Analyzer (9kHz-26GHz) Hewlett-Packard 8563E, SN: 3310A01174	14
Spectrum Analyzer (9kHz-40GHz) Hewlett-Packard 8564E, SN: 3745A0103	31
Power Meter Hewlett-Packard, 432A	
Power Meter Anritsu, ML4803A/MP	
Harmonic Mixer (26-40 GHz) Hewlett-Packard 11970A, SN: 3003A083	
Harmonic Mixer (40-60 GHz) Hewlett-Packard 11970U, SN: 2332A005	500
Harmonic Mixer (75-110 GHz) Hewlett-Packard 11970W, SN: 2521A001	179
Harmonic Mixer (140-220 GHz) Pacific Millimiter Prod., GMA, SN: 26	
S-Band Std. Gain Horn S/A, Model SGH-2.6	
C-Band Std. Gain Horn University of Michigan, NRL design	
XN-Band Std. Gain Horn University of Michigan, NRL design	
X-Band Std. Gain Hom S/A, Model 12-8.2	
X-band horn (8.2- 12.4 GHz) Narda 640	
X-band horn (8.2- 12.4 GHz) Scientific Atlanta, 12-8.2, SN: 730	
K-band horn (18-26.5 GHz) FXR, Inc., K638KF	
Ka-band horn (26.5-40 GHz) FXR, Inc., U638A	
U-band horn (40-60 GHz) Custom Microwave, HO19	
W-band horn(75-110 GHz) Custom Microwave, HO10	
G-band horn (140-220 GHz) Custom Microwave, HO5R	
Bicone Antenna (30-250 MHz) X University of Michigan, RLBC-1	
Bicone Antenna (200-1000 MHz) X University of Michigan, RLBC-2	
Dipole Antenna Set (30-1000 MHz) University of Michigan, RLDP-1,-2,-3	
Dipole Antenna Set (30-1000 MHz) EMCO 2131C, SN: 992	
Active Rod Antenna (30 Hz-50 MHz) EMCO 3301B, SN: 3223	
Active Loop Antenna (30 Hz-50 MHz) EMCO 6502, SN:2855	
Ridge-horn Antenna (300-5000 MHz) University of Michigan	
Amplifier (5-1000 MHz) X Avantak, A11-1, A25-1S Amplifier (5-4500 MHz) X Avantak	
(2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Amplifier (4.5-13 GHz) Amplifier (6-16 GHz) Amplifier (6-16 GHz) Avantek, AFT-12665 Trek	
· · · · · · · · · · · · · · · · · · ·	
Amplifier (16-26 GHz) LISN (50 µH) Avantek University of Michigan	
Signal Generator (0.1-2060 MHz) X Hewlett-Packard, 8657B	
Signal Generator (0.01-200 GHz) Hewlett-Packard	

`

3. Configuration and Identification of Device Under Test

The DUT is a 315.0 MHz superregenerative receiver, designed for onboard automobile security/convenience applications, and as such, it is powered from an automotive 12 VDC source. It is housed in a plastic case approximately 6.5 by 3.5 by 1.0 inches. Antenna is internal. For testing, a 3-meter long section of generic harness was used, with power wires separated from the control/signal wires. In the digital section of the receiver, decoding, signal processing, etc. are performed by a micro timed by a 12.0 MHz ceramic resonator.

The DUT was designed and manufactured by Visteon Automotive Systems, Dearborn, Michigan 48121. It is identified as:

Visteon TCSM RKE Receiver PN: 1L1T-15K602-AE Model: 1L1T-15K602-A

S/N: 11311

FCC ID: NT8-15K602-TCSM

CANADA:

In addition, three other units were provided with PNs: 1L3T-15K602-AE, 1L2T-15K602-AF, 1L2T-15K602-CF. The PCBs and RF circuitry is identical to the one tested, hence, no testing on these were performed. (PNs: 1L3T-15K602-A, 1L2T-15K602-A, 1L2T-15K602-C, respectively.)

3.1 Modifications Made

There were no modifications made to the DUT by this laboratory.

4. Emission Limits

For FCC the DUT falls under Part 15, Subpart B, "Unintentional Radiators". For Industry Canada the DUT falls under Receiver category and is subject to technical requirement of sections 7.1 to 7.4 in RSS-210. The pertinent test frequencies, with corresponding emission limits, are given in Tables 4.1 and 4.2 below.

4.1 Radiated Emission Limits

Table 4.1. Radiated Emission Limits (FCC: 15.33, 15.35, 15.109; IC: RSS-210, 7.3).

Freq. (MHz)	E _{lim} (3m) μV/m	$E_{lim}dB(\mu V/m)$
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-2000	500	54.0

Note: Quasi-Peak readings apply to 1000 MHz (120 kHz BW) Average readings apply above 1000 MHz (1 MHz BW)

4.2 Conducted Emission Limits

Table 4.2. Conducted Emission Limits (FCC: 15.107; IC: RSS-210, 6.6).

Freq. (MHz)	μV	dB(µV)
0.450 - 1.705	250	48.0
1.705 - 30.0	250	48.0

Note: Quasi-Peak readings apply here

4.3 Antenna Power Conduction Limits

(FCC: 15.111(a); IC: RSS-210, 7.2). Pmax = 2 nW; for requency range see Table 4.1.

5. Emission Tests and Results

NOTE: Even though the FCC and/or Industry Canada specify that both the radiated and conductive emissions be measured using the Quasi-Peak and/or average detection schemes, we normally use peak detection since especially the Quasi-Peak is cumbersome to use with our instrumentation. In case the measurement fails to meet the limits, or the measurement is near the limit, it is remeasured using appropriate detection. We note, that since the peak detected signal is always higher or equal to the Quasi-Peak or average detected signal, the margin of compliance may be better, but not worse, than indicated in this report. The type of detection used is indicated in the data table, Table 5.1.

5.1 Anechoic Chamber Radiated Emission Tests

To familiarize with the radiated emission behavior of the DUT, it was studied and measured in the shielded anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with turntable, antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed.

To study and test for radiated emissions, the DUT was powered by a laboratory power supply at 13.8 VDC. A 315 MHz CW signal was injected (radiated) from a nearby signal generator using a short wire antenna. The DUT was taped to a syrofoan block and placed on the test table on each of the three axis. At each orientation, the table was rotated to obtain maximum signal for vertical and horizontal emission polarizations. This sequence was repeated throughout the required frequency range.

In the chamber we studied and recorded all the emissions using a ridge-horn antenna, which covers 200 MHz to 5000 MHz, up to 2 GHz. In scanning from 30 MHz to 2.0 GHz, there were no spurious emissions observed other than the LO and injection signal (315 MHz), and the LO harmonics. Figures 5.1 and 5.2 show emissions measured 0-1000 MHz and 1000-2000 MHz, respectively. These measurements are made with a ridge-horn antenna at 3m, with spectrum analyzer in peak hold mode and the receiver rotated in all orientations. The measurements up to 1000 MHz (Fig. 5.1) are used for initial evaluation only, but those above 1000 MHz (Fig. 5.2) are used in final assessment for compliance.

5.2 Open Site Radiated Emission Tests

The DUT was then moved to the 3 meter Open Field Test Site where measurements were repeated up to 1000 MHz using a small bicone, or dipoles when the measurement is near the limit. The DUT was excersised as described in Sec. 5.1 above. The measurements were made with a spectrum analyzer using 120 kHz IF bandwidth and peak detection mode, and, when appropriate, using Quasi-Peak or average detection (see 5.0). The test set-up photographs are in Appendix (i.e., at end of this report).

The emissions from digital circuitry were measured using a standard bicone. These results are also presented in Table 5.1.

5.3 Computations and Results for Radiated Emissions

To convert the dBm's measured on the spectrum analyzer to $dB(\mu V/m)$, we use expression

$$E_3(dB\mu V/m) = 107 + P_R + K_A - K_G$$

where

P_R = power recorded on spectrum analyzer, dB, measured at 3m

 K_A = antenna factor, dB/m

 K_G = pre-amplifier gain, including cable loss, dB

When presenting the data, at each frequency the highest measured emission under all of the possible orientations is given. Computations and results are given in Table 5.1. There we see that the DUT meets the limit by 14.0 dB.

5.4 Conducted Emission Tests

These tests do not apply, since the DUT is powered from an automotive 12 VDC system.

6. Other Measurements

6.1 Emission Spectrum Near Fundamental

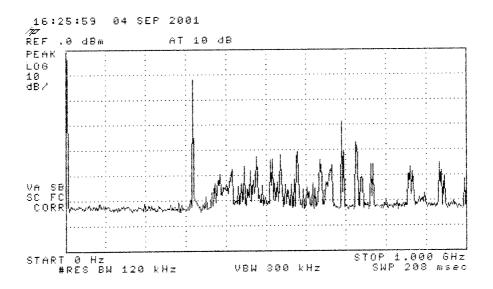
Near operating frequency the emission spectrum is measured typically over 50 MHz span with and without injection signal. These data are taken with the DUT close to antenna and hence amplitudes are relative. The plots are shown in Figure 6.1.

6.2 Effect of Supply Voltage Variation

The DUT has been designed to operate from 12 VDC power. Using a spectrum analyzer, relative radiated emissions were recorded at the "fundamental" (317.0 MHz) as voltage was varied from 6.0 to 18.0 VDC. Figure 6.2 shows the emission variation.

6.3 Operating Voltage and Current

V = 12.8 VDC


I = 30.0 mADC (includes the control box)

The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, Michigan 48109-2122 (734) 764-0500

Table 5.1 Highest Emissions Measured

Freq. Ant. Ant. Ant. MHz Used Pol. dBm Used dB/m dB dBµVm dBµVm dB Comments	· · · ·	Radiated Emission - RF Visteon TCSM RX; FCC/IC										
# MHz V V V V V V V V V V V V V V V V V V V		Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3	E3lim	Pass	
2 316.5 SBic H -74.7 Pk 19.0 21.3 29.9 46.0 16.1 side 3 317.5 SBic H -75.9 Pk 19.0 21.3 22.8 46.0 17.2 end 4 315.9 SBic V -81.3 Pk 18.9 21.3 22.3 46.0 22.7 flat 5 315.9 SBic V -82.8 Pk 18.9 21.3 21.8 46.0 22.7 flat 6 316.4 SBic V -82.0 Pk 19.0 21.3 22.6 46.0 23.4 end 7 630.0 SBic H -90.4 Pk 25.2 18.0 23.9 46.0 23.4 end 8 630.0 SBic H -90.4 Pk 25.2 18.0 24.1 46.0 21.9 max. of all, noise; 10 kHz BW 9 945.0 SBic H -91.3 Pk 28.9 15.6 29.0 46.0 17.0 max. of all, noise; 10 kHz BW 10 945.0 SBic V -88.3 Pk 28.9 15.6 32.0 46.0 14.0 max. of all, noise; 10 kHz BW 11 1260.0 Horn H -70.0 Pk 20.4 28.0 29.4 54.0 24.4 max. of all, noise; 10 kHz BW 12 1575.0 Horn H -71.0 Pk 20.8 28.2 29.6 54.0 24.4 max. of all, noise floor 13 1890.0 Horn H -70.0 Pk 20.8 28.2 29.6 54.0 24.4 max. of all, noise floor 14	#	-	Used	Pol.	dBm	Used	dB/m	dB	dBμV/m	dΒμV/m	dB	Comments
3 317.5 SBic H -75.9 Pk 19.0 21.3 28.8 46.0 17.2 end 4 315.9 SBic V -81.3 Pk 18.9 21.3 23.3 46.0 22.7 flat 5 315.9 SBic V -82.8 Pk 18.9 21.3 21.8 46.0 22.2 side 6 316.4 SBic V -82.0 Pk 19.0 21.3 22.6 46.0 23.4 end 7 630.0 SBic H -90.4 Pk 25.2 18.0 23.9 46.0 22.1 max. of all, noise; 10 kHz BW 8 630.0 SBic H -90.4 Pk 25.2 18.0 23.9 46.0 21.9 max. of all, noise; 10 kHz BW 9 945.0 SBic H -91.3 Pk 28.9 15.6 29.0 46.0 17.0 max. of all, noise; 10 kHz BW 10 945.0 SBic V -88.3 Pk 28.9 15.6 32.0 46.0 14.0 max. of all, noise; 10 kHz BW 11 1260.0 Horn H -70.0 Pk 20.4 28.0 29.4 54.0 24.6 max. of all, noise; 10 kHz BW 12 1375.0 Horn H -71.0 Pk 20.6 28.0 28.6 54.0 25.4 max. of all, noise floor 13 1890.0 Horn H -70.0 Pk 20.8 28.2 29.6 54.0 24.4 max. of all, noise floor 14 1 1 1 1 1 1 1 1 1	1	317.0	SBic	Н	-77.2	Pk	19.0	21.3	27.5	46.0	18.5	flat
4 315.9 SBic V -81.3 Pk 18.9 21.3 23.3 46.0 22.7 flat 5 315.9 SBic V -82.8 Pk 18.9 21.3 21.8 46.0 24.2 side 6 316.4 SBic V -82.0 Pk 19.0 21.3 22.6 46.0 23.4 end 7 630.0 SBic H -90.4 Pk 25.2 18.0 23.9 46.0 22.1 max. of all, noise; 10 kHz BW 8 630.0 SBic V -90.2 Pk 25.2 18.0 24.1 46.0 21.9 max. of all, noise; 10 kHz BW 9 945.0 SBic H -91.3 Pk 28.9 15.6 29.0 46.0 14.0 max. of all, noise; 10 kHz BW 10 945.0 SBic V -88.3 Pk 28.9 15.6 32.0 46.0 14.0 max. of all, noise; 10 kHz BW 11 1260.0 Horn H -70.0 Pk 20.4 28.0 29.4 54.0 24.6 max. of all, noise; 10 kHz BW 12 1575.0 Horn H -71.0 Pk 20.6 28.0 28.6 54.0 25.4 max. of all, noise floor 13 1890.0 Horn H -70.0 Pk 20.8 28.2 29.6 54.0 24.4 max. of all, noise floor 14 15	2	316.5	SBic	Н	-74.7	Pk	19.0	21.3	29.9	46.0	16.1	side
S 315.9 SBic V -82.8 Pk 18.9 21.3 21.8 46.0 24.2 side	3	317.5	SBic	Н	-75.9	Pk	19.0	21.3	28.8	46.0	17.2	end
Signature Sign	4	315.9	SBic	V	-81.3	Pk	18.9	21.3	23.3	46.0	22.7	flat
Table Tabl	5	315.9	SBic	V	-82.8	Pk	18.9	21.3	21.8	46.0	24.2	side
8 630,0 SBic V -90.2 Pk 25.2 18.0 24.1 46.0 21.9 max. of all, noise; 10 kHz BW 9 945.0 SBic H -91.3 Pk 28.9 15.6 29.0 46.0 17.0 max. of all, noise; 10 kHz BW 10 945.0 SBic V -88.3 Pk 28.9 15.6 32.0 46.0 14.0 max. of all, noise; 10 kHz BW 11 1260.0 Horn H -70.0 Pk 20.4 28.0 29.4 54.0 24.6 max. of all, noise floor 12 1575.0 Horn H -71.0 Pk 20.8 28.2 29.6 54.0 25.4 max. of all, noise floor 13 1890.0 Horn H -70.0 Pk 20.8 28.2 29.6 54.0 24.4 max. of all, noise floor 14 15 1 -70.0 Pk 20.8 28.2 29.6 54.0 24.4 max. of	6	316.4	SBic	V	-82.0	Pk	19.0	21.3	22.6	46.0	23.4	end
9 945.0 SBic H -91.3 Pk 28.9 15.6 29.0 46.0 17.0 max. of all, noise; 10 kHz BW 10 945.0 SBic V -88.3 Pk 28.9 15.6 32.0 46.0 14.0 max. of all, noise; 10 kHz BW 11 1260.0 Horn H -70.0 Pk 20.4 28.0 29.4 54.0 24.6 max. of all, noise floor 12 1575.0 Horn H -71.0 Pk 20.6 28.0 28.6 54.0 25.4 max. of all, noise floor 13 1890.0 Horn H -70.0 Pk 20.8 28.2 29.6 54.0 24.4 max. of all, noise floor 14	7	630.0	SBic	Н	-90.4	Pk	25.2	18.0	23.9	46.0	22.1	max. of all, noise; 10 kHz BW
10	8	630.0	SBic	V	-90.2	Pk	25.2	18.0	24.1	46.0	21.9	max. of all, noise; 10 kHz BW
11 1260.0 Horn H -70.0 Pk 20.4 28.0 29.4 54.0 24.6 max. of all, noise floor 12 1575.0 Horn H -71.0 Pk 20.6 28.0 28.6 54.0 25.4 max. of all, noise floor 13 1890.0 Horn H -70.0 Pk 20.8 28.2 29.6 54.0 24.4 max. of all, noise floor 14 I <td< td=""><td>9</td><td>945.0</td><td>SBic</td><td>Н</td><td>-91.3</td><td>Pk</td><td>28.9</td><td>15.6</td><td>29.0</td><td>46.0</td><td>17.0</td><td>max. of all, noise; 10 kHz BW</td></td<>	9	945.0	SBic	Н	-91.3	Pk	28.9	15.6	29.0	46.0	17.0	max. of all, noise; 10 kHz BW
12	10	945.0	SBic	V	-88.3	Pk	28.9	15.6	32.0	46.0	14.0	max. of all, noise; 10 kHz BW
13	11	1260.0	Horn	Н	-70.0	Pk	20.4	28.0	29.4	54.0	24.6	max. of all, noise floor
14	12	1575.0	Horn	Н	-71.0	Pk	20.6	28.0	28.6	54.0	25.4	max. of all, noise floor
15	13	1890.0	Horn	Н	-70.0	Pk	20.8	28.2	29.6	54.0	24.4	max. of all, noise floor
16	14											
Table	15											
Radiated Emission - Digital (Class B) Color	16		PROPERTY OF THE PROPERTY OF TH									
Radiated Emission - Digital (Class B)	17											
1 2 Digital Emissions more than 20 dB below FCC Class B limits 4 Digital Emissions more than 20 dB below FCC Class B limits 5 Digital Emissions more than 20 dB below FCC Class B limits 6 Digital Emissions more than 20 dB below FCC Class B limits 8 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 2 Digital Emissions more than 20 dB below FCC Class B limits 2 Digital Emissions more than 20 dB below FCC Class B limits 2 Digital Emissions more than 20 dB below FCC Class B limits 3 Digital Emissions more than 20 dB below FCC Class B limits 3 Digital Emissions more than 20 dB below FCC Class B limits 3 Digital Emissions more than 20 dB below FCC Class B limits 3 Digital Emissions more than 20 dB below FCC Class B limits 4 Digital Emissions more than 20 dB below FCC Class B limits 4 Digital Emissions more than 20 dB below FCC Class B limits 5 Digital Emissions more	18					<u> </u>	<u></u>			<u> </u>		
1 2 Digital Emissions more than 20 dB below FCC Class B limits 4 Digital Emissions more than 20 dB below FCC Class B limits 5 Digital Emissions more than 20 dB below FCC Class B limits 6 Digital Emissions more than 20 dB below FCC Class B limits 8 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 1 Digital Emissions more than 20 dB below FCC Class B limits 2 Digital Emissions more than 20 dB below FCC Class B limits 2 Digital Emissions more than 20 dB below FCC Class B limits 2 Digital Emissions more than 20 dB below FCC Class B limits 3 Digital Emissions more than 20 dB below FCC Class B limits 3 Digital Emissions more than 20 dB below FCC Class B limits 3 Digital Emissions more than 20 dB below FCC Class B limits 3 Digital Emissions more than 20 dB below FCC Class B limits 4 Digital Emissions more than 20 dB below FCC Class B limits 4 Digital Emissions more than 20 dB below FCC Class B limits 5 Digital Emissions more						Pad	intad E	mission	. Digits	al (Class	2 R)	
2	1			<u> </u>	<u> </u>	Kau	lateu L	111133101	Digita	ii (Cias	, D)	
Digital Emissions more than 20 dB below FCC Class B limits						-						
4 5 6 7 8 9 10 11				L	Digit	al Emic	sions ma	re than 2	l ∩dB belov	w FCC CI	ass R li	mits
5 6 7 8 9 10 11							510113 1110	Ji Gilan Z				
6												
7 8 9 9 10 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1						<u> </u>						
8 9 10 11												
9 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
10 11												
11	-											
							-					
	12											

	Conducted Emissions									
	Freq.	Line	Det.	Vtest	Vlim	Pass				
#	MHz	Side	Used	dΒμV	dΒμV	dB	Comments			
1										
2	Not applicable									
3										

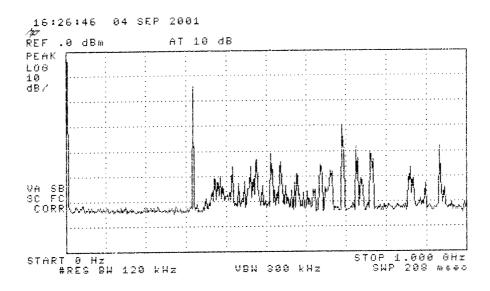
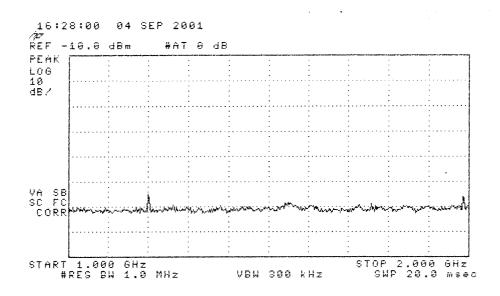



Figure 5.1. Emissions measured at 3 meters in anechoic chamber, 0-1000 MHz. (top) Receiver plus ambient (bottom) Ambient

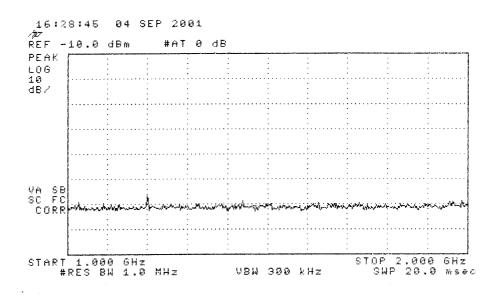


Figure 5.2. Emissions measured at 3 meters in anechoic chamber, 1000-2000 MHz. (top) Receiver plus ambient (bottom) Ambient

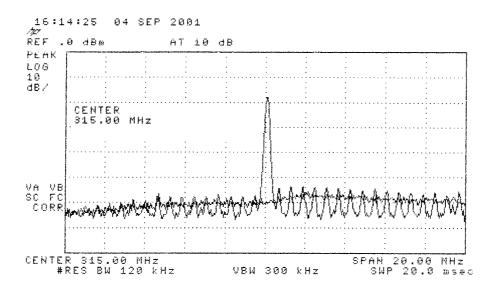


Figure 6.1. Relative receiver emissions in stand-by and "locked-in" modes.

The final emission measurements were made with the receiver in "locked-in" mode.

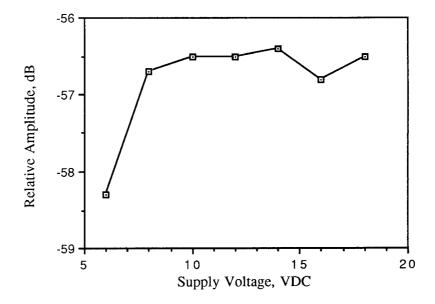
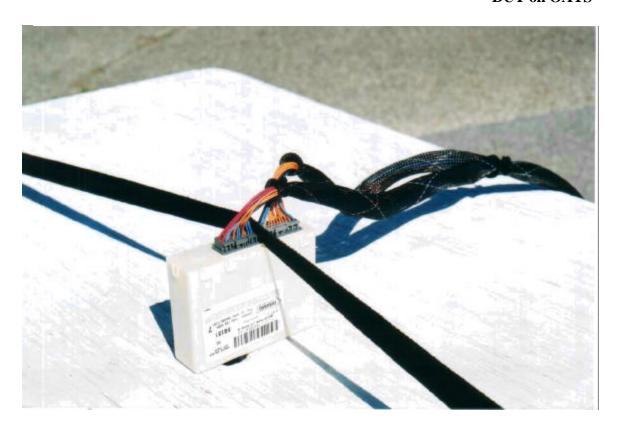



Figure 6.2. Relative emission at "fundamental" vs. supply voltage.

DUT on OATS

Close-up to the DUT on OATS