

EMC Measurement/Technical Report

on

Visteon MACH Voice Link Bluetooth™ Subsystem ver.1.1a

TTI-P-G 178/99

Report Reference: 4_VISTE_0102_BTT_FCCa

7 Layers AG Borsigstr. 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory.

Table of Contents

0. Summary	3
0.1 Technical Report Summary	3
0.2 Measurement Summary	4
1. Administrative Data	6
1.1 Testing Laboratory	6
1.2 Project Data	6
1.3 Applicant Data	6
1.4 Manufacturer Data	6
2. Product Labeling	7
2.1 FCC ID Label	7
2.2 Location of Label on the EUT	7
3. Testobject Data	8
3.1 General EUT Description	8
3.2 EUT Main Components	9
3.3 Ancillary Equipment	9
3.4 EUT Setups	9
3.5 Operating Modes	10
4. Measurement Results	11
- Conducted Emissions	-
4.1 Occupied Bandwidth	11
4.2 Peak Power Output	13
4.3 Spurious RF Conducted Emissions	15
4.4 Spurious RF Radiated Emissions	17
4.5 Dwell Time	21
4.6 Power Density	22
4.7 Channel Separation	23
- Processing Gain	-
5. Testequipment	24
6. Foto Report	27
7. Setup Drawings	29
8. Annex	31
Measurement plots	19 Pages

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Frequency Hopping Spread Spectrum)

Applicable FCC Rules:

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 19 (10-1-98 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification Sections

Part 15, Subpart C - Intentional Radiators

- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483,5 MHZ and 5725-5850 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000

Summary Test Results:

The equipment under test fulfilled the requirements of the applied FCC rules.

0.2 Measurement Summary

FCC Part 15, Subj	oart C	§ 15.247 (a) (1) (ii)	
Occupied Bandwidt			
The measurement v	vas performed ad	ccording to ANSI C63.4	1992
OP-Mode	Setup	Port	Final Result
op-mode 1	setup 1	antenna connector	passed
op-mode 2	setup 1	antenna connector	passed
op-mode 3	setup 1	antenna connector	passed
op-mode 4	setup 1	antenna connector	passed
FCC Part 15, Subj	oart C	§ 15.247 (b) (1)	
Peak Power Output			
The measurement v	vas performed ad	ccording to FCC §15.31	10-1-1998
OP-Mode	Setup	Port	Final Result
op-mode 1	setup 1	antenna connector	passed
op-mode 2	setup 1	antenna connector	passed
op-mode 3	setup 1	antenna connector	passed
op-mode 4	setup 1	antenna connector	passed
FCC Part 15, Subj	oart C	§ 15.247 (c)	
Spurious RF Condu		3 10.2 17 (0)	
-		ccording to FCC §15.31	10-1-1998
OP-Mode	Setup	Port	Final Result
op-mode 1	setup 1	antenna connector	passed
op-mode 2	setup 1	antenna connector	passed
op-mode 3	setup 1	antenna connector	passed
FCC Part 15, Subj	oart C	§ 15.247 (c), §15.35 (b), § 1	5.209
Spurious Radiated		3 (7.3	
The measurement v	vas performed ad	ccording to ANSI C63.4	1992
OP-Mode	Setup	Port	Final Result
op-mode 1	setup 1	Enclosure	passed
op-mode 2	setup 1	Enclosure	passed
op-mode 3	setup 1	Enclosure	passed
FCC Part 15, Subj	oart C	§ 15.247 (g)	
Dwell Time		3 1012 11 (9)	
	was performed ac	ccording to FCC §15.31	10-1-1998
OP-Mode	Setup	Port	Final Result
op-mode 4	setup 1	antenna connector	passed
FCC Part 15, Sub	oart C	§ 15.247 (g)	

Testreport Reference: 4_VISTE_0102_BTT_FCCa Page 4 of 49

Power Density

The measurement was performed according to FCC §15.31 10-1-1998

OP-Mode Setup Port Final Result

op-mode 4 setup 1 antenna connector passed

FCC Part 15, Subpart C § 15.247 (a) (1)

Channel Separation

The measurement was performed according to FCC §15.31 10-1-1998

OP-Mode Setup Port Final Result

op-mode 5 setup 1 antenna connector passed

Responsible for Responsible
Accreditation Scope: for Test Report:

1. Administrative Data

1.1 Testing Laboratory

Company Name: 7 Layers AG

Address: Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted in a letter dated February 07, 2000 under the registration number 96716.

The test facility is also accredited by the following accreditation organisation:

- Deutscher Akkreditierungs Rat DAR-Registration no. TTI-P-G 178/99

Responsible for Accreditation Scope: Dipl.-Ing Bernhard Retka

Dipl.-Ing Arndt Stöcker

1.2 Project Data

Responsible for testing and report Dipl.-Ing. Robert Machulec

Receipt of EUT: 04.08.2002

Date of Test(s): 12/13.08.2002

Date of Report: 19.08.2002

1.3 Applicant Data

Company Name: Visteon Corporation
Address: 5500 Auto Club Drive

Dearborn, MI 48126

USA

Contact Person: Florencio B. Caballos

1.4 Manufacturer Data

Company Name: please see Applicant data

Address:

Contact Person:

2.0 Product Labeling

2.1 FCC ID Label:

At the time of the test report there was no FCC label available.

2.2 Location of Label on the EUT:

see above

Testreport Reference: 4_VISTE_0102_BTT_FCCa

3. Testobject Data

3.1 General EUT Description

Equipment under Test: Visteon MACH Voice Link Bluetooth™

Type Designation: Subsystem ver.1.1a

Kind of Device: Bluetooth™ transceiver

(optional)

Voltage Type: DC

Voltage level: 12 V

General product description:

Bluetooth is a short-range radio link intended to be a cable replacement between portable and/or fixed electronic devices.

Bluetooth operates in the unlicensed ISM Band at 2.4 GHz. In the US a band of 83.5 MHz width is available. In this band, 79 RF channels spaced 1MHz apart are defined. The channel is represented by a pseudo-random hopping sequence through the 79 channels. The channel is devided into time slots, with a nominal slot length of $625\mu s$, where each slot corresponds to different RF hop frequencies. The nominal hop rate is 1600 hops/s. All frequencies are equally used. The average time of occupancy is 0.3797 s within a 30 second period.

The symbol rate on the channel is 1 Ms/s.

The EUT provides the following ports:

Ports

antenna connector Enclosure

The main components of EUT are listed and described in Chapter 3.2

3.2 EUT Main components:

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A	Visteon MACH Voice Link Bluetooth™	Subsystem ver.1.1a	EPMA0004S	Rev. 03	Rev. 11	04.08.2002

NOTE: The short description is used to simplify the identification of the EUT in this test report

3.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But never the less Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial No.	FCC Id
AE 1	Visteon Control board	-	-	-	-	-

3.4 EUT Setups

This chapter describes the combination of EUT's and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
setup 1	EUT A + AE 1	

3.5 Operating Modes

This chapter describes the operating modes of the EUT's used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	Loopback mode on 2402 MHz	The R&S tester PTW 60 was used as a master and the EUT was configured to be a slave. Data (DH 1 packet, PRBS 9) was sent from the master to the slave and returned back by the slave.
op-mode 2	Loopback mode on 2441 MHz	The R&S tester PTW 60 was used as a master and the EUT was configured to be a slave. Data (DH 1 packet, PRBS 9) was sent from the master to the slave and returned back by the slave.
op-mode 3	Loopback mode on 2480 MHz	The R&S tester PTW 60 was used as a master and the EUT was configured to be a slave. Data (DH 1 packet, PRBS 9) was sent from the master to the slave and returned back by the slave.
op-mode 4	inquiry mode	The EUT is searching for another device
op-mode 5	10 neighbouring channels	The EUT is set to transmit on ten neighbouring channels one after the other to see the channel separation.

4. Test Results

4. 1 Occupied Bandwidth

Standard FCC Part 15, 10-1-98

Subpart C

The test was performed according to: ANSI C63.4 1992

4.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4-1992.

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (widest) occupied bandwidth.

The resolution bandwidth for measuring the reference level and the occupied bandwidth was 10 kHz.

The reference level of the spectrum analyser was set equal to the reference level of the EUT.

4.1.2 Test Limits

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

- (1) Frequency hopping systems operating in the 2400 2483.5 MHz band should use at least 75 hopping frequencies.
- (2) The average time of occupancy on any frequency should not be greater than 0.4 seconds within a 30 second period.
- (3) The maximum 20 dB bandwidth of the hopping channel is 1MHz.

4.1.3 Test Protocol

Temperature: 24°C
Air Pressure: 1018 hPa
Humidity: 30%

Op. Mode	Setup	Port	Test Parameter
op-mode 1	setup 1	antenna	
		connector	

20 dB Bandwidth MHz	Remarks
0,9104	Please see annex for the measurement plot.

Remark: none

Temperature: 24 °C Air Pressure: 1018 hPa Humidity: 30%

Op. Mode Setup Port Test Parameter

op-mode 2 setup 1 antenna connector

20 dB Bandwidth
MHz

0,9464

Please see annex for the measurement plot.

Remark: none

Temperature: 24 °C
Air Pressure: 1018 hPa
Humidity: 30 %

Op. Mode Setup Port Test Parameter

op-mode 3 setup 1 antenna connector

20 dB Bandwidth
MHz

0,8784

Please see annex for the measurement plot.

Remark: none

Temperature: 25 ° C
Air Pressure: 1022 hPa
Humidity: 40 %

Op. Mode Setup Port Test Parameter

op-mode 4 setup 1 antenna connector

20 dB Bandwidth MHz	Remarks
0,561	Please see annex for the measurement plot.

Remark: none

4.1.4 Test result: Occupied Bandwidth

FCC Part 15, Subpart C

Op. Mode	Setup	Port	Result
op-mode 1	setup 1	antenna connector	passed
op-mode 2	setup 1	antenna connector	passed
op-mode 3	setup 1	antenna connector	passed
op-mode 4	setup 1	antenna	passed

Testreport Reference: 4_VISTE_0102_BTT_FCCa

4. 2 Peak Power Output

Standard FCC Part 15, 10-1-98

Subpart C

The test was performed according to: FCC §15.31 10-1-1998

4.2.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the output power measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) output power.

The resolution bandwidth for measuring the output power was 1 MHz.

The reference level of the spectrum analyser was set equal to the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable (Type: Rosenberger RTK 161, 1m, SMA connectors), with a known loss.

4.2.2 Test Limits

FCC Part 15, Subpart C, §15.247 (b) (1)

(1) For frequency hopping systems operating in the band 2400 - 2483,5 MHz or 5725 - 5850 MHz and for all direct sequence systems: 1 Watt

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

==> Maximum Output Power: 30 dBm

4.2.3 Test Protocol

Temperature: 24 °C
Air Pressure: 1018 hPa
Humidity: 30 %

Op. Mode	Setup	Port	Test Parameter
op-mode 1	setup 1	antenna	
		connector	

Output Power dBm	Remarks	
-3,35	The EIRP including antenna gain (2 dBi) is -1,35 dBm	

Remark: Please see annex for the measurement plot.

Temperature: 24 °C Air Pressure: 1018 hPa Humidity: 30 %

Op. Mode Setup Port Test Parameter

op-mode 2 setup 1 antenna connector

Output Power Remarks
dBm

-3,15 The EIRP including antenna gain (2 dBi) is -1,15 dBm

Remark: Please see annex for the measurement plot.

Temperature: 24 °C Air Pressure: 1018 hPa Humidity: 30 %

Op. ModeSetupPortTest Parameterop-mode 3setup 1antenna

connector

Output Power dBm	Remarks
-3,14	The EIRP including antenna gain (2 dBi) is -1,14 dBm

Remark: Please see annex for the measurement plot.

Temperature: 25 °C Air Pressure: 1022 hPa Humidity: 40 %

Op. ModeSetupPortTest Parameterop-mode 4setup 1antenna
connector

Output Power dBm	Remarks
-1,8	The EIRP including antenna gain (2 dBi) is 0,2 dBm

Remark: Please see annex for the measurement plot.

4.2.4 Test result: Peak Power Output

FCC Part 15, Subpart C	Op. Mode	Setup	Port	Result
	op-mode 1	setup 1	antenna connector	passed
	op-mode 2	setup 1	antenna connector	passed
	op-mode 3	setup 1	antenna connector	passed
	op-mode 4	setup 1	antenna connector	passed

Testreport Reference: 4_VISTE_0102_BTT_FCCa

4. 3 Spurious RF Conducted Emissions

Standard FCC Part 15, 10-1-98

Subpart C

The test was performed according to: FCC §15.31 10-1-1998

4.3.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the output power measurements

The EUT was connected to spectrum analyzer via a short coax cable (Type: Rosenberger RTK 161, 1m, SMA connectors), with a known loss.

Analyser settings:

- Detector: Peak-Maxhold

Frequency range: 30 – 25000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 100 kHz

- Sweep Time: Coupled

The reference level of the spectrum analyser was set equal to the reference level of the EUT.

4.3.2 Test Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

4.3.3 Test Protocol

Temperature: 24 °C
Air Pressure: 1018 hPa
Humidity: 30 %

Op. Mode	Setup	Port	Test Parameter
op-mode 1	setup 1	antenna	
		connector	

Frequency MHz	Measured Value dBm	Correction Factor dB	Corrected Value	Reference Value dBm	Limit dBm	Delta to Limit dB
4784,00			-39,90	-3,30	-23,30	16,60
7186,00			-49,40	-3,30	-23,30	26,10

Remark: Please see annex for the measurement plot.

Temperature: 24 °C Air Pressure: 1018 hPa Humidity: 30 %

Op. Mode Setup Port Test Parameter

op-mode 2 setup 1 antenna connector

Frequency MHz	Measured Value dBm	Correction Factor dB	Corrected Value	Reference Value dBm	Limit dBm	Delta to Limit dB
4884,00			-37,00	-3,17	-23,17	13,83
6835,00			-57,00	-3,17	-23,17	33,83
7336,00			-53,00	-3,17	-23,17	29,83

Remark: Please see annex for the measurement plot.

Temperature: 24 °C Air Pressure: 1018 hPa Humidity: 30 %

Op. ModeSetupPortTest Parameterop-mode 3setup 1antenna
connector

Frequency MHz	Measured Value dBm	Correction Factor dB	Corrected Value	Reference Value dBm	Limit dBm	Delta to Limit dB
4934,00			-34,40	-3,18	-23,18	11,22
6885,00			-57,30	-3,18	-23,18	34,12
9938,00			-56,70	-3,18	-23,18	33,52

Remark: Please see annex for the measurement plot.

4.3 .4 Test result: Spurious RF Conducted Emissions

FCC Part 15, Subpart C	Op. Mode	Setup	Port	Result
	op-mode 1	setup 1	antenna connector	passed
	op-mode 2	setup 1	antenna connector	passed
	op-mode 3	setup 1	antenna connector	passed

4. 4 Spurious Radiated Emissions

Standard FCC Part 15, 10-1-98

Subpart C

The test was performed according to: ANSI C63.4 1992

4.4.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4-1992.

The Equipment Under Test (EUT) was set up on a non-conductive table 1.0 \times 2.0 m in the semi-anechoic chamber. The test was performed at an EUT to receiving antenna distance of 3m.

The radiated emissions measurements was made in a typical installation configuration.

The measurement procedure consists of four steps. It is implemented into EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Detector: Peak-Maxhold

- Frequency range: 30 - 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 μs
 Turntable angle range: –180 to 180 °

- Turntable stepsize: 90°

Height variation range: 1 – 3m
Height variation stepsize: 2m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. With this data, the test system performs (to reduce the number of final measurements) a data reduction with the following parameters:

- Offset for acceptance analysis: Limit line - 10 dB

- Maximum number of final measurements: 12

Step 2:

With the frequencies determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

Settings for step 2:

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100ms

- Turntable angle range: -180 to 180 °

- Turntable stepsize: 45°

Height variation range: 1 – 4mHeight variation stepsize: 0,5m

- Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency
- Azimuth value (of turntable)
- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°
- Antenna height: 0,5m

Step 3:

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency the turntable azimuth and antenna height, which was determined in step 3, will be adjusted.

The turntable azimuth will be slowly varied by +/- 22,5° around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/- 25 cm around the antenna height determined in step 3. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

Settings for step 3:

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHzMeasuring time: 100ms
- Turntable angle range: -22,5° to + 22,5° around the value determined in sten 2
- Height variation range: -0.25m to +0.25m around the value determined in step 2

Step 4

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:
- Detector: Quasi-Peak(< 1GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1s

The following modfications apply to the measurement procedure for the frequency range

above 1 GHz:

The measurement distance was reduced to 1m. The results were extrapolated by the extrapolation factor of 20 dB/decade (invers linear-distance for field strength measurements, invers linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 Ghz) and a horn antenna (18-25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

Detector: Peak, Average

RBW = VBW = 1 MHz, above 7 GHz 100 kHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

4.4.2 **Test Limits**

FCC Part 15, Subpart C, §15.247 (c)

(2) A radiated emission test applies to harmonic/spurs that fall in the restricted bands as listed in § 15.205(a). The maximum permitted QP (< 1GHz) and average (> 1GHz) field strength is listed in § 15.209(a).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency Range (MHz): Class B Limit (dBµV/m)

30 - 8840.0 88 - 216 43,5 216 - 96046.0 above 960 54,0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

4.4.3 Test Protocol

Temperature: 25°C Air Pressure: 1018 hPa Humidity: 36 %

Op. Mode	Setup	Port		Test Par	rameter	
op-mode 1	setup 1	Enclosure				
Polarisation	Frequency	Corrected Value	Limit	Limit	Delta to	De

Polarisation	Frequency MHz	Cor	rected Value dBµV/m		Limit QP/AV	Limit Peak	Delta to AV/QP	Delta to Peak Limit
		QP	Peak AV dBµV/m	dBμV/m	dBμV/m	Limit/dB	dB	
Vertical	2498,00		49,86	37,95	54,00	74,00	16,05	24,14
Vertical	4804,00		51,40	37,83	54,00	74,00	16,17	22,60

No further spurious emission in the range 20 dB below the limit found.

Temperature: 25°C 1018 hPa Air Pressure: Humidity: 36 %

setup 1

op-mode 2

Test Parameter Setup **Port** Op. Mode

Enclosure

•	•							
Polarisation	Frequency MHz	Coi	Corrected Value dBµV/m		Limit QP/AV	Limit Peak	Delta to AV/QP	Delta to Peak Limit
		QP	Peak	AV	dBµV/m	dBµV/m	Limit/dB	dB
Vertical	4002.00		E2 24	20.42	E4.00	74.00	14 57	20.74

29,81 74.00 Vertical 7323.00 44.19 30,39 54.00 23.61 Remark: No further spurious emission in the range 20 dB below the limit found.

> Testreport Reference: 4_VISTE_0102_BTT_FCCa Page 19 of 49

dB 20,76

Temperature: 25 °C Air Pressure: 1018 hPa Humidity: 36 %

Op. Mode Setup Port Test Parameter

op-mode 3 setup 1 Enclosure

Polarisation	Frequency MHz	Cor	rected Value dBµV/m		Limit QP/AV	Limit Peak	Delta to AV/QP	Delta to Peak Limit
		QP	Peak	AV	dBμV/m	dBμV/m	Limit/dB	dB
Vertical	2483,00		58,77	35,94	54,00	74,00	18,06	15,23
Vertical	4960,00		58,53	44,75	54,00	74,00	9,25	15,47

Remark: No further spurious emission in the range 20 dB below the limit found.

4.4.4 Test result: Spurious Radiated Emissions

FCC Part 15, Subpart C

	Op. Mode	Setup	Port	Result
=	op-mode 1	setup 1	Enclosure	passed
	op-mode 2	setup 1	Enclosure	passed
	op-mode 3	setup 1	Enclosure	passed

4. 5 Dwell Time

Standard FCC Part 15,

10-1-98

Subpart C

The test was performed according to: FCC §15.31 10-1-1998

4.5.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the output power measurements.

The reference level of the spectrum analyser was set equal to the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable (Type: Rosenberger RTK 161, 1m, SMA connectors), with a known loss.

To determine the dwell time, 3 single measurments are necessary. The first plot shows the activity for an complete inquiry/paging on one channel.

The second plot shows the repetition rate on one channel, and the third plot showsthe duration of the burst used in inquiry/paging.

With this 3 single values the dwell time of the channel can be calculated.

4.5.2 Test Limits

FCC Part 15, Subpart C, §15.247 (g)

The dwell time of the channel shall be less than 400 ms in a 30 s period

4.5.3 Test Protocol

Temperature: 25 °C Air Pressure: 1022 hPa Humidity: 40 %

Op. Mode	Setup	Port	Test Parameter
op-mode 4	setup 1	antenna connector	

Dwell time ms	Remarks
38,98	(6,07s/20,04ms)*128,66μs=38,98ms

Remark: Please see annex for the measurement plot.

4.5.4 Test result: Dwell Time

FCC Part 15, Subpart C	Op. Mode	Setup	Port	Result
	op-mode 4	setup 1	antenna connector	passed

Testreport Reference: 4_VISTE_0102_BTT_FCCa Page 21 of 49

4. 6 Power Density

Standard FCC Part 15, 10

10-1-98

Subpart C

The test was performed according to: FCC §15.31 10-1-1998

4.6.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the output power measurements

The EUT was connected to spectrum analyzer via a short coax cable (Type: Rosenberger RTK 161, 1m, SMA connectors), with a known loss.

The Analyser settings are according 15.247 (d):

- Detector: Peak-Maxhold

- Span: 2 MHz

- Resolution Bandwidth (RBW): 3 kHz

- Video Bandwidth (VBW): 3 kHz

- Sweep Time: Coupled

The reference level of the spectrum analyser was set equal to the reference level of the EUT.

4.6.2 Test Limits

FCC Part 15, Subpart C, §15.247 (g)

The power density shall be below 8 dBm measured with a resolution bandwidth of 3 kHz.

4.6.3 Test Protocol

Temperature: 25 °C
Air Pressure: 1022 hPa
Humidity: 40 %

Op. Mode	Setup	Port	Test Parameter
op-mode 4	setup 1	antenna	
		connector	

Power Density dBm/3 kHz	Remarks
-14,98	Please see annex for the measurement plot.

Remark: none

4. 6 . 4 Test result: Power Density

FCC Part 15, Subpart C	Op. Mode	Setup	Port	Result
	op-mode 4	setup 1	antenna	passed

Testreport Reference: 4_VISTE_0102_BTT_FCCa Page 22 of 49

4. 7 Channel Separation

Standard FCC Part 15, 10-1-98

Subpart C

The test was performed according to: FCC §15.31 10-1-1998

4.7.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the output power measurements

The EUT was connected to spectrum analyzer via a short coax cable (Type: Rosenberger RTK 161, 1m, SMA connectors), with a known loss.

Analyser settings:

- Detector: Peak-Maxhold

- Span: 10 MHz

Resolution Bandwidth (RBW): 300 kHzVideo Bandwidth (VBW): 300 kHz

- Sweep Time: Coupled

The reference level of the spectrum analyser was set equal to the reference level of the EUT.

4.7.2 Test Limits

FCC Part 15, Subpart C, § 15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

4.7.3 Test Protocol

Temperature: 25° C
Air Pressure: 1022 hPa
Humidity: 40%

Op. Mode	Setup	Port	Test Parameter
op-mode 5	setup 1	antenna	
		connector	

Channel Separation MHz	Remarks
1,002	Please see annex for the measurement plot.

Remark: Please see annex for the measurement plot.

4.7 .4 Test result: Channel Separation

FCC Part 15, Subpart C	Op. Mode	Setup	Port	Result
	op-mode 5	setup 1	antenna connector	passed

Testreport Reference: 4_VISTE_0102_BTT_FCCa Page 23 of 49

5. Testequipment

Rohde & Schwarz TS8960

Bluetooth RF Conformance Test System

Equipment	Туре	Serial No.	Manufacturer
10MHz Reference	MFS	5489/001	Efratom
Laserprinter	Laserjet 2100	FRFJ023447	HP
Monitor 19"	Flexscan T68	50565029 -ED	EIZO
Power Meter	NRVD	832025/059	Rohde & Schwarz
Power Sensor	NRV-Z1	832279/015	Rohde & Schwarz
Power Sensor	NRV-Z1	832279/013	Rohde & Schwarz
Power Supply	E3632A	MY40003776	Agilent
Power Supply	PS-2403D	-	Conrad
RF Step Attenuator	RSP	833695/001	Rohde & Schwarz
Rubidium Frequency Normal	MFS	002	Efratom
Signal Analyser	FSIQ26	832695/007	Rohde & Schwarz
Signal Analyser	FSP30	100051	Rohde & Schwarz
Signal Generator	SMIQ03B	832870/017	Rohde & Schwarz
Signal Generator	SMIQ03B	834344/002	Rohde & Schwarz
Signal Generator	SMP 03	833680/003	Rohde & Schwarz
Signal Switching and Conditioning Unit	SSCU	338826/005	Rohde & Schwarz
Signalling Unit	PTW60 for TS8960	838312/014	Rohde & Schwarz
System Controller	PSM12	829323/008	Rohde & Schwarz

EMI Test System

Equipment	Туре	Serial No.	Manufacturer	
Comparison Noise Emitter	CNE III	99/016	York	
EMI Analyzer	ESI 26	830482/004	Rohde & Schwarz	
Signal Generator	SMR 20	846834/008	Rohde & Schwarz	

Testreport Reference: 4_VISTE_0102_BTT_FCCa

EMI Radiated Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Antenna mast 4m	MA 240	240/492	HD GmbH H. Deisel
Biconical dipole	VUBA 9117	9117108	Schwarzbeck
Broadband Amplifier 45MHz- 27GHz	JS4-00102600-42-5A	619368	Miteq
Cable "ESI to EMI Antenna"	RTK081+Aircell7	W18.01+W38.01a	Huber+Suhner
Cable "ESI to Horn Antenna"	RTK 081	W18.04+3599/001	Rosenberger
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz
High Pass Filter	4HC1600/12750-1.5- KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5- KK	9942012	Trilithic
High Pass Filter	5HC3500/12750-1.2- KK	200035008	Trilithic
KUEP pre amplifier	Kuep 00304000	001	7layers
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz
Pyramidal Horn Antenna 26,5 GHz	Model 3160-09	9910-1184	EMCO

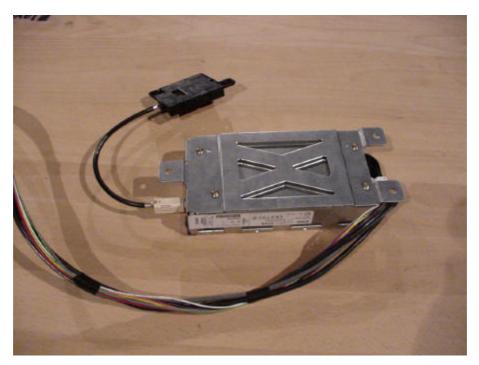
EMI Conducted Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber+Suhner
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz

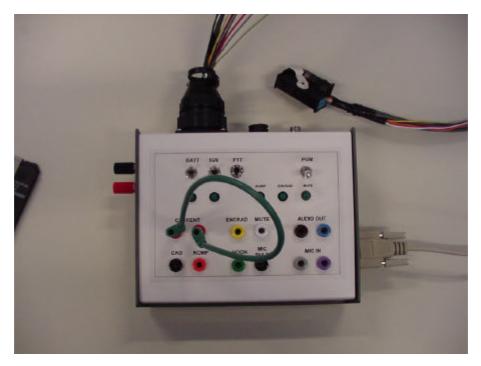
Auxiliary Test Equipment

Equipment	Туре	Serial No.	Manufacturer
Broadband Resist. Power Divider N	1506A / 93459	LM390	Weinschel
Broadband Resist. Power Divider SMA	1515 / 93459	LN673	Weinschel
Digital Multimeter 01	Voltcraft M-3860M	IJ096055	Conrad
Digital Multimeter 02	Voltcraft M-3860M	IJ095955	Conrad
Digital Oscilloscope	TDS 784C	B021311	Tektronix
Fibre optic link Satellite	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver	FO RS232 Link	182-018	Pontis
I/Q Modulation Generator	AMIQ-B1	832085/018	Rohde & Schwarz
Notch Filter ultra stable	WRCA800/960-6EEK	24	Wainwright
Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz
Temperature Chamber	KWP 120/70	59226012190010	Weiss
Temperature Chamber	VT 4002	58566002150010	Vötsch
ThermoHygro_01	430202		Fischer

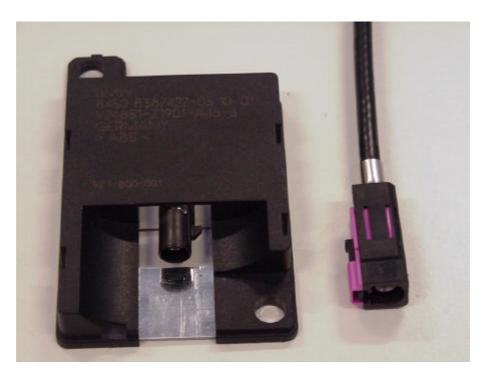
Anechoic Chamber


Equipment	Туре	Serial No.	Manufacturer
Air Compressor (pneumatic)			Atlas Copco
Controller	HD 100	100/603	HD GmbH H. Deisel
EMC Camera	CE-CAM/1		CE-SYS
EMC Camera for observation of EUT	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter telephone systems / modem	B84312-C40-B1		Siemens&Matsushita
Filter Universal 1A	B84312-C30-H3		Siemens&Matsushita
Fully/Semi AE Chamber	10.58x6.38x6		Frankonia
Turntable	DS 420S	420/573/99	HD GmbH, H. Deisel
Valve Control Unit (pneum.)	VE 615P	615/348/99	HD GmbH, H. Deisel

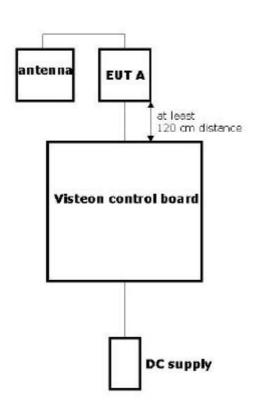
6. Foto Report



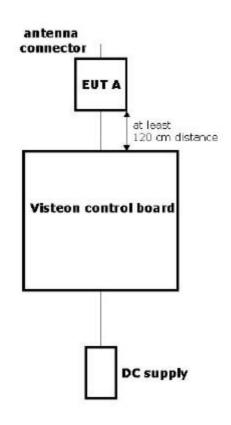
Picture 1 : EUT (top side)



Picture 2 : EUT (bottom side)


Picture 3 : Visteon Control board (top side)

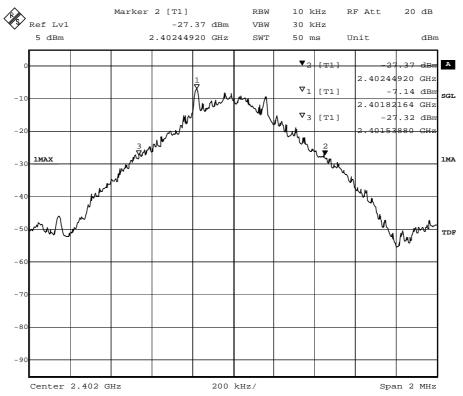
Picture 4 : Antenna for radiated measurement (gain 2 dBi)



7. Setup Drawings

Drawing 1 : Setup for radiated measurements

Drawing 2 : Setup for conducted measurements

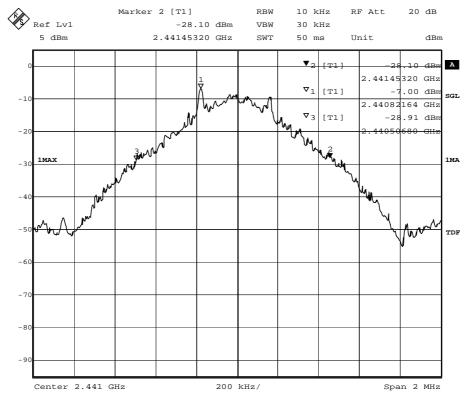


8. Annex

Measurement plots

Occupied Bandwidth

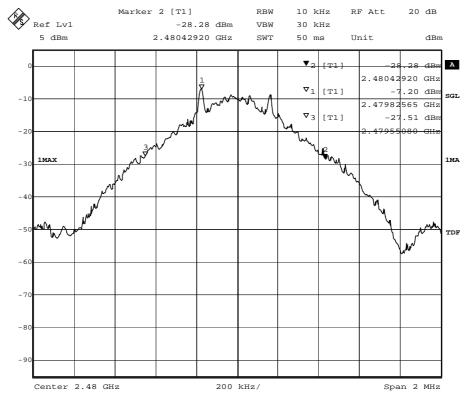
Op. Mode Setup **Port** op-mode 1 Loopback mode on 2402 MHz setup 1 antenna connector


Title: 20dB Bandwidth
Comment A: CH B: 2402 MHz; 20dB bandwidth (kHz):910.4

12.AUG.2002 18:50:34

Occupied Bandwidth

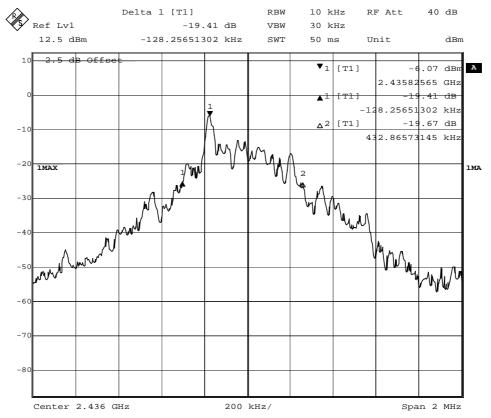
Op. Mode Setup **Port** op-mode 2 Loopback mode on 2441 MHz setup 1 antenna connector


20dB Bandwidth Title:

Comment A: CH M: 2441 MHz; 20dB bandwidth (kHz):946.4 Date: 12.AUG.2002 20:05:43

Occupied Bandwidth

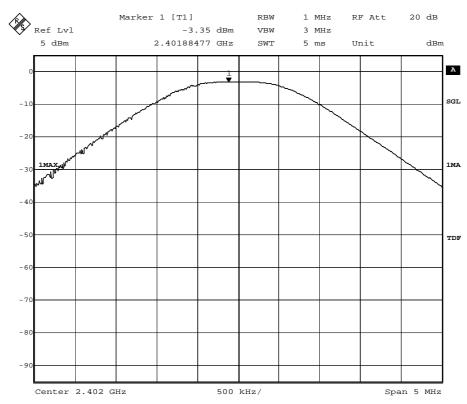
Op. Mode Setup **Port** op-mode 3 Loopback mode on 2480 MHz setup 1 antenna connector


20dB Bandwidth Title:

Comment A: CH T: 2480 MHz; 20dB bandwidth (kHz):878.4 Date: 12.AUG.2002 19:44:23

Occupied Bandwidth

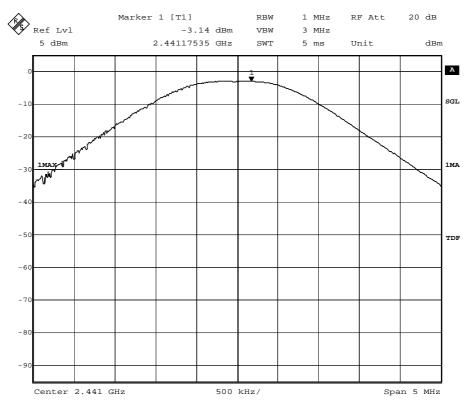
Op. ModeSetupPortop-mode 4 inquiry modesetup 1antenna
connector



Date: 13.AUG.2002 15:14:56

Peak Power Output

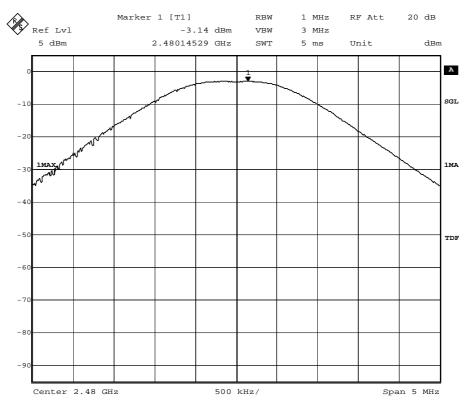
Op. ModeSetupPortop-mode 1 Loopback mode on 2402 MHzsetup 1antenna connector


Title: Peak outputpower Power Comment A: CH B: 2402 MHz
Date: 12.AUG.2002 18:51:00

peak output power

Peak Power Output

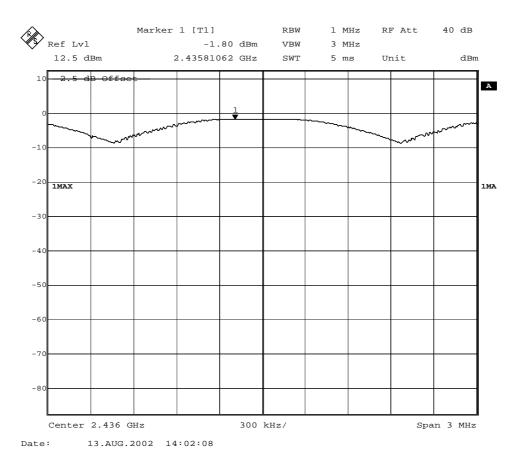
Op. ModeSetupPortop-mode 2 Loopback mode on 2441 MHzsetup 1antenna connector


Title: Peak outputpower Power Comment A: CH M: 2441 MHz
Date: 12.AUG.2002 20:06:09

peak output power

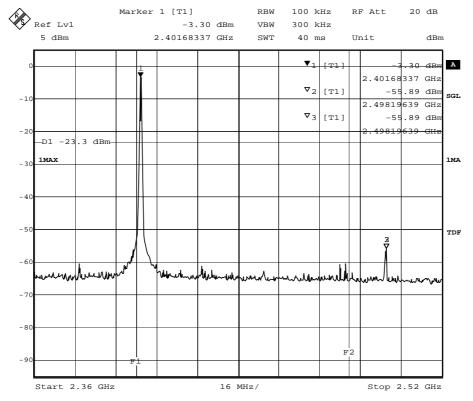
Peak Power Output

Op. ModeSetupPortop-mode 3 Loopback mode on 2480 MHzsetup 1antenna connector


Title: Peak outputpower Power Comment A: CH T: 2480 MHz
Date: 12.AUG.2002 19:44:48

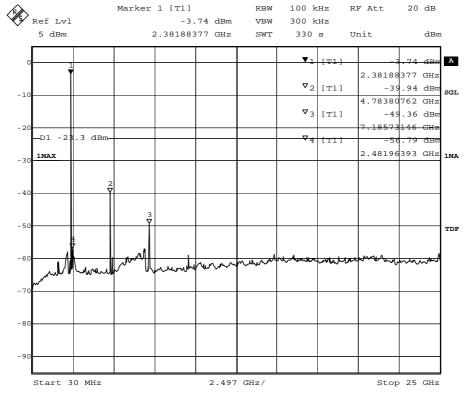
peak output power

Peak Power Output


Op. ModeSetupPortop-mode 4 inquiry modesetup 1antenna
connector

peak output power

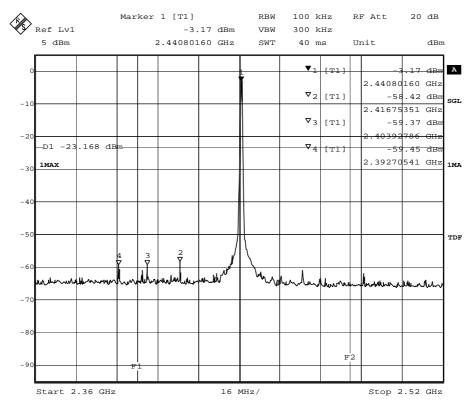
Op. Mode		Setup	Port
op-mode 1	Loopback mode on 2402 MHz	setup 1	antenna
			connector



Title: Band Edge Compliance
Comment A: CH B: 2402 MHz
Date: 12.AUG.2002 18:35:17

Band edge compliance

Op. Mode		Setup	Port
op-mode 1	Loopback mode on 2402 MHz	setup 1	antenna
			connector



Title: spurious emissions
Comment A: CH B: 2402 MHz
Date: 12.AUG.2002 18:46:54

Spurious emissions

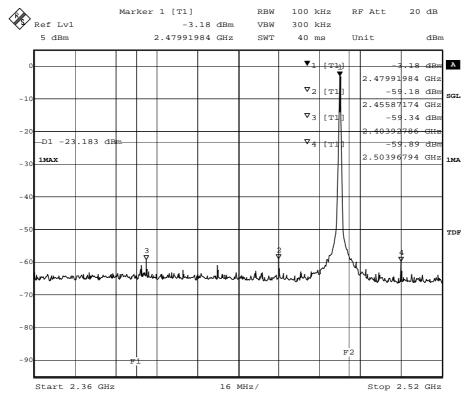
Op. ModeSetupPortop-mode 2 Loopback mode on 2441 MHzsetup 1antenna connector



Title: Band Edge Compliance
Comment A: CH M: 2441 MHz
Date: 12.AUG.2002 19:50:40

Band edge compliance

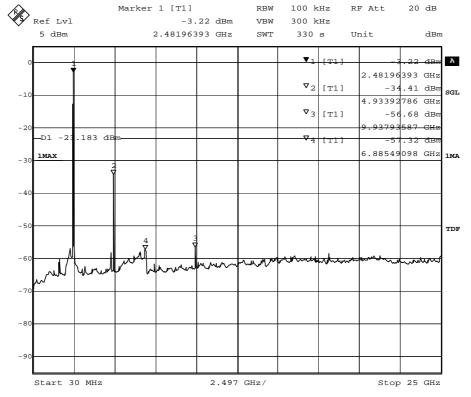
Op. Mode		Setup	Port
op-mode 2 L	oopback mode on 2441 MHz	setup 1	antenna
			connector



Title: spurious emissions
Comment A: CH M: 2441 MHz
Date: 12.AUG.2002 20:02:17

Spurious emissions

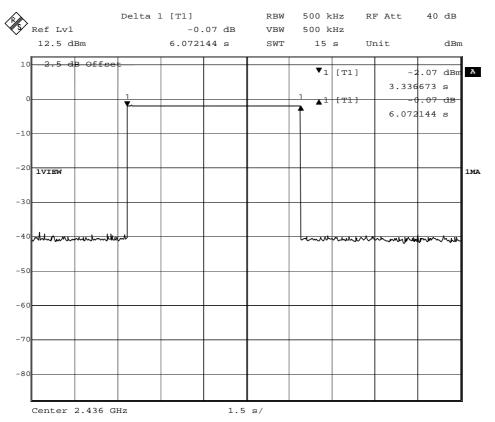
Op. ModeSetupPortop-mode 3 Loopback mode on 2480 MHzsetup 1antenna connector



Title: Band Edge Compliance
Comment A: CH T: 2480 MHz
Date: 12.AUG.2002 19:29:04

Band edge compliance

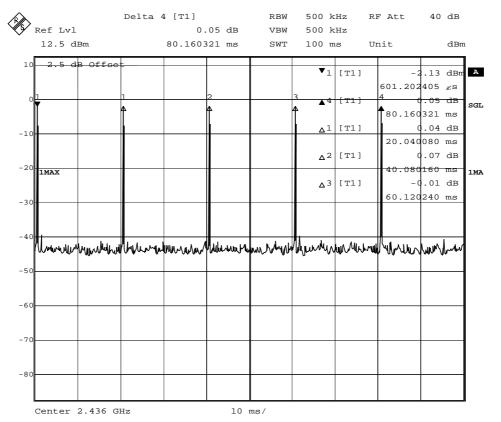
Op. Mode		Setup	Port
op-mode 3	Loopback mode on 2480 MHz	setup 1	antenna
			connector


Title: spurious emissions
Comment A: CH T: 2480 MHz
Date: 12.AUG.2002 19:40:41

Spurious emissions

Dwell Time

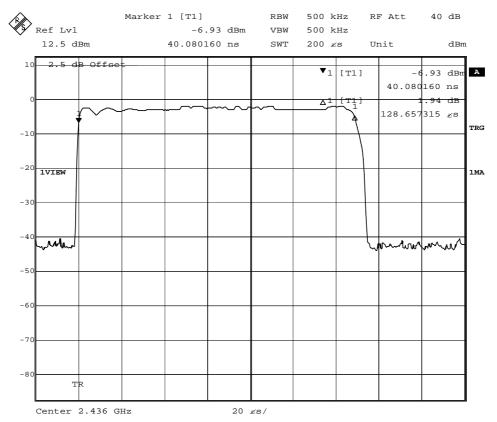
Op. ModeSetupPortop-mode 4 inquiry modesetup 1antenna
connector


Date: 13.AUG.2002 14:19:59

Dwell time

Dwell Time

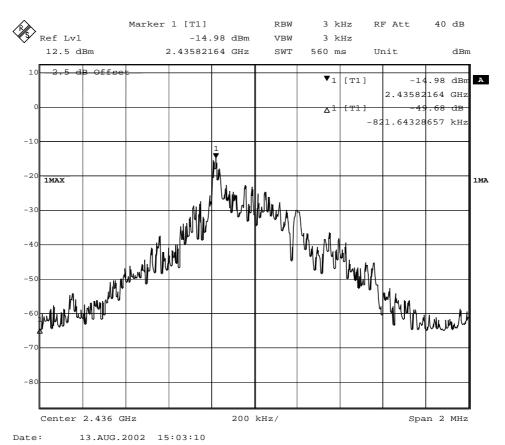
Op. ModeSetupPortop-mode 4 inquiry modesetup 1antenna
connector


Date: 13.AUG.2002 14:25:45

Dwell time

Dwell Time

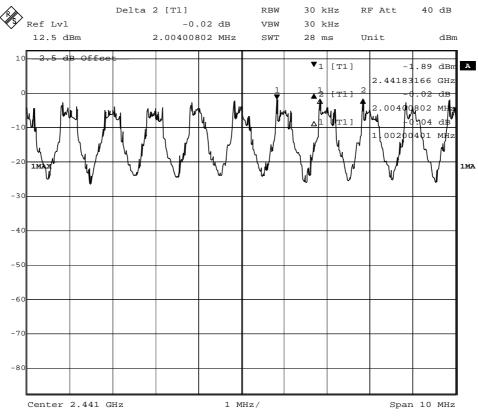
Op. ModeSetupPortop-mode 4 inquiry modesetup 1antenna
connector


Date: 13.AUG.2002 14:44:30

Dwell time

Power Density

Op. ModeSetupPortop-mode 4 inquiry modesetup 1antenna
connector



power density

Channel Separation

Op. ModeSetupPortop-mode 5 10 neighbouring channelssetup 1antenna connector

Date: 13.AUG.2002 13:32:37

channel separation