The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 647-1792

Measured Radio Frequency Emissions From

Visteon
U204 GEM RKE Receiver
PN: YL8F-14B205-AA

Report No. 415031-016 October 25, 1999

For: Visteon Automotive Systems 17000 Rotunda Drive Dearborn, Michigan 48121

Contact: Frank Thompson

Tel: (313) 390-8951 Fax: (313) 323-8438

PO: 47-J-QJ2195

EXHIBIT 6

Page/-9 of 9

U of Mich file 415031-016

Measurements made by:

Valdis V. Liepa

Tests supervised by: Report approved by:

Valdis V. Liepa

Research Scientist

Summary

Tests for compliance with FCC Regulations subject to Part 15, Subpart B, and with Industry Canada Regulations subject to RSS-210, were performed on Visteon U204 GEM RKE Receiver. This device is subject to FCC Rules and Regulations as a Receiver. As a Digital Device it is exempt, but such measurements were made to assess the receiver's overall emissions.

In testing performed on June 12 and July 2, 1999, the device tested in the worst case met the allowed FCC (Class B) specifications for radiated emissions by 16.4 dB (see p. 6). The conductive emission tests do not apply, since the device is powered from an automotive 12 VDC system.

1. Introduction

Visteon U204 GEM RKE Receiver was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989, and with Industry Canada RSS-210, Issue 2, dated February 14, 1998. The tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-1992 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland (FCC file 31040/SIT) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057).

2. Test Procedure and Equipment Used

The test equipment commonly used in our facility is listed in Table 2.1 below. The second column identifies the specific equipment used in these tests. The HP 8593E spectrum analyzer is used for primary amplitude and frequency reference.

Table 2.1. Test Equipment.

Test Instrument	Equipment Used	Manufacturer/Model	Cal. Date/By
Spectrum Analyzer	X	Hewlett-Packard 8593A	October 1999/UM
(9kHz-22GHz)		SN: 3107A01358	
Spectrum Analyzer	X	Hewlett-Packard 8593E	September 1999/HP
(9kHz-26GHz)		SN: 3107A01131	October 1000/II of M Dod I ab
Spectrum Analyzer (0.1-1500 MHz)		Hewlett-Packard 182T/8558B SN: 1529A01114/543592	October 1999/U of M Rad Lab
Preamplifier	X	Watkins-Johnson	Oct. 1999/U of M Rad Lab
(5-1000MHz)	71	A11 -1 plus A25-1S	30t. 1999/ 8 01 1/1 Rad Eds
Preamplifier	X	Avantek	Nov. 1996/ U of M Rad Lab
(5-4000 MHz)			
Broadband Bicone	X	University of Michigan	June 1996/U of M Rad Lab
(20-200 MHz)			1006/N1 01/D 17 1
Broadband Bicone	`	University of Michigan	June 1996/U of M Rad Lab
(200-1000 MHz Dipole Antenna Set		University of Michigan	June 1997/U of M Rad Lab
(25-1000 MHz)		Oliversity of Wilchigan	Julie 1997/O Of W. Rau Lau
Dipole Antenna Set		EMCO 3121C	June 1996/U of M Rad Lab
(30-1000 MHz)		SN: 992	
Active Loop Anten		EMCO 6502	December 1993/ EMCO
(0.090-30MHz)		SN: 2855	
Active Rod		EMCO 3301B	December 1993/EMCO
(30Hz-50 MHz)		SN: 3223	M1. 1000/II - £ M D - 4 I - 1.
Ridge-horn Antenn	ia X	University of Michigan	March 1999/U of M Rad Lab
(0.5-5 GHz) LISN Box		University of Michigan	Dec 1997/U of M Rad Lab
Signal Cables	X	Assorted	January 1993/U of M Rad Lab
X-Y Plotter	71	Hewlett-Packard 7046A	During Use/U of M Rad Lab
Signal Generator	X	Hewlett-Packard 8656A	January 1990/U of M Rad Lab
(0.1-990 MHz)			•
Printer	X	Hewlett-Packard 2225A	August 1989/HP

3. Configuration and Identification of Device Under Test

The DUT is a 315.0 MHz superregenerative receiver, designed for onboard automobile security/convenience applications, and as such, it is powered from an automotive 12 VDC source. It is housed in a plastic case approximately 4 by 5 by 1.0 inches. Antenna is internal. For testing, a 3 meter long section of generic harness was used, with power wires separated from the control/signal wires. In the receiver digital section, the decoding, signal processing, etc. are performed by a microprocessor timed by a 12.0 MHz ceramic resonator.

The DUT was designed and manufactured by Visteon Automotive Sysytems, Dearborn,

Michigan 48121. It is identified as:

Visteon RKE Receiver PN: YL8F-14B205-AA

S/N: 23

FCC ID: NT8-14B205-GEM

CANADA:

3.1 Modifications Made

There were no modifications made to the DUT by this laboratory.

4. Emission Limits

For FCC the DUT falls under Part 15, Subpart B, "Unintentional Radiators". For Industry Canada the DUT falls under Receiver category and is subject to technical requirement of sections 7.1 to 7.4 in RSS-210. The pertinent test frequencies, with corresponding emission limits, are given in Tables 4.1 and 4.2 below.

4.1 Radiated Emission Limits

Table 4.1. Radiated Emission Limits (FCC: 15.33, 15.35, 15.109; IC: RSS-210, 7.3).

Freq. (MHz)	E _{lim} (3m) μV/m	$E_{lim} dB(\mu V/m)$
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-2000	500	54.0

Note: Quasi-Peak readings apply to 1000 MHz (120 kHz BW) Average readings apply above 1000 MHz (1 MHz BW)

4.2 Conducted Emission Limits

Table 4.2. Conducted Emission Limits (FCC: 15.107; IC: RSS-210, 6.6).

Freq. (MHz)	μV	dB(μV)
0.450 - 1.705	250	48.0
1.705 - 30.0	250	48.0

Note: Quasi-Peak readings apply here

4.3 Antenna Power Conduction Limits

(FCC: 15.111(a); IC: RSS-210, 7.2). Pmax = 2 nW; for requency range see Table 4.1.

5. Emission Tests and Results

Even though the FCC and/or Industry Canada specify that both the radiated and conductive emissions be measured using the Quasi-Peak and/or average detection schemes, we normally use peak detection since especially the Quasi-Peak is cumbersome to use with our instrumentation. In case the measurement fails to meet the limits, or the measurement is near the limit, it is remeasured using appropriate detection. We note, that since the peak detected signal is always higher or equal to the Quasi-Peak or average detected signal, the margin of compliance may be better, but not worse, than indicated in this report. The type of detection used is indicated in the data table, Table 5.1.

5.1 Anechoic Chamber Radiated Emission Tests

To familiarize with the radiated emission behavior of the DUT, it was studied and measured in the shielded anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with turntable, antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed.

To study and test for radiated emissions, the DUT was powered by a laboratory power supply at 13.5 VDC. A 315 MHz CW signal was injected (radiated) from a nearby signal generator using a short wire antenna. The DUT was taped to a syrofoan block and placed on the test table on each of the three axis. At each orientation, the table was rotated to obtain maximum signal for vertical and horizontal emission polarizations. This sequence was repeated throughout the required frequency range.

In the chamber we studied and recorded all the emissions using a ridge-horn antenna, which covers 200 MHz to 5000 MHz, up to 2 GHz. In scanning from 30 MHz to 2.0 GHz, there were no spurious emissions observed other than the LO and injection signal (315 MHz), and the LO harmonics. Figures 5.1 and 5.2 show emissions measured 0-1000 MHz and 1000-2000 MHz, respectively. These measurements are made with a ridge-horn antenna at 3m, with spectrum analyzer in peak hold mode and the receiver rotated in all orientations. The measurements up to 1000 MHz (Fi.g. 5.1) are used for initial evaluation only, but those above 1000 MHz (Fig. 5.2) are used in final assessment for compliance.

5.2 Open Site Radiated Emission Tests

The DUT was then moved to the 3 meter Open Field Test Site where measurements were repeated up to 1000 MHz using a small bicone, or dipoles when the measurement is near the limit. The DUT was excersised as described in Sec. 5.1 above. The measurements were made with a spectrum analyzer using 120 kHz IF bandwidth and peak detection mode, and, when appropriate, using Quasi-Peak or average detection (see 5.0). The test set-up photographs are in Appendix (i.e., end of this report).

The emissions from digital circuitry were measured using a standard bicone. These results are also presented in Table 5.1.

5.3 Computations and Results for Radiated Emissions

To convert the dBm's measured on the spectrum analyzer to dB(µV/m), we use expression

$$E_3(dB\mu V/m) = 107 + P_R + K_A - K_G$$

where

 P_R = power recorded on spectrum analyzer, dB, measured at 3m K_A = antenna factor, dB/m

K_G = pre-amplifier gain, including cable loss, dB

When presenting the data, at each frequency the highest measured emission under all of the possible orientations is given. Computations and results are given in Table 5.1. There we see that the DUT meets the limit by 16.4 dB.

5.4 Conducted Emission Tests

These tests do not apply, since the DUT is powered from an automotive 12 VDC system.

6. Other Measurements

6.1 Emission Spectrum Near Fundamental

Near operating frequency the emission spectrum is measured typically over 50 MHz span with and without injection signal. These data are taken with the DUT close to antenna and hence amplitudes are relative. The plots are shown in Figure 6.1.

6.2 Effect of Supply Voltage Variation

The DUT has been designed to operate from 12 VDC power. Using a spectrum analyzer, relative radiated emissions were recorded at the "fundamental" (315.3 MHz) as voltage was varied from 7.0 to 18.0 VDC. Figure 6.2 shows the emission variation.

6.3 Operating Voltage and Current

V = 13.6 VDCI = 65.0 mADC

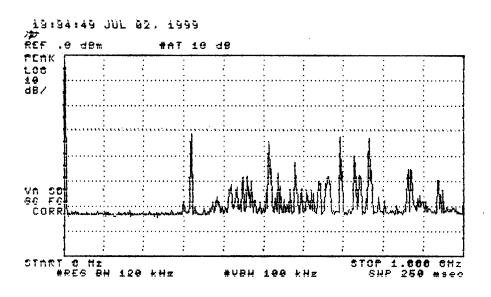

The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, Michigan 48109-2122 (734) 647-1792

Table 5.1 Highest Emissions Measured

	Radiated Emission - RF Visteon U204 RX; FCC										
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3	E3lim	Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	dBμV/m	l I	dB	Comments
1	318.0	Dip	Н	-80.9	Pk	19.0	21.4	23.7	46.0	22.3	side, 30 kHz BW
2	318.0	Dip	Н	-84.5	Pk	19.0	21.4	20.1	46.0	25.9	side, 30 kHz BW
3	318.0	Dip	Н	-83.6	Pk	19.0	21.4	21.0	46.0	25.0	side, 30 kHz BW
4	318.0	Dip	V	-84.4	Pk	19.0	21.4	20.2	46.0	25.8	side, 30 kHz BW
5	318.0	Dip	V	-83.7	Pk	19.0	21.4	20.9	46.0	25.1	side, 30 kHz BW
6	318.0	Dip	V	-84.6	Pk	19.0	21.4	20.0	46.0	26.0	side, 30 kHz BW
7	630.0	Dip	V/H	-91.7	Pk	25.2	18.1	22.5	46.0	23.5	max. of all, noise; 10 kHz BW
8	945.0	Dip	V/H	-91.5	Pk	28.9	15.7	28.7	46.0	17.3	max. of all, noise; 10 kHz BW
9	1260.0	Horn	Н	-63.1	Pk	20.4	28.0	36.3	54.0	17.7	max. of all, noise floor
10	1575.0	Horn	Н	-62.0	Pk	20.6	28.0	37.6	54.0	16.4	max. of all, noise floor
11	1890.0	Horn	Н	-62.0	Pk	20.8	28.2	37.6	54.0	16.4	max. of all, noise floor
12											
13											, the second ratio on the control of the first deaths after the filler than the control of the c
14											
15											
16											
17											
18						·					
					Dodi	inted F	miccian	- Digita	ol (Class	· R)	
					Nau	lateu L	711155101	i - Digita	II (Class	D)	
1											,
2				Die!4	al Essie) dD balas	ECC CI	000 D 15	L mita
3				Digit	ai Emis	SIONS MC	ore than 20	0 dB belov	v rec el	ass B III	mus
5											
6											
7 8											
9											
10											
11											
12											
14									<u> </u>		l

	Conducted Emissions								
	Freq.	Line	Det.	Vtest	Vlim	Pass			
#	MHz	Side	Used	dΒμV	dΒμV	dB	Comments		
1									
2	Not applicable								
3									

Meas. 6/21/99; U of Mich.

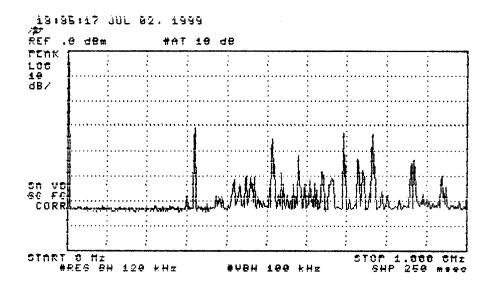
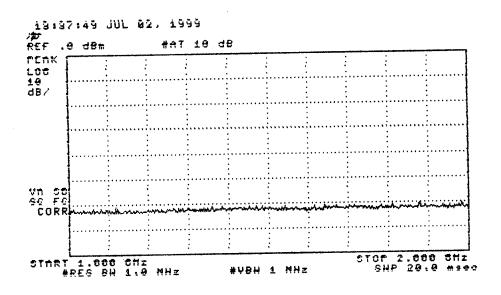



Figure 5.1. Emissions measured at 3 meters in anechoic chamber, 0-1000 MHz. (top) Receiver plus ambient (bottom) Ambient

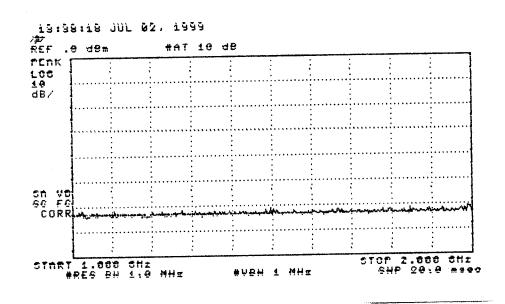


Figure 5.2. Emissions measured at 3 meters in anechoic chamber, 1000-2000 MHz. (top) Receiver plus ambient (bottom) Ambient

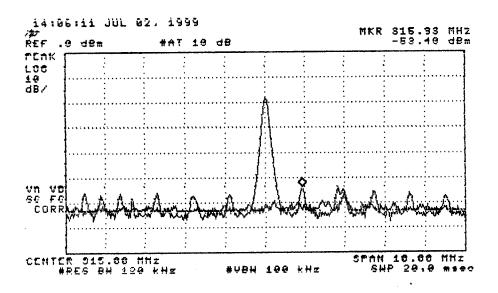


Figure 6.1. Relative receiver emissions in stand-by and "locked-in" modes. The final emission measurements were made with the receiver in "locked-in" mode.

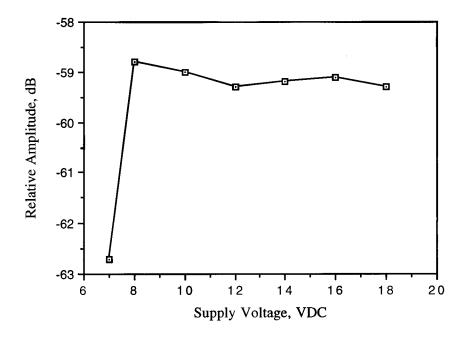


Figure 6.2. Relative emission at "fundamental" vs. supply voltage.