

FCC CFR47 PART 22 TYPE ACCEPTANCE

TEST REPORT

FOR

WIRELESS LOCAL LOOP SUBSCRIBER UNIT

MODEL: SU-250, SU-210

FCC ID: NT7SU-2XX

REPORT NUMBER: 99U0100

ISSUE DATE:MARCH 11,1999

Prepared for DIVA COMMUNICATIONS 1999 HARRISON, SUITE 1400 OAKLAND, CA 94612 USA

Prepared by COMPLIANCE ENGINEERING SERVICES, INC. d.b.a. COMPLIANCE CERTIFICATION SERVICES 1366 BORDEAUX DRIVE SUNNYVALE, CA 94089, USA TEL: (408) 752-8166 FAX: (408) 752-8168

TABLE OF CONTENTS PAGE

1.	VERIFICATION OF COMPLIANCE	2
2.	PRODUCT DESCRIPTION	3
3.	TEST FACILITY	3
4.	ACCREDITATION AND LISTING	3
5.	MEASUREMENT INSTRUMENTATION	4
6.	MEASURING INSTRUMENT CALIBRATION	4
7.	UNITS OF MEASUREMENT	4
8.	CLASSIFICATION OF DIGITAL DEVICE	5
9.	RADIATED EMISSION LIMITS	5
10.	RADIATED EMISSION TEST PROCEDURE	6
11.	AMBIENT CONDITIONS	6
12.	TEST EQUIPMENT LIST	6
13.	SUPPORT EQUIPMENT	7
14	FUT SETUP PHOTOS	8
15.	TEST RESULT SUMMARY	0
FCC	PART 2 TYPE ACCEPTANCE TEST REOUREMENT:	13
SECT	ION 2.983 (A) NAME OF APPLICANT:	13
SECT	ION 2.363 (B) EQUIPMENT IDENTIFICATION. $1 \text{ for } 2083$ (C) DIANNED FOR OUTANTITY PRODUCTION	13
SECT	ION 2.983 (D) TECHNICAL DESCRIPTION .	3
SEC	FION 2.985 RF POWER OUTPUT	3
SEC	FION 2.987 MODULATION CHARACTERISTICS	3
SEC	FION 2.989 OCCUPIED BANDWIDTH	15
SEC	ΓΙΟΝ 2.991 SPURIOUS EMISSION AT ANTENNA TERMINALS1	17
SEC	ΓΙΟΝ 2.993 FIELD STRENGTH OF SPURIOUS RADIATION	25
SEC	FION 2.995 FREQUENCY STABILITY	26
SECT	ION 2.1091	27
16.	EXTERNAL I/O CABLE CONSTRUCTION DESCRIPTION	30
17.	TEST CONFIGURATION DIAGRAM	32

1. VERIFICATION OF COMPLIANCE

COMPANY NAME: DIVA COMMUNICATIONS 1999 HARRISON, SUITE 1400 OAKLAND, CA 94612

CONTACT PERSON: WILLIAM B. BARINGER / SENIOR RF ENGINEER

TELEPHONE NO: 510-986-6421

MODEL NO/NAME: SU-250, SU-210

SERIAL NO: N/A

DATE TESTED: MARCH 8, 1999

TYPE OF EQUIPMENT:	WIRELESS LOCAL LOOP SUBSCRIBER UNIT			
MEASUREMENT DISTANCE:	3 METER			
TECHNICAL LIMIT:	FCC 22.355, 22.917, 22.913, 22.905			
FCC RULES:	PART 15, PART 22			
EQUIPMENT AUTHORIZATION PROCEDURE	CERTIFICATION			
MODIFICATIONS MADE ON EUT	YES (X)NO			

The above equipment was tested by Compliance Consulting Services for compliance with the requirements set forth in the FCC CFR 47, PART 15 AND 22. The results of testing in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved By

mil. c2/2

MIKE KUO/ VICE PRESIDENT COMPLIANCE CERTIFICATION SERVICES

2

2. **PRODUCT DESCRIPTION**

The Subscriber Unit transmits in the uplink band (824.01 to 848.97 MHz) and receives in the downlink band (869.01 to 893.97 MHz). Since the system is TDMA, the subscriber unit only transmits on one or two of the three available time slots. The subscriber units operates in a manner similar to cellular mobiles. Upon power-up, the subscriber unit searches for an available control channel, then receives direction from the Modular Base Station as to which channel and slot to transmit on. In addition, the SU transmitter power is controlled by the base station over a 20 dB range to minimize the transmitted power level consistent with a minimum signal level received at the Modular Base Station. The modulation, coding, and ID used in the system only allow the SU to be controlled by an authorized DIVA Modular Base Station. The SU also uses a Modular Base Station transmit channel as a frequency reference to set its internal reference oscillator prior to transmission. In this way the Modular Base Station controls the frequency accuracy of the SU transmitter.

The SU can be installed by the end user (subscriber) using the built-in antennas. A higher gain antenna may be installed. This antenna and interface cable combination would be such that the maximum ERP would not exceed the FCC cellular mobile limit of 38.5 dBm (7 W) ERP, FCC 47CFR22.913(a). The antenna and cable would be provided by the Service Provider. A UDC type (non-standard) multi-pin connector is provided on the SU for this purpose and is connected to the antenna via a custom cable harness provided by DIVA to the Service Provider.

The Diva Subscriber Unit model SU-210 provides voice service only. The Diva Subscriber Unit model SU-250 provides voice service, 9600 bps fax service, and 2400 bps data service, utilizing standard commercially available fax and data modem equipment connected to the RJ-11 phone jack of the SU-250. The SU-210 utilizes an identical RF circuitry as the SU-250, and the two models utilize the same printed circuit board (encompassing both the RF and the digital portions of the design). The SU-210 differs from the SU-250 only in that fax service and data service digital circuitry components are removed from the SU-250 to create the SU-210.

3. TEST FACILITY

The open area test sites and conducted measurement facilities used to collect the radiated and conducted data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

4. ACCREDITATION AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code:200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or

imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT(1300F2))

5. MEASUREMENT INSTRUMENTATION

Radiated emissions were measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, ridged waveguide, liner horn. EMI receivers were used for line conducted readings, spectrum analyzers with pre-selectors and quasi-peak detectors were used to perform radiated measurements. Receiving equipment (i.e., receiver, analyzer, quasi-peak adapter, pre-selector) and LISNs conform to CISPR specification for "Radio Interference Measuring Apparatus and Measurement Methods," Publication 16.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

6. MEASURING INSTRUMENT CALIBRATION

The measuring equipment which was utilized in performing the tests documented herein has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment which is traceable to recognized national standards.

7. UNITS OF MEASUREMENT

Measurements of radiated interference are reported in terms of dB(uV/m) at a specified distance. The indicated readings on the spectrum analyzer were converted to dB(uV/m) by use of appropriate conversion factors. Measurements of conducted interference are reported in terms of dB(uV).

The field strength is calculated by adding the Antenna Factor and Cable Factors, then by subtracting the Amplifier Gain from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain

4

Assume a receiver reading of 52.5 dBuV is obtained. The Antenna Factor of 7.4dB/m and a Cable Factor of 1.1dB is added. The Amplifier Gain of 29 dB is subtracted, giving a field strength of 32 dBuV/m. The 32 dBuV/m value was mathematically converted to its corresponding level in uV/m.

FS = 52.5 + 7.4 + 1.1 - 29 = 32 dBuV/m

Level in uV/m = Common Antilogarithm [(32 dBuV/m)/20] = 39.8 uV/m

8. CLASSIFICATION OF DIGITAL DEVICE

Class A includes digital devices that are marketed for use in commercial, industrial or business environments, excluding devices which are marketed for use by the general public or are intended to be used in the home.

Class B includes digital devices that are marketed for use in residential environments, notwithstanding use in commercial, business and industrial environments.

Note: The responsible party may also qualify a device intended to be marketed in a commercial, business or industrial environment as Class B device, and in fact is encouraged to do so provided the device complies with the technical specifications for a Class B digital device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B digital device, regardless of its intended use.

9. RADIATED EMISSION LIMITS

MEASURING DISTANCE OF 10 METER					
FREQUENCY RANGE	FIELD STRENGTH	FIELD STRENGTH			
(MHz)	(Microvolts/m)	(dBuV/m)			
30-88	90	39.1			
88-216	150	43.5			
216-960	210	46.4			
Above 960	300	49.5			

FCC PART 15 CLASS A

FCC PART	15 CLASS B	

MEASURING DISTANCE OF 3 METER					
FREQUENCY RANGE FIELD STRENGTH FIELD STRENGTH					
(MHz)	(Microvolts/m)	(dBuV/m)			
30-88	100	40			
88-216	150	43.5			
216-960	200	46			
Above 960	500	54			

10. RADIATED EMISSION TEST PROCEDURE

The EUT and all other support equipment are placed on a wooden table 80 cm above the ground screen. Antenna to EUT distance is 3 meters. During the test, the table is rotated 360 degrees to maximize emissions and the antenna is positioned from 1 to 4 meters above the ground screen to further maximize emissions. The antenna is polarized in both vertical and horizontal positions.

EUT test configuration is according to Section 8 of ANSI C63.4/1992.

Monitor the frequency range of interest at a fixed antenna height and EUT azimuth. Frequency span should be small enough to easily differentiate between broadcast stations and intermittent ambients. Rotate EUT 360 degrees to maximize emissions received from EUT. If emission increases by more than 1 dB, or if another emission appears that is greater by 1 dB, return to azimuth where maximum occurred and perform additional cable manipulation to further maximize received emission.

Move antenna up and down to further maximize suspected highest amplitude signal. If emission increased by 1 dB or more, or if another emission appears that is greater by 1dB or more, return to antenna height where maximum signal was observed and manipulate cables to produce highest emissions, noting frequency and amplitude.

11. AMBIENT CONDITIONS

The ambient conditions at the time of final tests were as follows:

	Radiated Emission	Conducted Emission	
Temperature	13 °C	12 °C	
Humidity	60%	62%	

12. TEST EQUIPMENT LIST

Equipment	Manufacturer	Model No.	Serial No.	Site	Cal Date	Due Date
Spectrum Analyzer	H.P.	8593EM	3710A00205	А	5/2/98	5/2/99
Antenna	CHASE	CBL6112	2049	A/F	5/08/98	5/08/99
Antenna	EMCO	3115	9001-3245	N/A	12/11/98	12/11/99
Pre-Amp	H.P.(P2)	8447D	2944A06265	A/F	10/27/98	10/27/99
Pre-Amp	H.P.	8449B	3008A00369	A/F	4/2/998	4/2/99
Power Meter	H.P.	436A	2709A29209	N/A	2/24/99	2/24/00

REPORT NO:99U0100 FCC ID:NT7SU-2XX ISSUE DATE:03/10/1999 WIRELESS LOCAL LOOP SUBSCRIBER UNIT

4/14/99
3

13. SUPPORT EQUIPMENT

Device Type	Manufacturer	Model Number	Serial No.	FCC ID / DoC
PC	COMPUTERLINK	N/A	N/A	N/A
TEST INTERFACE BOX	KOKUSAI ELECTRONICS	N/A	N/A	N/A
DC POWER SUPPLY	KOKUSAI ELECTRONICS	ZEBRA ZA- X151501	K9809311511	N/A
TELEPHONE	AMTEL	N/A	N/A	2GUCHN-73412

14. EUT SETUP PHOTOS

Radiated Emission Test Setup

Conducted Emission Test Setup

15. TEST RESULT SUMMARY

FCC PART 15 Radiated Emission Test was conducted by operating the configuration as indicated below.

OATS No:A		Data Report No.		Date		Tested By:	
A / 3 1	neter	990.	305A1	03/05/	99	PETE KREBILL	
		Six Hi	ghest Radiated	Emission Rea	ndings		
Frequency	Range Inve	stigated		3	0 MHz TO	9000 MHz	
	Meter		Corrected			Reading	
Freq	Reading	C.F.	Reading	Limits	Margin	Туре	Polar
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(P/Q/A)	(H/V)
140.7	41.49	-12.7	28.79	43.50	-14.71	Р	V
86.44	38.78	-16.91	21.87	40.00	-18.13	Р	V
32.76	41.30	-9.7	31.60	40.00	-8.40	Р	V
120.0	37.10	-12.09	25.01	43.50	-18.49	Р	V
86.44	35.90	-17.6	18.30	40.00	-21.70	Р	Н
32.77	41.40	-8.79	32.61	40.00	-7.39	Р	Н

C.F.(Correction Factor)=Antenna Factor + Cable Loss-Amplifier Gain

Corrected Reading = Metering Reading + C.F. Margin = Corrected Reading - Limits

P= Peak Reading H= Horizontal Polarization/Antenna

Q= Quasi-peak

V= Vertical Polarization/Antenna

A= Average Reading

Comments: N/A

Conduct Room	ed	Plot No. N/A		Date 03/08/99		Tested By: Pete Krebill	
	S	ix Higl	nest Conduc	ted Emissi	on Readi	ings	
Frequen	cy Range	Inves	tigated	4	150 kHz '	TO 30 MHz	
Freq (MHz)	Meter Readin g (dBuV)	C.F. (dB)	Corrected Reading (dBuV/m)	Limits (dBuV/m)	Limits Margin Type Line (dBuV/m) (dB) (P/Q/A) (L1/L2)		
0.494	41.29	0	41.29	48.0	-6.71	P	1
0.614	37.75	0	37.75	48.0	-10.25	P	1
1.97	37.44	0	37.44	48.0	-10.56	P	1
0.494	41.42	0	41.42	48.0	-6.58	P	2
0.614	39.26	0	39.26	48.0	-8.74	P	2
0.581	37.47	0	37.47	48.0	-10.53	P	2

C.F.(Correction Factor)=Insertion Loss + Cable Loss Corrected Reading = Metering Reading + C.F. Margin= Corrected Reading - Limits P= Peak Reading

L1=Hot L2=Neutral

Q= Quasi-peak

A= Average Reading

REPORT NO:99U0100 FCC ID:NT7SU-2XX WIRELESS LOCAL LOOP SUBSCRIBER UNIT

FCC PART 2 TYPE ACCEPTANCE TEST REQUIREMENT:

SECTION 2.983 (A) NAME OF APPLICANT:

DIVA Communications 1999 Harrison St. Suite 1400 Oakland, CA 94612

Name of Manufacturer

Kokusai Electric Co., LTD. 1007-176 Isumisawa Chitose City Hokkaido Japan 066-8666

SECTION 2.983 (B) EQUIPMENT IDENTIFICATION:

DIVA Communications Model Number: SU-250, SU-210 FCC ID:NT7SU-2XX

SECTION 2.983 (C) PLANNED FOR QUANTITY PRODUCTION.

SECTION 2.983 (D) TECHNICAL DESCRIPTION :

Please refer to attachment. Confidentiality is requested on this document.

SECTION 2.985 RF POWER OUTPUT

MEASURED RF POWER OUTPUT
0.42WATTS

SECTION 2.987 MODULATION CHARACTERISTICS

The modulation type is PI/4 DQPSK (PI/4 Shifted Differential Quadrature Phase Shift Keying), and the carrier is both amplitude and phase modulated. Using a square root raised cosine baseband filter with an excess bandwidth of 0.5 over the Nyquist bandwidth. The "total" RF bandwidth (ideally) is then :BW(total) = 2* bit rate * symbols/bit * baseband filter bandwidth. The

baseband filter bandwidth = Nyquist bandwidth * (1 + excess bandwidth) = (1/2) * (1.5) = 0.75. Therefore the ideal maximum BW = 2* 42,000 bps * (1/2) * (0.75) = 31.5 kHz. The Necessary BW (minimum occupied as defined in Section 2.202) = 26.64 kHz (26K6). This was obtained by integrating the baseband pulse response (raised cosine baseband response). See the following plot.

SECTION 2.989 OCCUPIED BANDWIDTH

CHANNEL/ FREQUENCY	PLOT #
990/824.01MHZ	1
383/836.49MHZ	2
799/848.97MHZ	3

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO:CCSUP4031A1366 BORDEAUX DRIVE SUNNYVALE, CA 94089 USATEL:(408) 752-8166FAX:(408) 752-8168This report shall not be reproduced except in full, without the written approval of CCS.CCS.

SECTION 2.991 SPURIOUS EMISSION AT ANTENNA TERMINALS

CHANNEL	PLOT DESCRIPTION	PLOT#
#990/824.01MHZ	OUT OF BAND LOW	1
#990	OUT OF BAND HIGH	2
#990	1 ST IN BAND	3
#990	2 ND IN BAND	4 & 5
#990	2 nd IN BAND	6
#383/836.49MHZ	OUT OF BAND LOW	7
#383	OUT OF BAND HIGH	8
#383	1 ST IN BAND	9
#383	2 ND IN BAND	10
#799/848.97MHZ	OUT OF BAND LOW	11
#799	OUT OF BAND HIGH	12
#799	1 ST IN BAND	13
#799	2 ND IN BAND	14
#799	MOBILE EMISSIONS IN BASE BAND	15

Plots 4 & 5 show 30K and 10K resolution bandwidth settings do not accurately show emissions.

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO:CCSUP4031A1366 BORDEAUX DRIVE SUNNYVALE, CA 94089 USATEL:(408) 752-8166 FAX:(408) 752-8168This report shall not be reproduced except in full, without the written approval of CCS.

18

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO:CCSUP4031A1366 BORDEAUX DRIVE SUNNYVALE, CA 94089 USATEL:(408) 752-8166 FAX:(408) 752-8168This report shall not be reproduced except in full, without the written approval of CCS.

20

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO:CCSUP4031A1366 BORDEAUX DRIVE SUNNYVALE, CA 94089 USATEL:(408) 752-8166 FAX:(408) 752-8168This report shall not be reproduced except in full, without the written approval of CCS.

REPORT NO:99U0100 FCC ID:NT7SU-2XX WIRELESS LOCAL LOOP SUBSCRIBER UNIT

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO:CCSUP4031A1366 BORDEAUX DRIVE SUNNYVALE, CA 94089 USATEL:(408) 752-8166 FAX:(408) 752-8168This report shall not be reproduced except in full, without the written approval of CCS.

SECTION 2.993 FIELD STRENGTH OF SPURIOUS RADIATION

Technical Limits applied :Section, 22.917 emission masks

DIVA COMMUNICATIONS Subscriber Unit SU250/210 PETE KREBILL 3/8/99

ALL READINGS ARE PEAK

F(MHz)	Level (dBuV)	AF (dB)	CL (dB)	AMP (dB)	FILTER (dB)	DIST (dB)	Total (dBuV/m)	Limit (dBuV/m)	Margin (dB)
LOW CHANNE	L 824.01MH	z							
1648V	78.3	26.4	2.52	-35.5	10	-10	71.72	82	-10.28
2472V	66	29.4	3.06	-35.5	1	-10	53.96	82	-28.04
3296V	56.88	29.9	3.96	-35.5	1	-10	46.24	82	-35.76
4120V	46.73	32.3	5.04	-35.5	1	-10	39.57	82	-42.43
4944NF	40.02	34.3	5.4	-35.5	1	-10	35.22	82	-46.78
5768NF	39.8	35.2	5.58	-35.5	1	-10	36.08	82	-45.92
6592NF	42.3	36	5.94	-35.5	1	-10	39.74	82	-42.26
7416NF	44.6	36.8	6.12	-35.5	1	-10	43.02	82	-38.98
8240NF	45.1	37.3	6.3	-35.5	1	-10	44.2	82	-37.8
MID CHANNEL	. 836.49MHZ								
1672V	79.65	26.4	2.52	-35.5	10	-10	73.07	82	-8.93
2508V	65.53	29.4	3.06	-35.5	1	-10	53.49	82	-28.51
3344V	56.95	29.9	3.96	-35.5	1	-10	46.31	82	-35.69
4180V	49.53	32.3	5.04	-35.5	1	-10	42.37	82	-39.63
5016NF	40	34.3	5.4	-35.5	1	-10	35.2	82	-46.8
5852NF	39.9	35.2	5.58	-35.5	1	-10	36.18	82	-45.82
6688NF	43.3	36	5.94	-35.5	1	-10	40.74	82	-41.26
7524NF	44.2	36.8	6.12	-35.5	1	-10	42.62	82	-39.38
8360NF	45.3	37.3	6.3	-35.5	1	-10	44.4	82	-37.6
HIGH CHANNE	EL 848.97MH	Z							
1696V	78.95	26.4	2.52	-35.5	10	-10	72.37	82	-9.63
2544V	69.02	29.4	3.06	-35.5	1	-10	56.98	82	-25.02
3392V	55.33	29.9	3.96	-35.5	1	-10	44.69	82	-37.31
4240V	50.26	32.3	5.04	-35.5	1	-10	43.1	82	-38.9
5088NF	40.02	34.3	5.4	-35.5	1	-10	35.22	82	-46.78
5936NF	39.9	35.2	5.58	-35.5	1	-10	36.18	82	-45.82
6784NF	42.6	36	5.94	-35.5	1	-10	40.04	82	-41.96
7632NF	44.6	36.8	6.12	-35.5	1	-10	43.02	82	-38.98
8480NF	45.2	37.3	6.3	-35.5	1	-10	44.3	82	-37.7
AF=ANTENNA	FACTOR			V=VERTIC	CAL		RBW & VB	W=1MHZ	

 AF=ANTENNA FACTOR
 V=VERTICAL

 CL=CABLE LOSS
 H=HORIZONTAL

 AMP=AMPLIFIER GAIN
 NF=NOISE FLOOR READING

 FILTER=FILTER INSERTION LOSS
 DIST=DISTANCE CORRECTION

 ALL FREQUENCIES WERE MEASURED IN VERTICAL
 AND HORIZONTAL, ONLY HIGHEST READING WAS REPORTED.

COMPLIANCE CERTIFICATION SERVICESDOCUMENT NO:CCSUP4031A1366 BORDEAUX DRIVE SUNNYVALE, CA 94089 USATEL:(408) 752-8166 FAX:(408) 752-8168This report shall not be reproduced except in full, without the written approval of CCS.

24

SECTION 2.995 FREQUENCY STABILITY

Tx Output (MHz)	limit(ppm)	<u>limit (Hz)</u>				
836.01	2.5	2090.025				
Frequency (MHz)	Temp(degreeC)	Delta (MHz)				
836.01025	-30	0.000250				
836.01013	-20	0.000130				
836.01013	-10	0.000130				
836.01013	0	0.000130				
836.01013	10	0.000130				
836.01013	20	0.000130				
836.01013	30	0.000130				
836.01013	40	0.000130				
836.01025	50	0.000250				
836.01	93VAC	0.000000	At AC input	t		
836.01013	110VAC	0.000130	"			
836.01013	138VAC	0.000130	"			
836.00963	10.2VDC	-0.000370	"			
836.01025	10.6VDC	0.000250	At battery i	nput		
836.00975	12.7VDC	-0.000250	"			
836.00975	14.6VDC	-0.000250	"			
836.00988	12.75VDC	-0.000120	At DC input	t jack		
836.00988	15VDC	-0.000120	"			
836.00975	17.25VDC	-0.000250	"			

SECTION 2.1091

The DIVA radios can be used with the 0 dBd built-in TX/RX antenna or an external antenna with a maximum gain of 9 dBi. The power output at the antenna port is 0.8 watts +20/-50% or 0.96 watts maximum (0.8 watts + 20%). The maximum antenna gain G is 9 dBi (7.94 numeric ratio) (for the 9 dBi antenna). The Transmitter Duty Cycle DF is 33% for TDMA (used by the SU-200).

The required MPE Limit is f/1500 mW/cm². At 824 MHz the MPE Limit is 0.549 mW/cm² (worst-case)

At 849 MHz the MPE Limit is 0.566 mW/cm^2. The Power density $S = E^2/3770 = 0.549 \text{ mW/cm}^2$ for the worstcase MPE. The electric field strength E = 45.5 V/m for the worst-case MPE. $E = (300000*P*G*DF)^{(1/2)} / d = 45.5 \text{ V/m}$ for the worst-case MPE, where P is in watts, G is a numeric ratio and d is in cm.

Using the values given above with a 9 dBi antenna and solving for d, using worst-case MPE, we obtain d = 19.1 cm (for the 9 dBi external antenna).

Note that the use of the built-in antenna results in d = 6.8 cm for the worst case MPE.

Please note that the unit is designed to be wall mounted near the ceiling and includes an RJ-11 jack to which a standard phone line is attached. Phone line extensions are typically wired through the home or business from this RJ-11 jack. Since generic third party telephone handsets are used, as supplied by the customer, there is no reason for the SU-250/SU-210 to be in close proximity to the user during normal usage.

Depending on the site requirements, either the built-in antenna is used or an externally mounted higher gain antenna (e.g., the 9 dBi antenna referenced before) is used. The external antenna must be located external to the building, usually on a mast attached to the roof or an external wall of the structure. A DIVA-supplied cable adapter (DIVA P/N 120-00003-01) and RF cable is used to connect the SU-250/SU-210 to the external antenna. Attached is a drawing of a typical installation using an external antenna. Please Note : When the external antenna is used, the built-in antenna is disabled.

The following wording is on the inside front cover of the user manual:

While operating this device, radio frequency radiation exposure limits (47 CFR 1.1310) may be exceeded at distances closer than 20 centimeters (8 inches) from the device antenna(s).

16. EXTERNAL I/O CABLE CONSTRUCTION DESCRIPTION

CABLE NO: 1		
I/O Port: SERIAL	Number of I/O ports of this type:1	
Number of Conductors:9	Connector Type:DB9	
Capture Type: SCREW-IN	Type of Cable used: UNSHIELDED	
Cable Connector Type: PLASTIC	Cable Length: 2M	
Bundled During Tests: NO	Data Traffic Generated: YES	
Remark: N/A		

CABLE NO: 2		
Number of Conductors 16	Connector Type:UDC data	
I/O Port: TEST PORT	Number of I/O ports of this type:	
Capture Type: push in	Type of Cable used: UN-SHIELDED	
Cable Connector Type: molded	Cable Length: 10cm	
Bundled During Tests: no	Data Traffic Generated: YES	
Remark: N/A		

CABLE NO: 3		
I/O Port: PHONE	Number of I/O ports of this type:1	
Number of Conductors: 2	Connector Type: RJ11	
Capture Type: SNAP-IN	Type of Cable used: UNSHIELDED	
Cable Connector Type: MOLDED	Cable Length:2M	
Bundled During Tests: NO	Data Traffic Generated: YES	
Remark: N/A		

CABLE NO: 4		
I/O Port: DC POWER	Number of I/O ports of this type:1	
Number of Conductors: 2	Connector Type: DC	
Capture Type: push in	Type of Cable used: UNSHIELDED	
Cable Connector Type: METAL	Cable Length:3M	
Bundled During Tests: NO	Data Traffic Generated: NO	
Remark: N/A		

CABLE NO: 5 & 6		
I/O Port: ANTENNA PORT	Number of I/O ports of this type:1	
Number of Conductors: 2	Connector Type: UDC to TNC	
Capture Type: push in	Type of Cable used: SHIELDED	
Cable Connector Type: plastic	Cable Length:10cm	
Bundled During Tests: NO	Data Traffic Generated: YES	
Remark: N/A		

CABLE NO: 7 & 8		
I/O Port: AC POWER	Number of I/O ports of this type:1	
Number of Conductors: 3	Connector Type: USA 110V TYPE	
Capture Type: PUSH-IN	Type of Cable used: UNSHIELDED	
Cable Connector Type: MOLDED	Cable Length:1.2M	
Bundled During Tests: NO	Data Traffic Generated: NO	
Remark: N/A		

17. TEST CONFIGURATION DIAGRAM

