

Nemko Test Report:	49822RUS1		
Applicant:	Communication Compor 89 Leuning Street Second Floor Hackensack, NJ, 07606 USA	nents, Inc.	
Equipment Under Test: (E.U.T.)	DAB-1819-125G2		
FCC ID:	NT3DAB1819125G2		
In Accordance With:	CFR 47, Part 24, Subpa Broadband PCS Repeat		
Tested By:	Nemko USA, Inc. 802 N. Kealy Lewisville, TX 75057-313	36	
TESTED BY:	and Ell	DATE:	18 June 2010
David Ligh	t, Senior Wireless Engineer		
APPROVED BY: Tom 1	Fidwell, Telecom Direct	_ DATE: _	27 July 2010
	Number of Pages: 39		

Table of Contents

Section 1.	Summary of Test Results	3
Section 2.	General Equipment Specification	5
Section 3.	RF Power Output	7
Section 4.	Occupied Bandwidth	8
Section 5.	Spurious Emissions at Antenna Terminals	13
Section 6.	Field Strength of Spurious	27
Section 7.	Test Equipment List	29
ANNEX A -	TEST DETAILS	30
ANNEX B -	TEST DIAGRAMS	36

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 49822RUS1

EQUIPMENT: DAB-1819-125G2

Section 1. Summary of Test Results

Manufacturer Communication Components, Inc.

Model No.: DAB-1819-125G2

Serial No.: None

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with CFR 47, Part 24, Subpart E.

\boxtimes	New Submission	Production Unit
	Class II Permissive Change	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

Nemko USA, Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety, for use by the company's employees only.

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Nemko USA, Inc. is a NVLAP accredited laboratory.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA, Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Summary Of Test Data

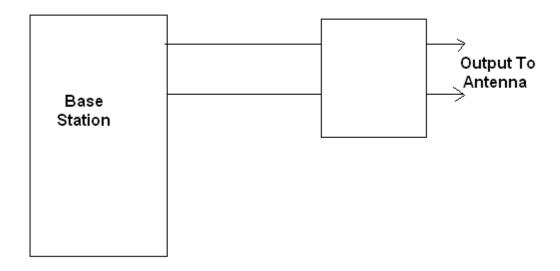
NAME OF TEST	PARA. NO.	SPEC.	RESULT
RF Power Output	24.232	100W	Complies ¹
Occupied Bandwidth	2.1049	Input/Output	Complies
Spurious Emissions at Antenna Terminals	24.238(a)	-13 dBm	Complies
Field Strength of Spurious Emissions	24.238(a)	-13 dBm E.I.R.P.	Complies
Frequency Stability	24.235		NA

Footnotes:

- (1) Although the amplifier marketing literature indicates 125 watts and the maximum rf power that can be obtained at the antenna port is 125 watts, the user manual warnings indicate that a maximum of 100 watts at the input to the antenna is allowed. The difference between 125 watts and 100 watts is 1 dB and the manufacturer provides 125 watts maximum rf output at the rf output connector of the amplifier so that the installer can adjust to 100 watts at the input to the antenna.
- (2) Modulation characteristics were not tested since the E.U.T. processes but does not produce a modulated waveform.

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 49822RUS1

EQUIPMENT: DAB-1819-125G2


Section 2. General Equipment Specification

Supply Voltage Input:	+29 to +34 Vdc
Frequency Bands: Downlink:	1930 to 1990 MHz
Frequency Bands: Uplink:	NA
Type of Modulation and Designator:	CDMA GSM NADC W-CDMA EDGE (F9W) (GXW) (DXW) (F9W) (G7W)
System Gain:	
Output Impedance:	50 ohms
RF Output (Rated): Uplink	125.0 W 51 dBm
RF Output (Rated): Downlink	125.0 W 51 dBm Power output needs to be lowered to +36 dBm at
	1930.2 and 1989.8 MHz (Band edges) to achieve compliance
Frequency Translation:	F1-F1 F1-F2 N/A □ □
Band Selection:	Software Duplexer Fullband

Description of EUT

The device is a base station amplifier operating in the PCS band utilizing GSM and GSM EDGE technology. Each input outputs 125 Watts single carrier only. The device is rated at 125 Watts per output.

System Diagram

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 49822RUS1

EQUIPMENT: **DAB-1819-125G2**

Section 3. RF Power Output

NAME OF TEST: RF Power Output PARA. NO.: 24.232

TESTED BY: David Light DATE: 17 June 2010

Test Results: Complies.

Measurement Data:

	Modulation Type	Per Channel Output Power (dBm)	Composite Output Power (dBm)
Uplink	GSM	NA	NA
Downlink	GSM	51	51
Uplink	GSM EDGE	NA	NA
Downlink	GSM EDGE	51	51

Settings: RBW/VBW = 300 kHz Peak detector

Equipment Used: 1036-1082-1055-1469-1026

Measurement Uncertainty: ___+/- 1.7 dB

Temperature: 22 °C

Relative Humidity: 35 %

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 49822RUS1

EQUIPMENT: **DAB-1819-125G2**

Section 4. Occupied Bandwidth

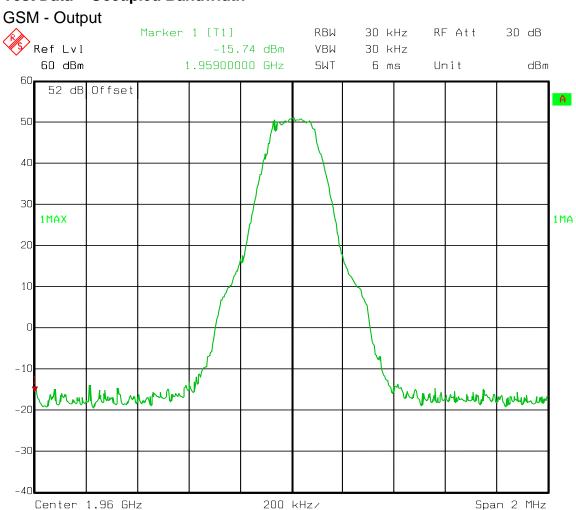
NAME OF TEST: Occupied Bandwidth PARA. NO.: 24.238

TESTED BY: David Light DATE: 17 June 2010

Test Results: Complies.

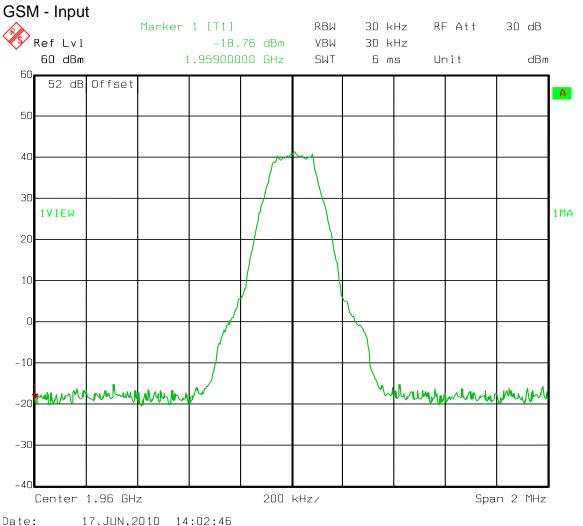
Test Data: See attached plot(s).

Equipment Used: 1036-1026-1082-1055-1469

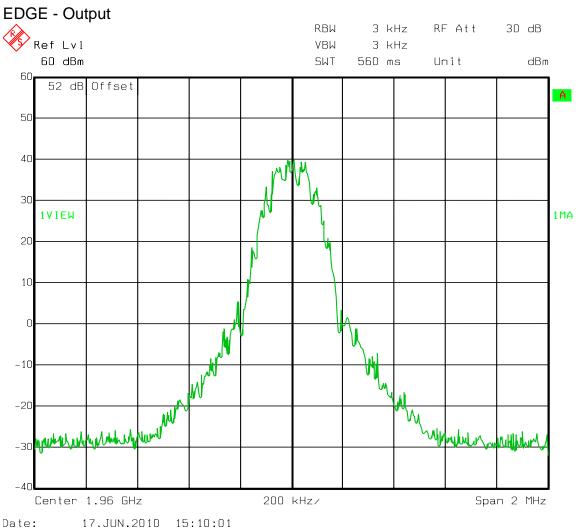

1036

Measurement Uncertainty: 1X10⁻⁷ ppm

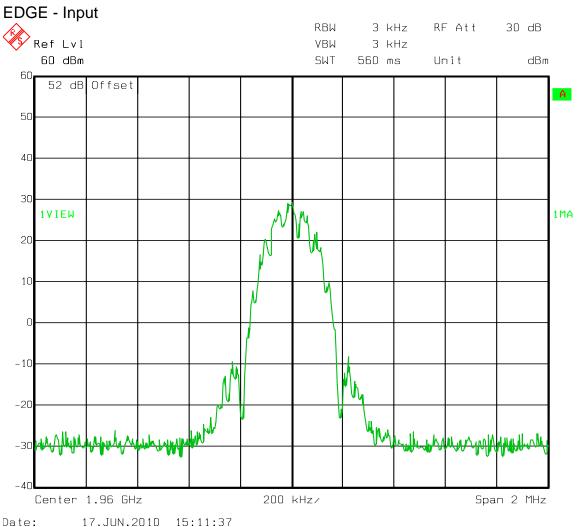
Temperature: 22 °C


Relative Humidity: 35 %

Test Data - Occupied Bandwidth



Date: 17.JUN.2010 14:00:59


Test Data - Occupied Bandwidth

Test Data – Occupied Bandwidth

Test Data – Occupied Bandwidth

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 49822RUS1

EQUIPMENT: **DAB-1819-125G2**

Section 5. Spurious Emissions at Antenna Terminals

NAME OF TEST: Spurious Emissions @ Antenna Terminals PARA. NO.: 24.238

TESTED BY: David Light DATE:17-18 June 2010

Test Results: Complies.

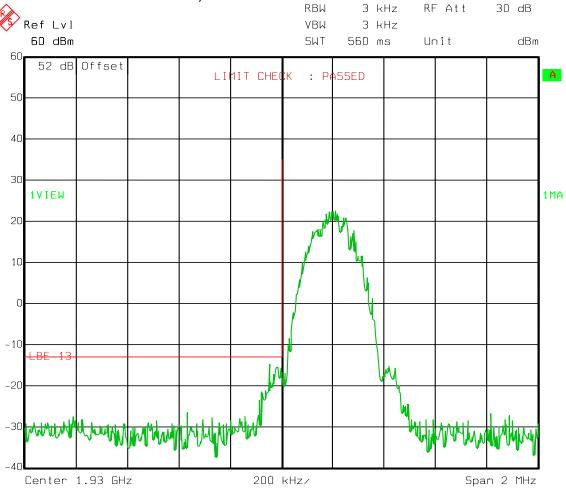
Test Data: See attached plot(s).

Equipment Used: 1026-1036-1082-1469-1054-1055-1058

Measurement Uncertainty: +/- 1.7 dB

Temperature: 22 °C

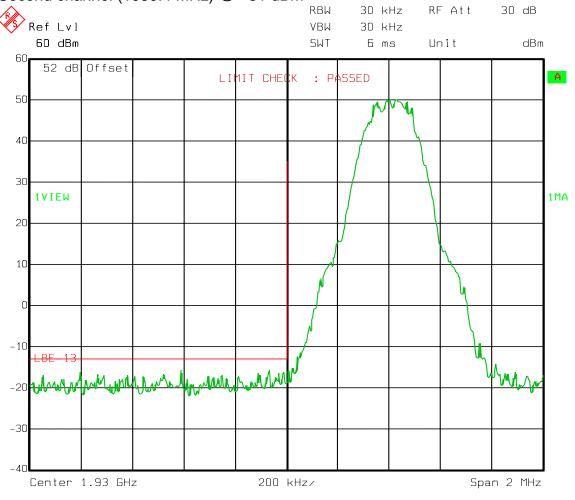
Relative Humidity: 35 %


Test Data – Spurious Emissions at Antenna Terminals

Lower Bandedge GSM

Date:

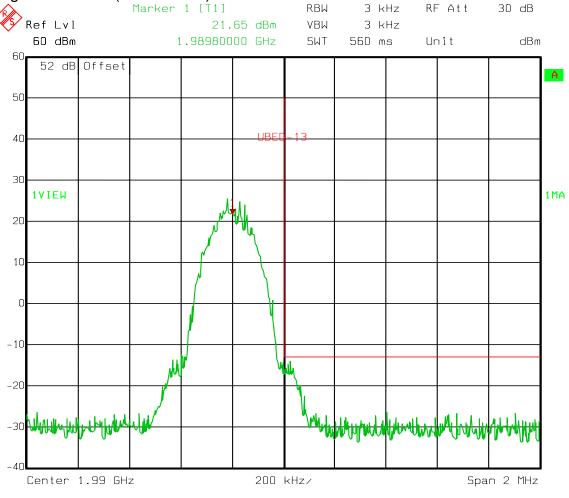
Lowest Channel 1930.2 MHz) @ +36 dBm


17.JUN.2010 13:58:35

Test Data – Spurious Emissions at Antenna Terminals

Lower Band Edge GSM

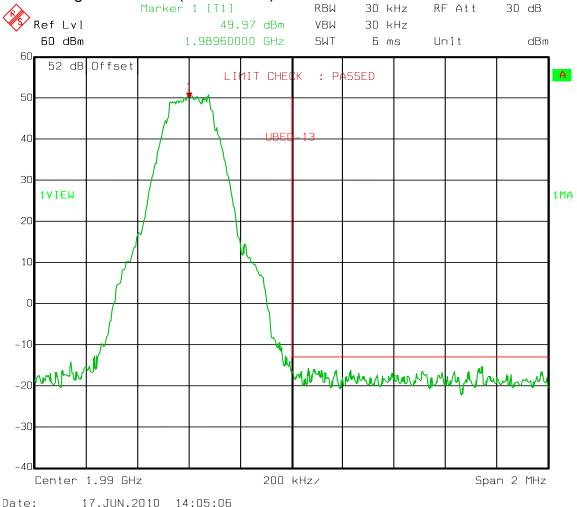
Second channel (1930.4 MHz) @ +51 dBm

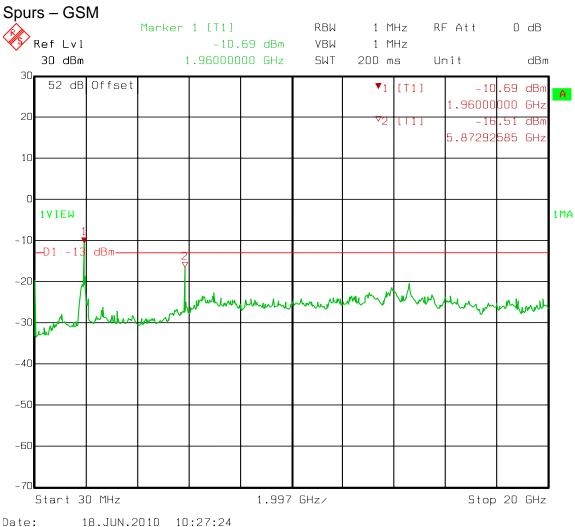


Date: 17.JUN.2010 13:59:59

Test Data – Spurious Emissions at Antenna Terminals

Upper Band Edge GSM


Highest channel (1989.8 MHz) @ +36 dBm


Test Data – Spurious Emissions at Antenna Terminals

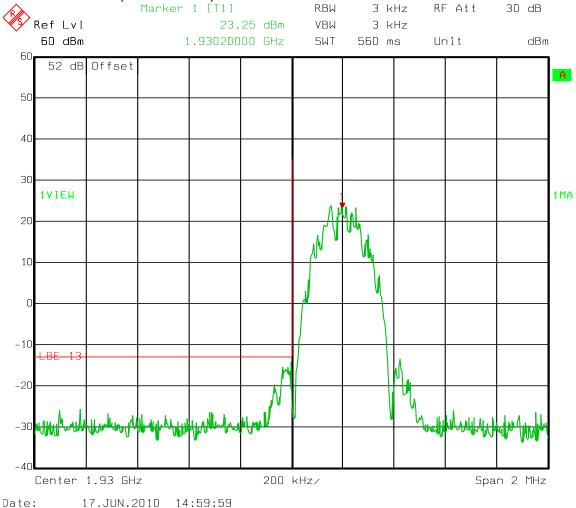
Upper Band Edge GSM

Second highest channel (1989.6 MHz) @ +51 dBm



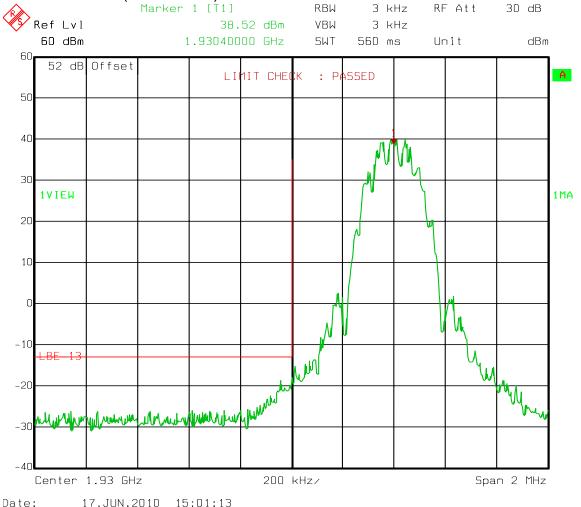
Test Data – Spurious Emissions at Antenna Terminals

Carrier filtered.


Test Data – Spurious Emissions at Antenna Terminals

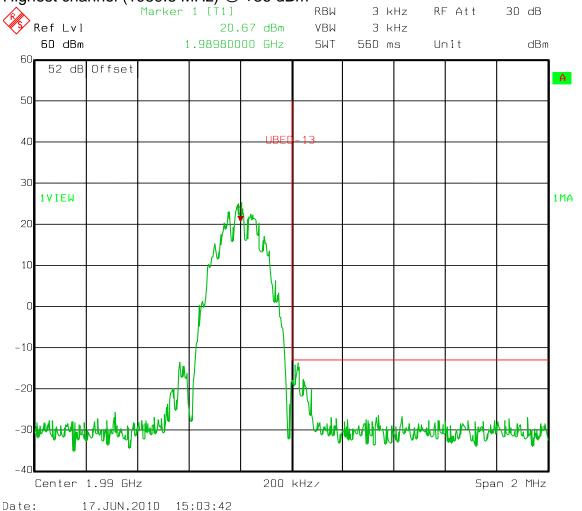
Test Data – Spurious Emissions at Antenna Terminals

Lower Band Edge EDGE


Lowest channel (1930.2 MHz) @ +36 dBm

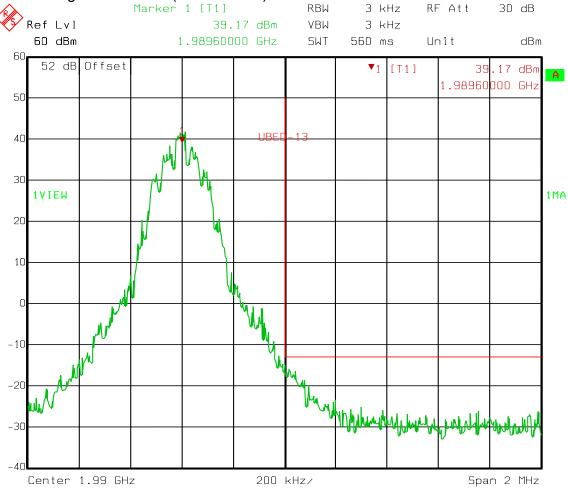
Test Data - Spurious Emissions at Antenna Terminals

Lower Band Edge EDGE


Second channel (1930.4 MHz) @ +51 dBm

Test Data – Spurious Emissions at Antenna Terminals

Upper Band Edge EDGE


Highest channel (1989.8 MHz) @ +36 dBm

Test Data – Spurious Emissions at Antenna Terminals

Upper Band Edge EDGE

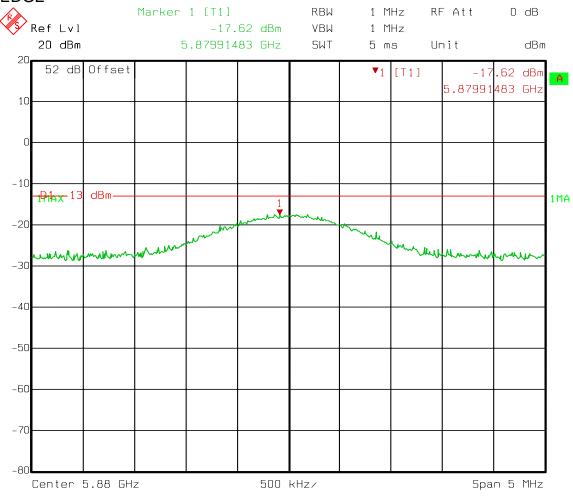
Second highest channel (1989.6 MHz) @ +51 dBm

Date: 18.JUN.2010 13:27:22

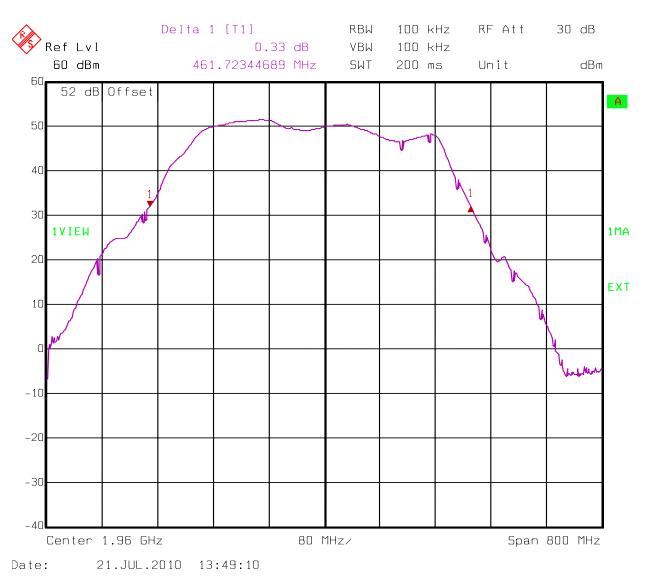
Test Data – Spurious Emissions at Antenna Terminals

Spurs Edge Marker 1 [T1] RBW RF Att 0 dB 1 MHz Ref Lvl VBW -4.68 dBm 1 MHz 20 dBm 1.96000000 GHz SWT dBm 200 ms Unit 52 dB Offset **▼**1 [T1] .68 dBm 1.96000<mark>000 GHz</mark> 10 [T1] 5.88000<mark>000 GHz</mark> -10 dBm--10/1_{1 E W}1 3 1MA -20 -30 -40 -50 -60 -70 -80 1.997 GHz/ Stop 20 GHz Start 30 MHz

Date: 18.JUN.2010 10:23:14


Carrier filtered

Test Data – Spurious Emissions at Antenna Terminals


Spurs EDGE

Date:

18.JUN.2010 10:24:09

Passband Response

This is the passband response of the amplifier.

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 49822RUS1

EQUIPMENT: **DAB-1819-125G2**

Section 6. Field Strength of Spurious

NAME OF TEST: Field Strength of Spurious Emissions PARA. NO.: 24.238

TESTED BY: David Light DATE: 17 June 2010

Test Results: Complies.

Test Data: See attached table.

Equipment Used: 1464-1484-1485-1016-791-993-1480

Measurement Uncertainty: +/-1.7 dB

Temperature: 22 °C

Relative Humidity: 35 %

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 49822RUS1

EQUIPMENT: DAB-1819-125G2

Test Data - Radiated Emissions

Frequency	Meter Reading	Substitution Level	re-Amp Gain	Substitution Antenna Gain	ERP	Limit	Margin	Polarity	Comments
(MHz)	(dBm)	(dBm)	(dB)	(dBd)	(dBm)	(dBm)	(dB)		
3920	-36.0	-26.5	33	8.0	-18.6	-13.0	-5.5500	V	
5880	-38.2	-29.7	31.9	8.4	-21.3	-13.0	-8.3300	V	
7840	-44.0	-35.3	32.9	9.0	-26.3	-13.0	-13.3400	V	
5880	-35.0	-30.3	31.9	8.4	-21.9	-13.0	-8.9300	Н	
7840	-48.0	-40.5	32.9	9.0	-31.5	-13.0	-18.5400	Н	
Notes:		'							

The spectrum was searched from 30 MHz to the 10th harmonic of the carrier. All emissions within -20 dB of the specification limit are reported.

Analyzer Settings: RBW/VBW = 1 MHzPeak detector

The EUT was tested at three meters in an anechoic chamber.

Section 7. Test Equipment List

Asset Tag	Description	Manufacturer	Model	Serial #	Last Cal	Next Cal
993	Antenna, Horn	A.H. Systems	SAS-200/571	162	09-Sep-2009	09-Sep-2011
1026	Frequency counter	Hewlett Packard	5350B	8232A01493	10-Jun-2010	10-Jun-2011
1036	Spectrum Analyzer	Rohde & Schwartz	FSEK30	830844/006	19-Jan-2009	19-Jan-2011
1054	Directional Coupler, Dual	Narda	3020A	34366	N/R	
1055	Directional Coupler, Dual	Narda	3022	73393	N/R	
1058	Directional Coupler, Dual	Hewlett Packard	11692D	1212A03366	N/R	
1082	Cable, 2m	Astrolab	32027-2- 29094-72TC		N/R	
1464	Spectrum Analyzer	Hewlett Packard	8563E	3551A04428	27-Feb-2009	27-Feb-2011
1469	Attenuator, 10 db, DC 18 GHz	MCL Inc.	BW-S10W2 10db-2WDC		N/R	
1480	Antenna, Bilog	Schaffner- Chase	CBL6111C	2572	18-Jan-2010	18-Jan-2011
1484	Cable	Storm	PR90-010-072		23-Jun-2009	23-Jun-2010
1485	Cable	Storm	PR90-010-216		23-Jun-2009	23-Jun-2010
791	PreAmp	Nemko, USA			08-Mar-2010	08-Mar-2011
1016	Preamplifier	Hewlett Packard	8449A	2749A00159	19-Jun-2010	19-Jun-2011

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 49822RUS1

EQUIPMENT: **DAB-1819-125G2**

ANNEX A - TEST DETAILS

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 49822RUS1

EQUIPMENT: DAB-1819-125G2

NAME OF TEST: RF Power Output PARA. NO.: 2.1046

Minimum Standard: Para. No.24.232. Base stations are limited to 1640 watts

peak E.I.R.P. with an antenna height up to 300 meters HAAT. In no case may the peak output power of a base

station transmitter exceed 100 watts.

Method Of Measurement:

Detachable Antenna:

The peak power at antenna terminals is measured using an in-line peak power meter or spectrum analyzer. Power output is measured with the maximum rated input level.

Integral Antenna:

The antenna substitution method is used to determine the equivalent radiated power at spurious frequencies. The spurious emissions are measured at a distance of 3 meters. The EUT is then replaced with a reference substitution antenna with a known gain referenced to an isotropic radiator. This antenna is fed with a signal at the spurious frequency. The level of the signal is adjusted to repeat the previously measured level. The resulting eirp is the signal level fed to the reference antenna corrected for gain referenced to an isotropic radiator.

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 49822RUS1

EQUIPMENT: DAB-1819-125G2

NAME OF TEST: Occupied Bandwidth PARA. NO.: 2.1049

Minimum Standard: Input/Output

Method Of Measurement:

<u>CDMA</u>

Spectrum analyzer settings: RBW=VBW=30 kHz Span: 5 MHz

Span: 5 MHz Sweep: Auto

GSM / EDGE

RBW=VBW= 3 kHz Span: 1 MHz Sweep: Auto

TDMA

RBW=VBW= 1 kHz Span: 1 MHz Sweep: Auto

W-CDMA

RBW=VBW= 100 kHz

Span: 10 MHz Sweep: Auto

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS

EQUIPMENT: **DAB-1819-125G2** PROJECT NO.: **49822RUS1**

NAME OF TEST: Spurious Emission at Antenna Terminals PARA. NO.: 24.238

Minimum Standard: Para. No.24.238(a). On any frequency outside a

licensee's frequency block, the power of any emission shall be attenuated below the transmitter power by at

least 43 + 10 log (P) dB.

Method Of Measurement:

Spectrum analyzer settings:

<u>CDMA</u> <u>GSM / EDGE</u>

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 30 kHz (< 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge)

 $VBW: \ge RBW$ $VBW: \ge RBW$ Sweep: Auto Sweep: Auto

Video Avg: 6 Sweeps Video Avg: Disabled

<u>TDMA</u> <u>W-CDMA</u>

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge) RBW: 100 kHz (< 1 MHz from Band Edge)

 $VBW: \ge RBW$ $VBW: \ge RBW$ Sweep: Auto Sweep: Auto

Video Avg: Disabled Video Avg: 6 Sweeps

To demonstrate compliance at band edges the frequency of the input signal is set to the lowest and highest assigned channel and the center frequency of the spectrum analyzer is set to the upper and lower edges of the appropriate frequency block.

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 49822RUS1

EQUIPMENT: DAB-1819-125G2

NAME OF TEST: Field Strength of Spurious Radiation PARA. NO.: 24.238

Minimum Standard: Para. No.24.238(a). On any frequency outside a

licensee's frequency block, the power of any emission shall be attenuated below the transmitter power by at

least 43 + 10 log (P) dB.

Method of Measurement TIA/EIA-603-1992

The antenna substitution method is used to determine the equivalent radiated power at spurious frequencies. The spurious emissions are measured at a distance of 3 meters. The EUT is then replaced with a reference substitution antenna with a known gain referenced to an isotropic radiator. This antenna is fed with a signal at the spurious frequency. The level of the signal is adjusted to repeat the previously measured level. The resulting eirp is the signal level fed to the reference antenna corrected for gain referenced to an isotropic radiator.

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 49822RUS1

EQUIPMENT: DAB-1819-125G2

NAME OF TEST: Frequency Stability PARA. NO.: 2.1055

Minimum Standard: Para. No. 24.235. The frequency stability shall be sufficient

to ensure that the fundamental emission stays within the

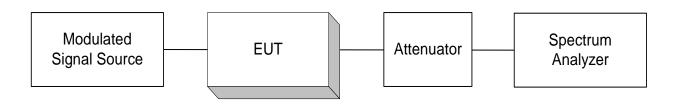
authorized frequency block.

Method Of Measurement:

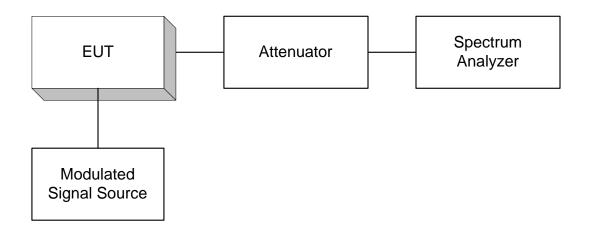
Frequency Stability With Voltage Variation

The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. The frequency counter and signal generator are phase locked with the same 10 MHz reference frequency by connecting the 10 MHz ref. out of the counter to the 10 MHz ref, in of the signal generator. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

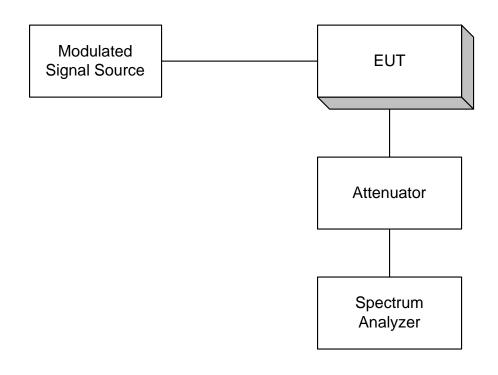
Frequency Stability With Temperature Variation

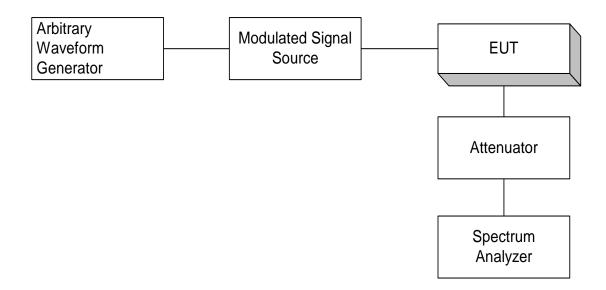

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

CFR 47, PART 24, SUBPART E
BROADBAND PCS REPEATERS
PROJECT NO.: 49822RUS1

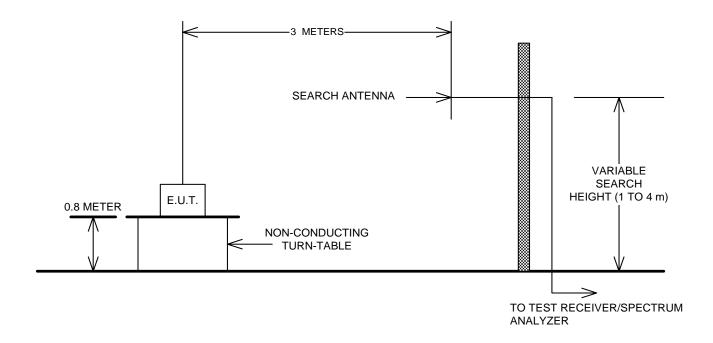

EQUIPMENT: **DAB-1819-125G2**

ANNEX B - TEST DIAGRAMS

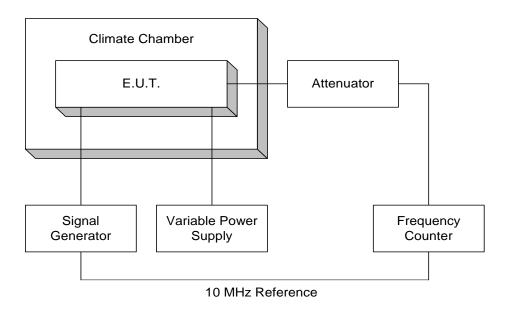

Para. No. 2.985 - R.F. Power Output



Para. No. 2.989 - Occupied Bandwidth



Para. No. 2.991 Spurious Emissions at Antenna Terminals



Para. No. 2.993 - Field Strength of Spurious Radiation

Para. No. 2.995 - Frequency Stability

