### FCC 15.247 & 15.249 CERTIFICATION APPLICATION FOR

#### **WiData Corporation**

#### **Tracking System Tag**

Model: TFF-1000-00AA

#### FCC ID: NSQTFF-1000-00AA

#### Job # J99002777 Report # J99002777A

Number of Pages: 17pp. + Supporting Data and Documents

#### Date of Report: March 1, 1999

This report shall not be reproduced except in full, without written approval of Intertek Testing Services.

This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government.

The results contained in this report were derived from measurements performed on the identified test samples. Any implied performance of other samples on this report is dependent on the representative of the samples tested.

NVLAP

k:\..\fcc\15247ds.cer

FCC Part 15 DSSS Cert, Ver 8/98

WiData Corporation, Tracking System Tag FCC ID: NSQTFF-1000-00AA Date of Test: February 9-11, 1999

#### **Table of Contents**

| 1.0 | <u>Sumn</u> | nary of Tests                                                             | 1  |
|-----|-------------|---------------------------------------------------------------------------|----|
| 2.0 | Gener       | ral Description                                                           | 2  |
|     | 2.1         | Product Description                                                       |    |
|     | 2.2         | Related Submittal(s) Grants                                               | 2  |
|     | 2.3         | Test Methodology                                                          | 3  |
|     | 2.4         | Test Facility                                                             |    |
| 3.0 | Syster      | m Test Configuration                                                      | 4  |
|     | 3.1         | Support Equipment                                                         |    |
|     | 3.2         | Block Diagram of Test Setup                                               |    |
|     | 3.3         | Justification                                                             |    |
|     | 3.4         | Software Exercise Program                                                 |    |
|     | 3.5         | Mode of Operation During Test                                             |    |
|     | 3.6         | Modifications Required for Compliance                                     | 5  |
|     | 3.7         | Additions, deviations and exclusions from standards                       |    |
| 4.0 | Measu       | urement Results                                                           | 6  |
|     | 4.1         | Maximum Conducted Output Power at Antenna Terminals                       |    |
|     | 4.2         | Minimum 6 dB RF Bandwidth                                                 |    |
|     | 4.3         | Maximum Power Density Reading                                             | 8  |
|     | 4.4         | Out of Band Conducted Emissions                                           | 9  |
|     | 4.5         | Out of Band Radiated Emissions                                            | 12 |
|     | 4.6         | Transmitter Radiated Emissions in Restricted Bands                        | 12 |
|     | 4.7         | AC Line Conducted Emission                                                | 13 |
|     | 4.10        | Radiated Emissions from Digital Section of Transceiver (Transmitter)      | 14 |
|     | 4.11        | Radiated Emissions from Receiver Section of Transceiver (L.O. Radiation), | 14 |
|     | 4.12        | Processing Gain Measurements                                              | 15 |
|     | 4.13        | Transmitter Duty Cycle Calculation and Measurements                       | 16 |
| 6.0 | List o      | <u>f Exhibits</u>                                                         | 17 |

Date of Test: February 9-11, 1999

#### 1.0 Summary of Tests

#### WiData Corporation - Model No.: TFF-1000-00AA FCC ID: NSQTFF-1000-00AA

| TEST                                   | REFERENCE           | RESULTS               |  |
|----------------------------------------|---------------------|-----------------------|--|
| Max. Output power                      | 15.247(b)           | Pass                  |  |
| 6 dB Bandwidth                         | 15.247(a)(2)        | Pass                  |  |
| Max. Power Density                     | 15.247(d)           | Pass                  |  |
| Out of Band Antenna Conducted Emission | 15.247(c)           | N/A                   |  |
| Out of Band Radiated Emission          | 15.247(c), 15.249   | Pass                  |  |
| Radiated Emission in Restricted Bands  | 15.35(b)(c), 15.249 | Pass                  |  |
| AC Conducted Emission                  | 15.207              | Pass                  |  |
| Radiated Emission from Digital Part    | 15.109              | Pass                  |  |
| Radiated Emission from Receiver L.O.   | 15.109              | Not Applicable        |  |
| Processing Gain Measurements           | 15.247(e)           | Provided by applicant |  |
| Antenna Requirement                    | 15.203              | Provided by applicant |  |

Test Engineer:

Xi-Ming Yang

Date:

EMC Site Manager:

David Chernomordik

Date: \_\_\_\_\_

Date of Test: February 9-11, 1999

#### 2.0 General Description

2.1 Product Description

A production version of the sample was received on February 9, 1999 in good condition.

| Applicant                                         | WiData Corporation                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Trade Name & Model No.                            | WiData Corporation, TFF-1000-00AA                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| FCC Identifier                                    | NSQTFF-1000-00AA                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Use of Product                                    | Tracking System Tag                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Manufacturer & Model of<br>Spread Spectrum Module | WiData Corporation                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Type of Transmission                              | Direct Sequence                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Rated RF Output (mW)                              | 1                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Frequency Range (MHz)                             | 2441.8 for DSSS, 2446.5 for OOC                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Number of Channel(s)                              | 1                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Antenna(s) & Gain, dBi                            | 2.1                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Processing Gain<br>Measurements                   | <ul> <li>[] Will be provided to ITS for submission with the application</li> <li>[X] Will be provided directly to the FCC reviewing engineer by the client or manufacturer of the spread spectrum module</li> </ul>                                                                                                                                                             |  |  |  |  |  |
| Antenna Requirement                               | <ul> <li>[X] The EUT uses a permanently connected antenna.</li> <li>[] The antenna is affixed to the EUT using a unique connector which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector.</li> <li>[] The EUT requires professional installation (attach supporting documentation if using this option).</li> </ul> |  |  |  |  |  |
| Manufacturer name & address                       | WiData Corporation<br>1259 Oakmead Parkway<br>Sunnyvale, California 94086                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |

#### **Overview of 2.4 GHz Tracking System**

#### 2.2 Related Submittal(s) Grants

None.

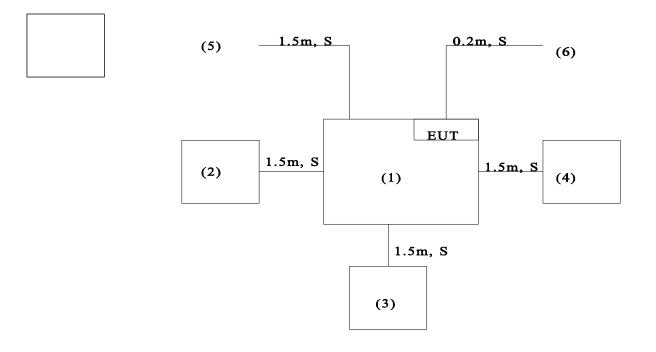
Date of Test: February 9-11, 1999

#### 2.3 Test Methodology

Both AC mains line-conducted and radiated emissions measurements were performed according to the procedures in ANSI C63.4 (1992). Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the **"Data Sheet"** of this Application. All other measurements were made in accordance with the procedures in part 2 of CFR 47.

#### 2.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is site . This test facility and site measurement data have been fully placed on file with the FCC and NVLAP accredited.


Date of Test: February 9-11, 1999

#### 3.0 System Test Configuration

#### 3.1 Support Equipment and description

| Item # | Description                 | Model No.         | Serial No.    | FCC ID       |  |
|--------|-----------------------------|-------------------|---------------|--------------|--|
| 1      | Notebook Laptop<br>Computer | 6100T             | N6SD818101718 | L4PK6000T200 |  |
| 2      | HP Printer                  | 2225C+ 2921S45711 |               | DSI6XU2225   |  |
| 3      | Compaq Keyboard             | KPQ-E99AC         | 160648-101DOM | EW41CPQ2479A |  |
| 4      | Dell Mmonitor               | D1428-HS          | 02922CV22495  | GWGPM04E1X   |  |
| 5      | Datatronics Modem           | 1200CK            | 07-247336     | E2050V1200CK |  |
| 6      | Percon RF Antenna           | 8912-0057-00      | -             | -            |  |

#### 3.2 Block Diagram of Test Setup



| * = EUT                                | $\mathbf{S} = $ Shielded;           | $\mathbf{F} = \mathbf{W}$ ith Ferrite |
|----------------------------------------|-------------------------------------|---------------------------------------|
| -L01                                   | S – Sillelueu,                      | $\mathbf{r} = \mathbf{w}$ in remue    |
| <b>**</b> = No ferrites on video cable | $\mathbf{U} = \mathbf{U}$ nshielded |                                       |

WiData Corporation, Tracking System Tag FCC ID: NSQTFF-1000-00AA Date of Test: February 9-11, 1999

#### 3.3 Justification

For emission testing, the equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst case emissions.

For radiated emission measurements, the EUT is attached to a cardboard box (if necessary) and placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). The EUT is wired to transmit full power without modulation.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Detector function is in peak mode. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

3.4 Software Exercise Program

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. For emissions testing, the units were setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing.

3.5 Mode of Operation During Test

Transmitting and receiving modes.

3.6 Modifications Required for Compliance

The following modifications were installed during compliance testing in order to bring the product into compliance (Please note that this list does not include changes made specifically by WiData Corporation prior to compliance testing):

No modifications were installed by Intertek Testing Services.

3.7 Additions, deviations and exclusions from standards

No additions, deviations or exclusion have been made from standard.

Date of Test: February 9-11, 1999

#### 4.0 Measurement Results

- 4.1 Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b):
- [X] The antenna port of the EUT was connected to the input of a power meter. Power was read directly and cable loss correction was added to the reading to obtain power at the EUT antenna terminals.
- [] The antenna port of the EUT was connected to the input of a spectrum analyzer. The analyzer was set for maximun RES BW and power was read directly in dBm. External attenuation and cable loss were compensated for using the OFFSET function of the analyzer.

For antennas with gains of 6 dBi or less, maximum allowed transmitter output is 1 watt (+30 dBm).

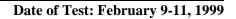
For antennas with gains greater than 6 dBi, transmitter output level must be decreased by an amount equal to (GAIN - 6) dBm.

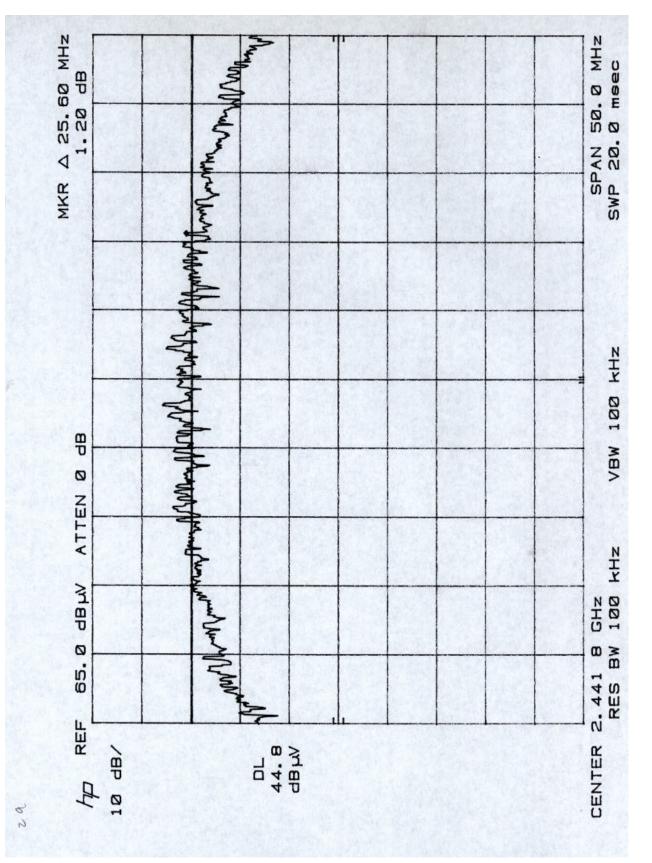
| Max. antenna gain = 2.1 dBi       |                      |                 |  |  |  |  |  |
|-----------------------------------|----------------------|-----------------|--|--|--|--|--|
| Frequency (MHz)                   | Output in dBm        | Output in mWatt |  |  |  |  |  |
| Mid Ch (one channel only)         | -0.6                 | 0.9             |  |  |  |  |  |
| Cable loss: <u>0</u> dB           | External Attenuation | n: <u>0</u> dB  |  |  |  |  |  |
| Cable loss, external attenuation: | [] included in OFFS  | SET function    |  |  |  |  |  |

[X]added to SA raw reading

EUT Transmit Antenna Gain(dBi) + dBm max. output level = 1.6dBm (36 dBm or less)

Date of Test: February 9-11, 1999


#### 4.2 Minimum 6 dB RF Bandwidth, FCC Rule 15.247(a)(2):


The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RES BW was set to 100 kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A PEAK output reading was taken, a DISPLAY line was drawn 6 dB lower than PEAK level. The 6 dB bandwidth was determined from where the channel output spectrum intersected the display line.

| Frequency (MHz) | Max. 6 dB Bandwidth (kHz) |
|-----------------|---------------------------|
| 2441.75         | 25,600                    |

Refer to the following plots for 6 dB bandwidth sharp:

Plot 2a: 6 dB RF Bandwidth





Date of Test: February 9-11, 1999

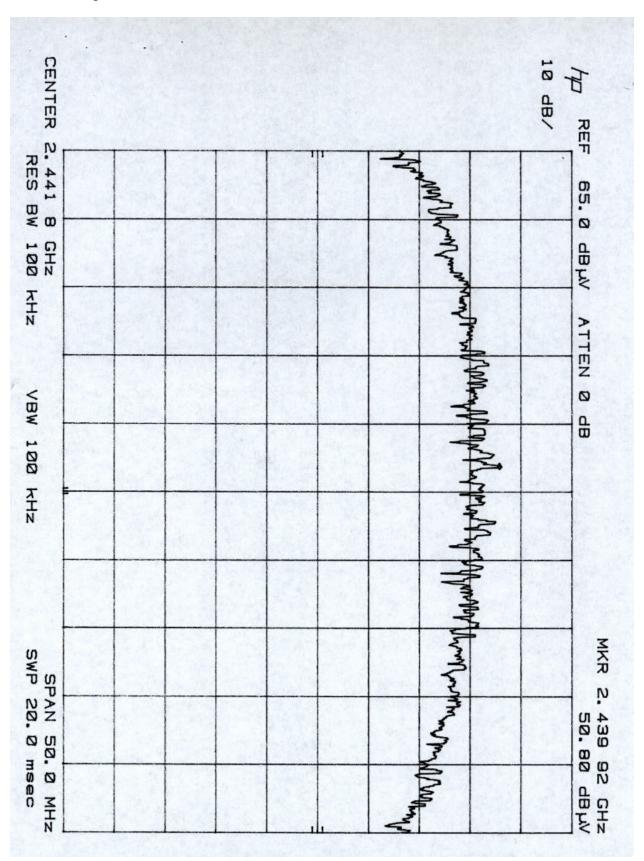
4.3 Maximum Power Density Reading, FCC Rule 15.247(d):

The spectrum analyzer RES BW was set to 3 kHz. The START and STOP frequencies were set to the band edges of the maximum output passband. If there is no clear maximum amplitude in any given portion of the band, it may be necessary to make measurements at a number of bands defined by several START and STOP frequency pairs. The specification calls for a 1 second interval at each 3 kHz bandwidth; total SWEEP TIME is calculated as follows:

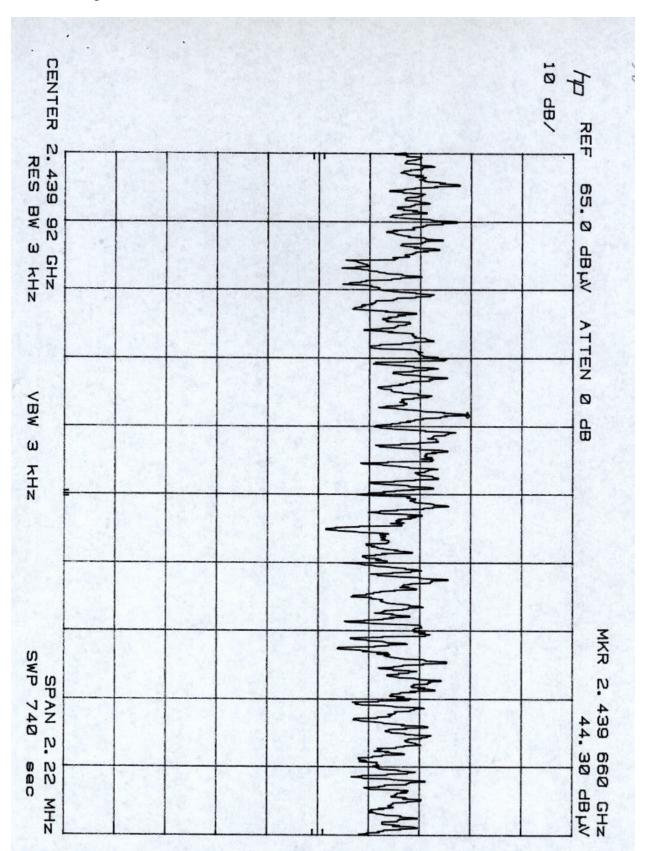
SWEEP TIME (SEC) = (Fstop, kHz - Fstart, kHz)/3 kHz

Antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated for with the analyzer OFFSET function.

| Frequency (MHz) | Power Density (dBm) |
|-----------------|---------------------|
| 2439.7          | -20.9               |


Frequency Span = 2.22 MHz

Sweep Time = Frequency Span/3 kHz = 740 seconds


Refer to the following plot for power density data:

Plot 3a-3b: Power Density

Date of Test: February 9-11, 1999



Date of Test: February 9-11, 1999



WiData Corporation, Tracking System Tag FCC ID: NSQTFF-1000-00AA Date of Test: February 9-11, 1999

# **ITS** Intertek Testing Services

Company:WiDATA Wireless Resource ManagementProject #:J99002777Model:TFF-1000-00AA (DSS)Engineer:Xi-Ming YangDate of test:Febuary 11, 1999

#### FCC15.247 Radiated Emissions

| Frequency | Antenna<br>Polarity | Reading | Antenna<br>Factor | Cable<br>Loss | Pre-amp | Distance<br>Factor | Duty<br>Cycle | Corrected<br>Reading | Limit    | Margin |  |
|-----------|---------------------|---------|-------------------|---------------|---------|--------------------|---------------|----------------------|----------|--------|--|
| MHz       | H/V                 | dB(uV)  | dB(1/m)           | dB            | dB      | dB                 | dB            | dB(uV/m)             | dB(uV/m) | dB     |  |
| 2441.8    | v                   | 59.1    | 27.9              | 2.1           | 0.0     | 0.0                | -20.0         | 69.1*                |          |        |  |
| 2441.8    | v                   | 52.0    | 27.9              | 2.1           | 0.0     | 0.0                | -20.0         | 62.0                 |          |        |  |
| 2400.0    | v                   |         |                   |               |         |                    |               | #40.2*               | 74.0     | -33.8  |  |
| 2400.0    | v                   |         |                   |               |         |                    |               | #33.4                | 54.0     | -20.6  |  |
| 2483.5    | v                   |         |                   |               |         |                    |               | *41.4*               | 74.0     | -32.6  |  |
| 2483.5    | v                   |         |                   |               |         |                    |               | ^34.3                | 54.0     | -19.7  |  |
| 4883.5    | v                   | 41.8    | 32.5              | 3.5           | -28.1   | 0.0                | -20.0         | 29.7*                | 74.0     | -44.3  |  |
| 4883.5    | v                   | 39.6    | 32.5              | 3.5           | -28.1   | 0.0                | -20.0         | 27.5                 | 54.0     | -26.5  |  |
| 7325.2    | v                   | 39.9    | 36.9              | 4.5           | -28.0   | 0.0                | -20.0         | 33.3*                | 74.0     | -40.7  |  |
| 7325.2    | v                   | 28.5    | 36.9              | 4.5           | -28.0   | 0.0                | -20.0         | 21.9                 | 54.0     | -32.1  |  |
| 12208.7   | v                   | 42.7    | 39.1              | 5.7           | -39.1   | 0.0                | -20.0         | 28.4*                | 74.0     | -45.6  |  |
| 12208.7   | v                   | 34.0    | 39.1              | 5.7           | -39.1   | 0.0                | -20.0         | 19.7                 | 54.0     | -34.3  |  |
| 19534.0   | v                   | 40.0    | 40.3              | 7.5           | -23.3   | -9.5               | -20.0         | 35.0*                | 74.0     | -39.0  |  |
| 19534.0   | v                   | 32.0    | 40.3              | 7.5           | -23.3   | -9.5               | -20.0         | 27.0                 | 54.0     | -27.0  |  |
| 21975.7   | v                   | 41.0    | 40.3              | 9.7           | -24.2   | -9.5               | -20.0         | 37.3*                | 74.0     | -36.7  |  |
| 21975.7   | v                   | 31.0    | 40.3              | 9.7           | -24.2   | -9.5               | -20.0         | 27.3                 | 54.0     | -26.7  |  |
|           |                     |         |                   |               |         |                    |               |                      |          |        |  |

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

3. Readings with \* are peak-readings.

4. Reading with # is calculated from fundamental minus 28.6 dB (from plot 4a5).

5. Reading with ^ is calculated from fundamental minus 27.7 dB (from plot 4a6).

12

6. Duty cycle see plot C

WiData Corporation, Tracking System Tag FCC ID: NSQTFF-1000-00AA Date of Test: February 9-11, 1999

4.4 Out of Band Conducted Emissions, FCC Rule 15.247(c), 15.249:

In any 100 kHz bandwidth outside the EUT passband, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20 dB below that of the maximum in-band 100 kHz emission, or else shall meet the general limits for radiated emissions at frequencies outside the passband, whichever results in lower attenuation.

All other types of emissions from the EUT shall meet the general limits for radiated frequencies outside the passband.

[X] Not required

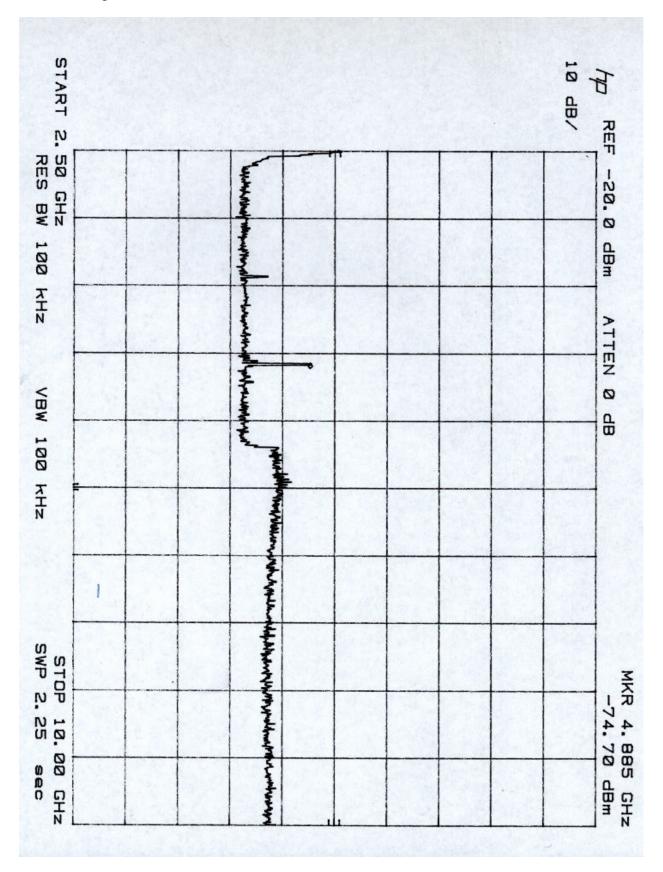
[ ] See attached data sheet

WiData Corporation, Tracking System Tag FCC ID: NSQTFF-1000-00AA Date of Test: February 9-11, 1999

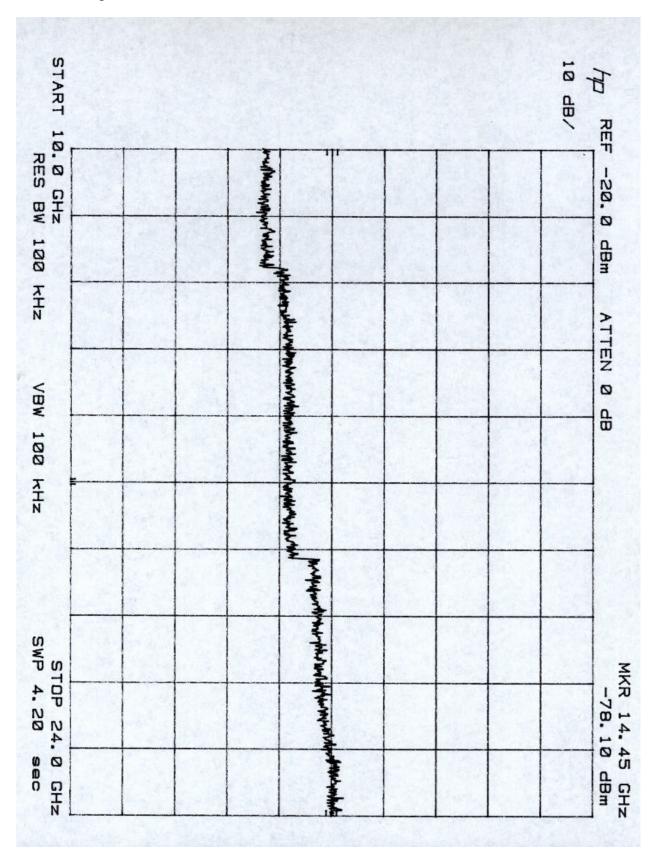
4.5 Out of Band Radiated Emissions ( for emissions in 4. above that are less than 26 dB below carrier), FCC Rule 15.247(c), 15.249:

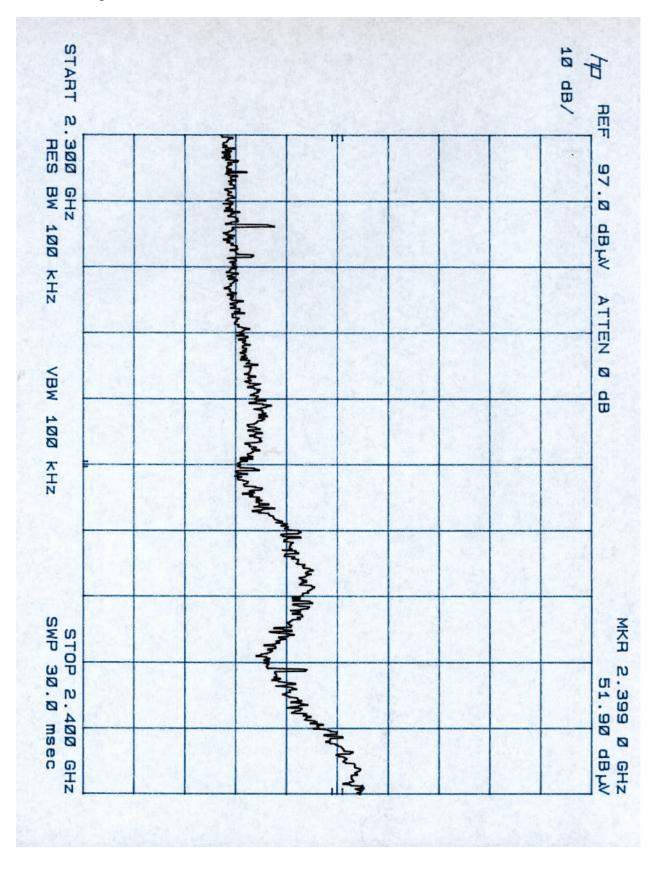
For out of band emissions that are close to or that exceed the 20 dB attenuation requirement described in the specification, radiated measurements were performed at a 3 m separation distance to determine whether these emissions complied with the general radiated emission requirement.

- [] Not required
- [X] See attached data sheet

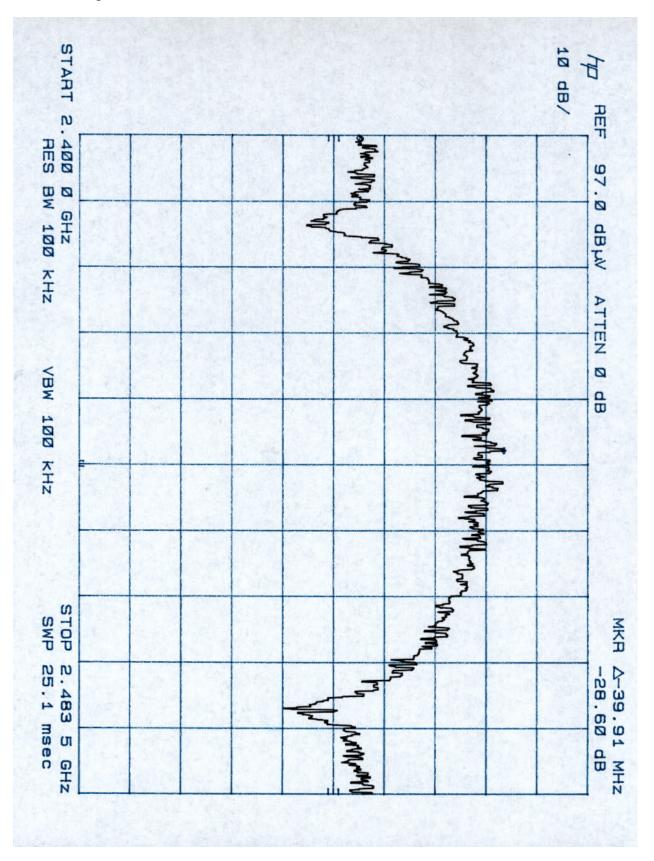

Date of Test: February 9-11, 1999

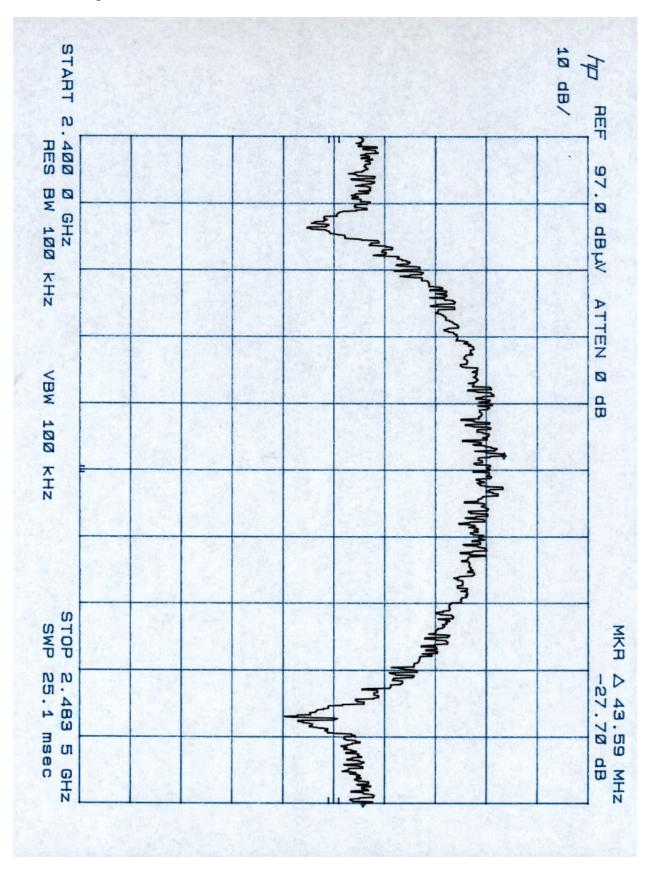
#### Out of Band Radiated Emission Per FCC Rule Part 15.247:

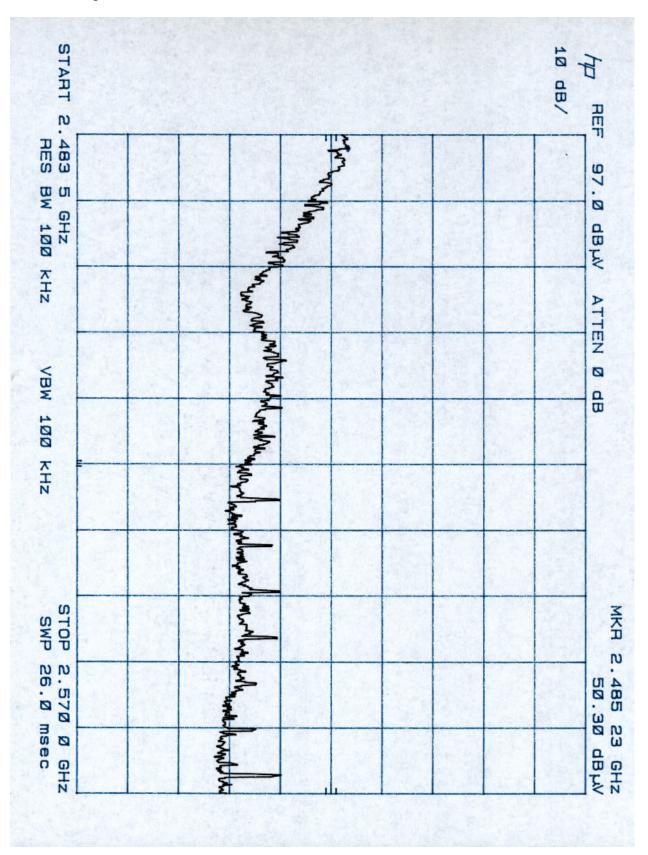

| Plot Number | Plot Description                                                            |
|-------------|-----------------------------------------------------------------------------|
| 4a.1        | Out of Band Radiated Emission at close distance, 1 Ghz - 2.5 GHz            |
| 4a.2        | Out of Band Radiated Emission at close distance, 2.5 Ghz - 10 GHz           |
| 4a.3        | Out of Band Radiated Emission at close distance, 10 Ghz - 24 GHz            |
| 4a.4        | Out of Band Radiated Emission at 3m distance, 2.3 Ghz - 2.4 GHz             |
| 4a.5        | In Band Radiated Emission at 3m, 28.6 db attenuation at band edge 2.4 GHz   |
| 4a.6        | In Band Radiated Emission at 3m, 27.7 dB attenuation at band edge 2.483 GHz |
| 4a.7        | Out of Band Radiated Emission at 3m, 2.4835 Ghz - 2.57 GHz                  |


Date of Test: February 9-11, 1999

START 1.00 (RES 10 dB/ H REF -20. GHZ 0 100 dBm KHZ A FILMAN ATTEN 0 VBW dB 100 ~~~~~~ KHZ オントーー And a service and a service of the s STOP 2.50 I SWP 450 msec MKR -52.10 ∆-486 dB MHZ GHZ



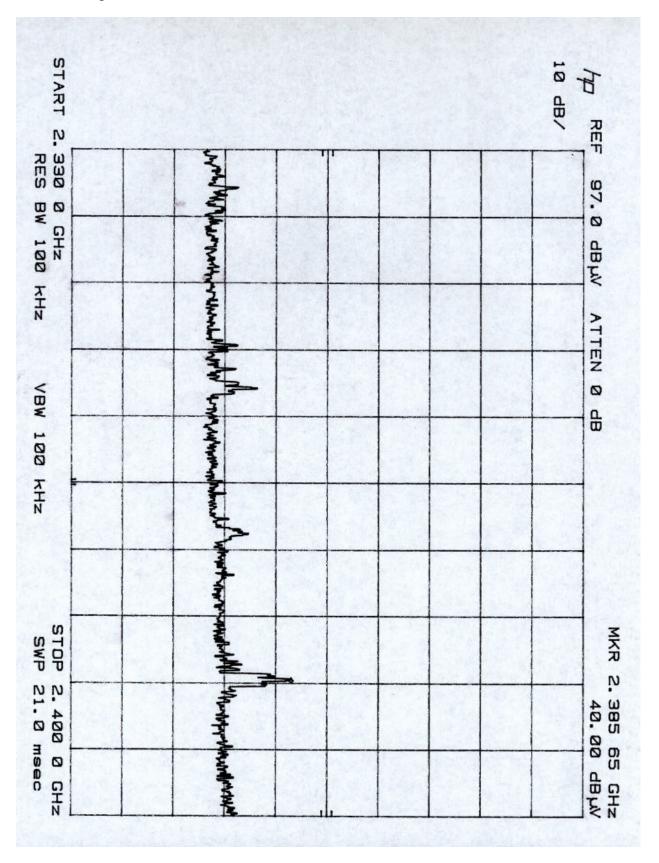


Date of Test: February 9-11, 1999

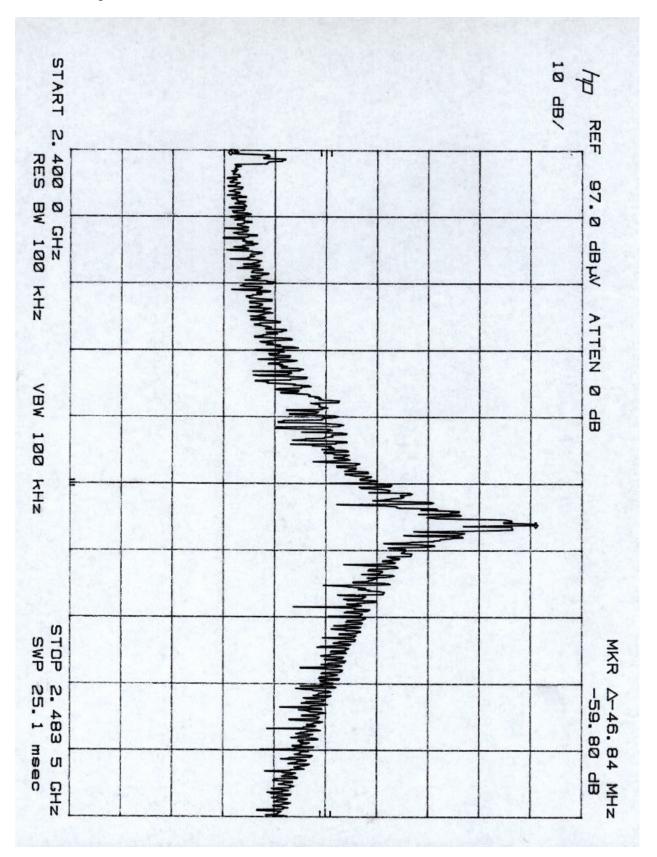


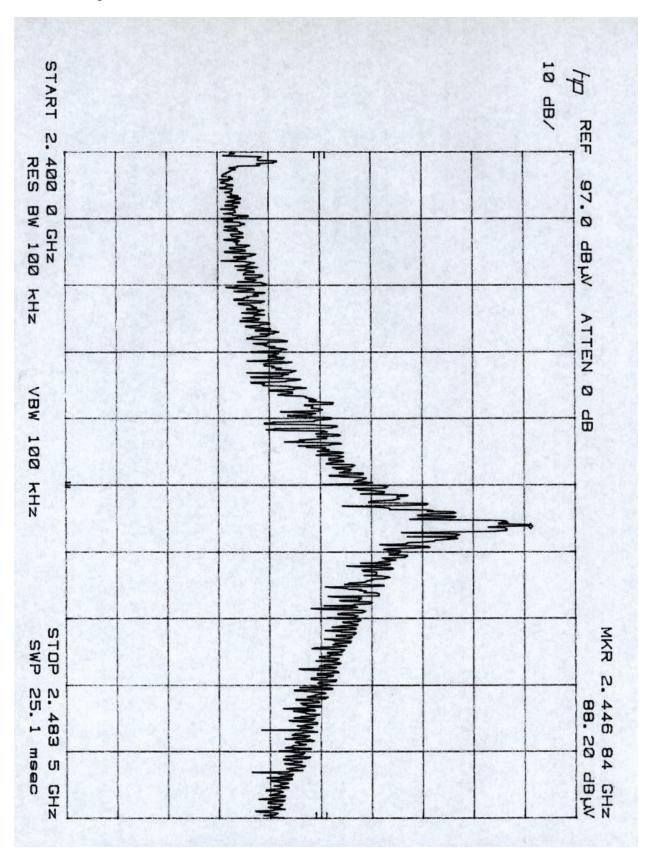



Date of Test: February 9-11, 1999

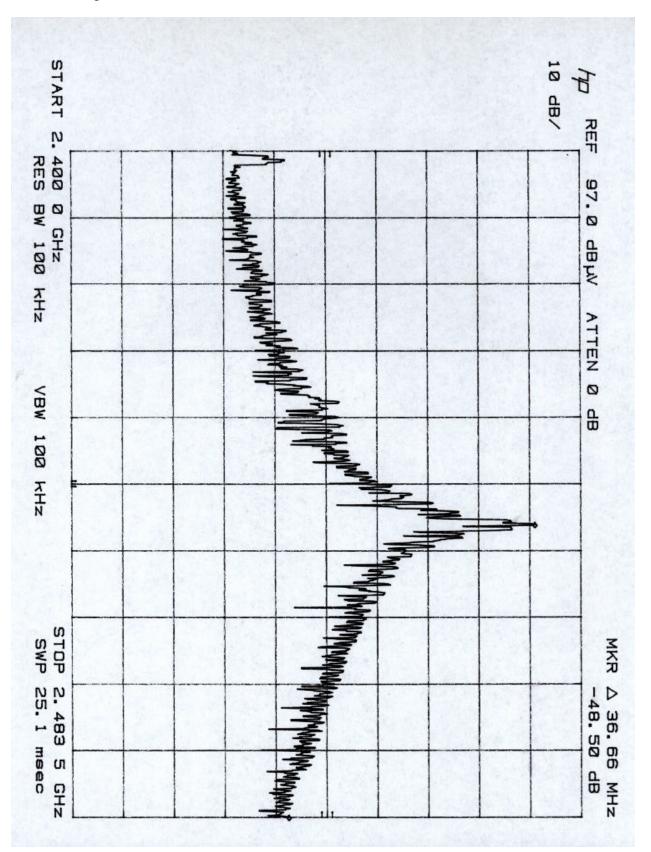


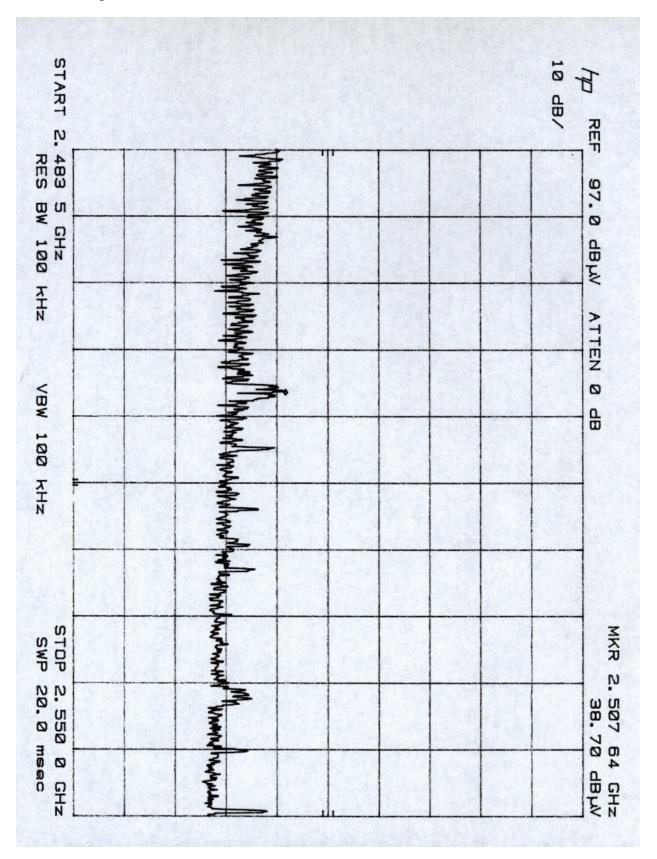


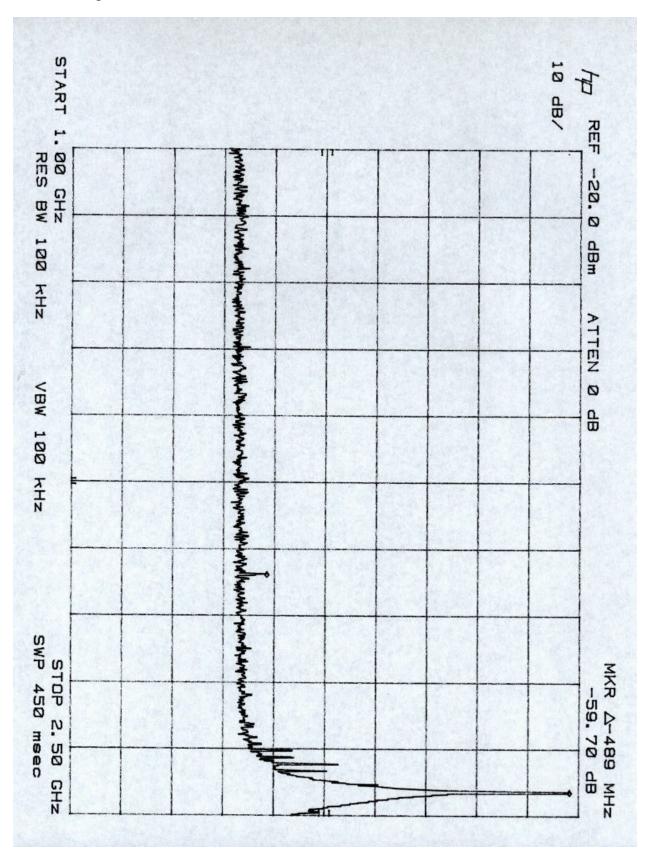



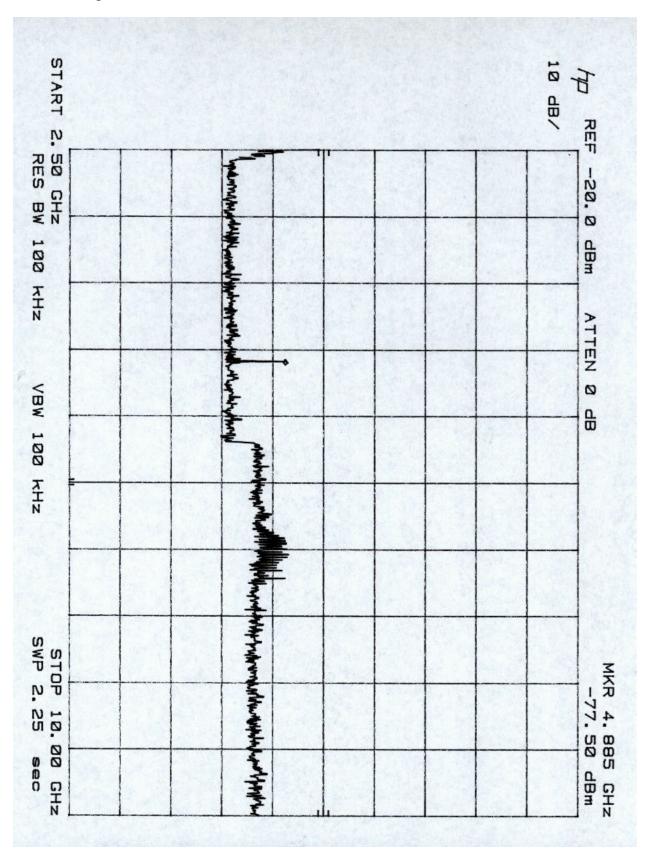


Date of Test: February 9-11, 1999

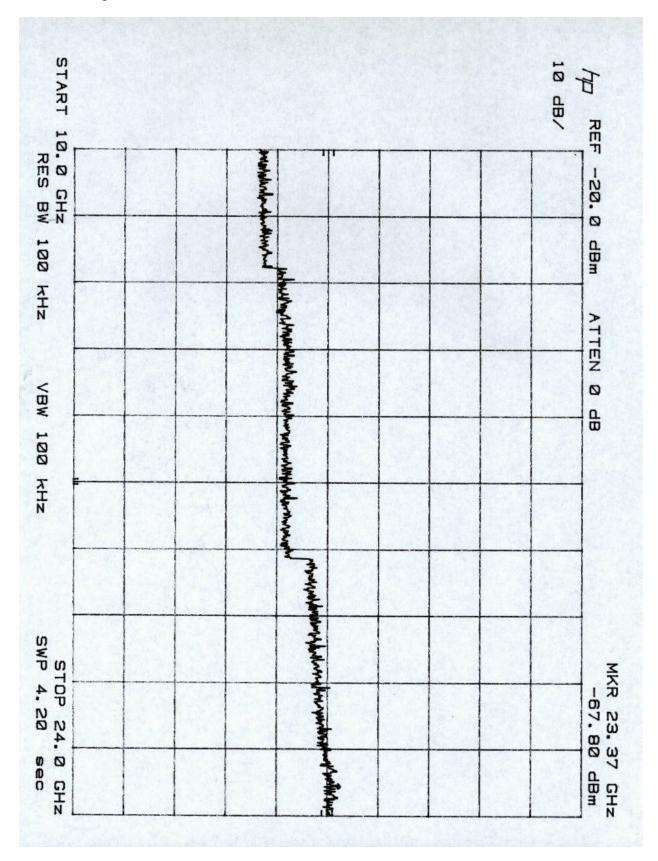
| Plot Number | Plot Description                                                               |
|-------------|--------------------------------------------------------------------------------|
| 1           | Out of Band Radiated Emission at 3m with pre-amp, 2.33 Ghz - 2.4 GHz           |
| 2           | In Band Radiated Emission at 3m with pre-amp, 59.8 attenuation at 2.4 GHz      |
| 3           | In Band Radiated Emission at 3m with pre-amp, 88.2 dBuV at funda-<br>mental    |
| 4           | In Band Radiated Emission at 3m with pre-amp 48.5 dB attenuation at 2.4835 GHz |
| 5           | Out of Band Radiated Emissin at 3m with pre-amp, 2.4835 Ghz - 2.55 GHz         |
| 6           | Out of Band Radiated Emission at close distance, 1 Ghz - 2.5 GHz               |
| 7           |                                                                                |
| 8           |                                                                                |


#### **Out of Band Radiated Emission Per FCC Rule Part 15.249:**





Date of Test: February 9-11, 1999







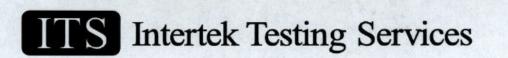




1365 Adams Court, Menlo Park, CA 94025

WiData Corporation, Tracking System Tag FCC ID: NSQTFF-1000-00AA

Date of Test: February 9-11, 1999


4.6 Transmitter Radiated Emissions in Restricted Bands, FCC Rule 15.35(b), (c), 15.249:

Radiated emission measurements were performed from 30 MHz to <24,000> MHz. Analyzer resolution is 100 kHz or greater for 30 MHz to 1000 MHz, 1 MHz for >1000 MHz.

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included. All measurements were performed with peak detection unless otherwise specified.

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

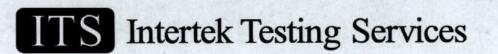
Date of Test: February 9-11, 1999



Company:WiDATA Wireless Resource ManagementProject #:J99002777Model:TFF-1000-00AA (DSS)Engineer:Xi-Ming YangDate of test:Febuary 11, 1999

|           |                     |         | FCC15             | .247 Ra       | diated Er | nissions           |               |                      |          |        |
|-----------|---------------------|---------|-------------------|---------------|-----------|--------------------|---------------|----------------------|----------|--------|
| Frequency | Antenna<br>Polarity | Reading | Antenna<br>Factor | Cable<br>Loss | Pre-amp   | Distance<br>Factor | Duty<br>Cycle | Corrected<br>Reading | Limit    | Margin |
| MHz       | H/V                 | dB(uV)  | dB(1/m)           | dB            | dB        | dB                 | dB            | dB(uV/m)             | dB(uV/m) | dB     |
| 2441.8    | v                   | 59.1    | 27.9              | 2.1           | 0.0       | 0.0                | -20.0         | 69.1*                |          |        |
| 2441.8    | v                   | 52.0    | 27.9              | 2.1           | 0.0       | 0.0                | -20.0         | 62.0                 |          |        |
| 2400.0    | v                   |         |                   |               |           |                    |               | #40.2*               | 74.0     | -33.8  |
| 2400.0    | v                   |         |                   |               |           |                    |               | #33.4                | 54.0     | -20.6  |
| 2483.5    | v                   |         |                   |               |           |                    |               | *41.4*               | 74.0     | -32.6  |
| 2483.5    | v                   |         |                   |               |           |                    |               | ^34.3                | 54.0     | -19.7  |
| 4883.5    | v                   | 41.8    | 32.5              | 3.5           | -28.1     | 0.0                | -20.0         | 29.7*                | 74.0     | -44.3  |
| 4883.5    | v                   | 39.6    | 32.5              | 3.5           | -28.1     | 0.0                | -20.0         | 27.5                 | 54.0     | -26.5  |
| 7325.2    | v                   | 39.9    | 36.9              | 4.5           | -28.0     | 0.0                | -20.0         | 33.3*                | 74.0     | -40.7  |
| 7325.2    | v                   | 28.5    | 36.9              | 4.5           | -28.0     | 0.0                | -20.0         | 21.9                 | 54.0     | -32.1  |
| 12208.7   | v                   | 42.7    | 39.1              | 5.7           | -39.1     | 0.0                | -20.0         | 28.4*                | 74.0     | -45.6  |
| 12208.7   | v                   | 34.0    | 39.1              | 5.7           | -39.1     | 0.0                | -20.0         | 19.7                 | 54.0     | -34.3  |
| 19534.0   | v                   | 40.0    | 40.3              | 7.5           | -23.3     | -9.5               | -20.0         | 35.0*                | 74.0     | -39.0  |
| 19534.0   | v                   | 32.0    | 40.3              | 7.5           | -23.3     | -9.5               | -20.0         | 27.0                 | 54.0     | -27.0  |
| 21975.7   | v                   | 41.0    | 40.3              | 9.7           | -24.2     | -9.5               | -20.0         | 37.3*                | 74.0     | -36.7  |
| 21975.7   | v                   | 31.0    | 40.3              | 9.7           | -24.2     | -9.5               | -20.0         | 27.3                 | 54.0     | -26.7  |

Note: 1. All measurement were made at 3 meters


2. Negative signs (-) in the margin column signify levels below the limit.

3. Readings with \* are peak-readings.

4. Reading with # is calculated from fundamental minus 28.6 dB (from plot 4a5).

5. Reading with ^ is calculated from fundamental minus 27.7 dB (from plot 4a6).

6. Duty cycle see plot C



| Company:      | WiDATA Wireless Resource Management |
|---------------|-------------------------------------|
| Project #:    | J99002777                           |
| Model:        | TFF-1000-00AA (OOK)                 |
| Engineer:     | Xi-Ming Yang                        |
| Date of test: | Febuary 11, 1999                    |

|           |                     |         | FCC15             | .249 Ra       | diated Er | nissions           |               |                      |          |        |
|-----------|---------------------|---------|-------------------|---------------|-----------|--------------------|---------------|----------------------|----------|--------|
| Frequency | Antenna<br>Polarity | Reading | Antenna<br>Factor | Cable<br>Loss | Pre-amp   | Distance<br>Factor | Duty<br>Cycle | Corrected<br>Reading | Limit    | Margin |
| MHz       | H/V                 | dB(uV)  | dB(1/m)           | dB            | dB        | dB                 | dB            | dB(uV/m)             | dB(uV/m) | dB     |
| 2446.5    | v                   | 65.0    | 27.9              | 2.1           | 0.0       | 0.0                | -10.5         | 84.5*                | 114.0    | -29.5  |
| 2446.5    | v                   | 59.8    | 27.9              | 2.1           | 0.0       | 0.0                | -10.5         | 79.3                 | 94.0     | -14.7  |
| 2385.7    | v                   |         |                   |               |           |                    |               | #36.3*               | 74.0     | -37.7  |
| 2385.7    | v                   |         |                   |               |           |                    |               | #31.1                | 54.0     | -22.9  |
| 2400.0    | v                   |         |                   |               |           |                    |               | ^24.7*               | 74.0     | -49.3  |
| 2400.0    | v                   |         |                   |               |           |                    |               | ^19.5                | 54.0     | -34.5  |
| 2483.5    | v                   |         |                   |               |           |                    |               | @36.0*               | 74.0     | -38.0  |
| 2483.5    | v                   |         |                   |               |           |                    |               | @30.8                | 54.0     | -23.2  |
| 4892.9    | v                   | 41.0    | 32.5              | 3.5           | -28.1     | 0.0                | -10.5         | 38.4*                | 74.0     | -35.6  |
| 4892.9    | v                   | 34.7    | 32.5              | 3.5           | -28.1     | 0.0                | -10.5         | 32.1                 | 54.0     | -21.9  |
| 7339.4    | v                   | 44.8    | 36.9              | 4.5           | -28.0     | 0.0                | -10.5         | 47.7*                | 74.0     | -26.3  |
| 7339.4    | v                   | 38.4    | 36.9              | 4.5           | -28.0     | 0.0                | -10.5         | 41.3                 | 54.0     | -12.7  |
| 9785.9    | Н                   | 34.0    | 37.8              | 5.3           | -27.4     | 0.0                | -10.5         | 39.2*                | 74.0     | -34.8  |
| 9785.9    | Н                   | 24.0    | 37.8              | 5.3           | -27.4     | 0.0                | -10.5         | 29.2                 | 54.0     | -24.8  |
| 12232.3   | H                   | 43.0    | 39.1              | 5.7           | -39.1     | 0.0                | -10.5         | 38.2*                | 74.0     | -35.8  |
| 12232.3   | Н                   | 31.0    | 39.1              | 5.7           | -39.1     | 0.0                | -10.5         | 26.2                 | 54.0     | -27.8  |

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

3. Readings with \* are peak-readings.

4. Reading with # is calculated from fundamental minus 48.2 dB (from plot 1 & 3).

5. Reading with ^ is calculated from fundamental minus 59.8 dB (from plot 2).

6. Reading with @ is calculated from fundamental minus 48.5 dB (from plot 4).

7. Duty cycle see plot A

Date of Test: February 9-11, 1999

# ITS Intertek Testing Services

Company:WiDATA Wireless Resource ManagementProject #:J99002777Model:TFF-1000-00AA (OOK)Engineer:Xi-Ming YangDate of test:Febuary 11, 1999

#### FCC15.249 Radiated Emissions

| Frequency | Antenna<br>Polarity | Reading | Antenna<br>Factor | Cable<br>Loss | Pre-amp | Distance<br>Factor | Duty<br>Cycle | Corrected<br>Reading | Limit    | Margin |
|-----------|---------------------|---------|-------------------|---------------|---------|--------------------|---------------|----------------------|----------|--------|
| MHz       | H/V                 | dB(uV)  | dB(1/m)           | dB            | dB      | dB                 | dB            | dB(uV/m)             | dB(uV/m) | dB     |
| 14678.8   | v                   | 40.9    | 40.1              | 6.7           | -37.4   | 0.0                | -10.5         | 39.8*                | 74.0     | -34.2  |
| 14678.8   | v                   | 31.0    | 40.1              | 6.7           | -37.4   | 0.0                | -10.5         | 29.9                 | 54.0     | -24.1  |
| 17125.3   | H                   | 43.1    | 42.0              | 7.3           | -38.8   | 0.0                | -10.5         | 43.1*                | 74.0     | -30.9  |
| 17125.3   | H                   | 31.5    | 42.0              | 7.3           | -38.8   | 0.0                | -10.5         | 31.5                 | 54.0     | -22.5  |
| 19572.1   | H                   | 41.0    | 40.3              | 7.5           | -23.3   | -9.5               | -10.5         | 45.5*                | 74.0     | -28.5  |
| 19572.1   | H                   | 31.5    | 40.3              | 7.5           | -23.3   | -9.5               | -10.5         | 36.0                 | 54.0     | -18.0  |
| 22018.7   | v                   | 40.5    | 40.3              | 9.7           | -24.2   | -9.5               | -10.5         | 46.3*                | 74.0     | -27.7  |
| 22018.7   | v                   | 31.0    | 40.3              | 9.7           | -24.2   | -9.5               | -10.5         | 36.8                 | 54.0     | -17.2  |
| 24465.0   | v                   | 40.0    | 40.3              | 7.4           | -24.2   | -9.5               | -10.5         | 43.5*                | 74.0     | -30.5  |
| 24465.0   | v                   | 32.0    | 40.3              | 7.4           | -24.2   | -9.5               | -10.5         | 35.5                 | 54.0     | -18.5  |

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

3. Readings with \* are peak-readings.

4. Duty cycle see plot A

Date of Test: February 9-11, 1999

- 4.7 AC Line Conducted Emission, FCC Rule 15.207:
- [X] Not required; battery operation only
- [] Test data attached

WiData Corporation, Tracking System Tag FCC ID: NSQTFF-1000-00AA Date of Test: February 9-11, 1999

- 4.10 Radiated Emissions from Digital Section of Transceiver (Transmitter) FCC Ref: 15.109
- [] Not required No digital part
- [X] Test results are attached
- [X] Included in the separate DOC report.
- 4.11 Radiated Emissions from Receiver Section of Transceiver (L.O. Radiation), FCC Ref: 15.109, 15.111

- [X] Not required EUT operation above 960 MHz only
- [] Not required EUT is transmitter only
- [] Not performed; exempt until June 1999
- [] Test results are attached

Date of Test: February 9-11, 1999

# **ITS** Intertek Testing Services

| Company:      | WiDATA Wireless Resource Management |
|---------------|-------------------------------------|
| Project #:    | J99002777                           |
| Model:        | TFF-1000-00AA                       |
| Engineer:     | Xi-Ming Yang                        |
| Date of test: | Febuary 9, 1999                     |

#### FCC15.209 Radiated Emissions

| Frequency | Antenna<br>Polarity | Reading | Antenna<br>Factor | Cable<br>Loss | Pre-amp | Distance<br>Factor | Corrected<br>Reading | Limit    | Margin |
|-----------|---------------------|---------|-------------------|---------------|---------|--------------------|----------------------|----------|--------|
| MHz       | H/V                 | dB(uV)  | dB(1/m)           | dB            | dB      | dB                 | dB(uV/m)             | dB(uV/m) | dB     |
| 30.5      | v                   | 14.0    | 11.2              | 0.0           | 0.0     | 0.0                | 25.2                 | 40.0     | -14.8  |
| 122.1     | v                   | 15.0    | 6.4               | 0.0           | 0.0     | 0.0                | 21.4                 | 43.5     | -22.1  |
| 183.1     | v                   | 16.0    | 8.7               | 0.0           | 0.0     | 0.0                | 24.7                 | 43.5     | -18.8  |
| 396.8     | H                   | 14.0    | 15.1              | 0.0           | 0.0     | 0.0                | 29.1                 | 46.0     | -16.9  |
| 488.4     | H                   | 10.9    | 17.1              | 0.0           | 0.0     | 0.0                | 28.0                 | 46.0     | -18.0  |
| 610.4     | H                   | 10.8    | 18.7              | 0.0           | 0.0     | 0.0                | 29.5                 | 46.0     | -16.5  |

Note: 1. All measurement were made at 3 meters

2. Negative signs (-) in the margin column signify levels below the limit.

Date of Test: February 9-11, 1999

4.12 Processing Gain Measurements, FCC Rule 15.247(e)

The processing gain shall be determined from the ratio in dB of the signal to noise ratio with the system spreading code turned OFF, to the signal to noise ratio with the system spreading code turned ON, as measured at the demodulated output of the receiver. The processing gain shall be at least 10 dB for a direct sequence spread spectrum system.

 Refer to attached test procedure and data sheets.

 X
 Refer to circuit analysis and processing gain calculations provided by manufacturer.

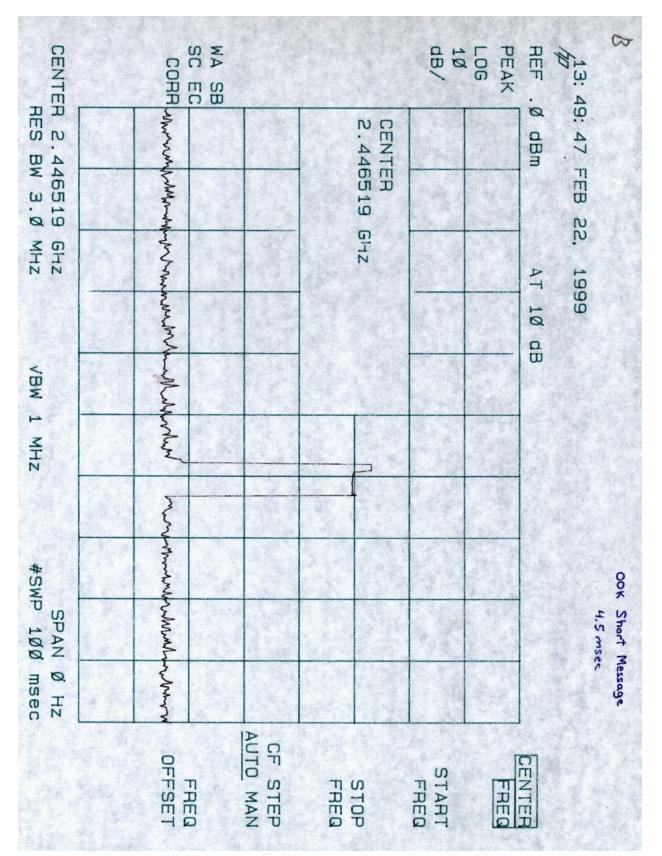
1365 Adams Court, Menlo Park, CA 94025

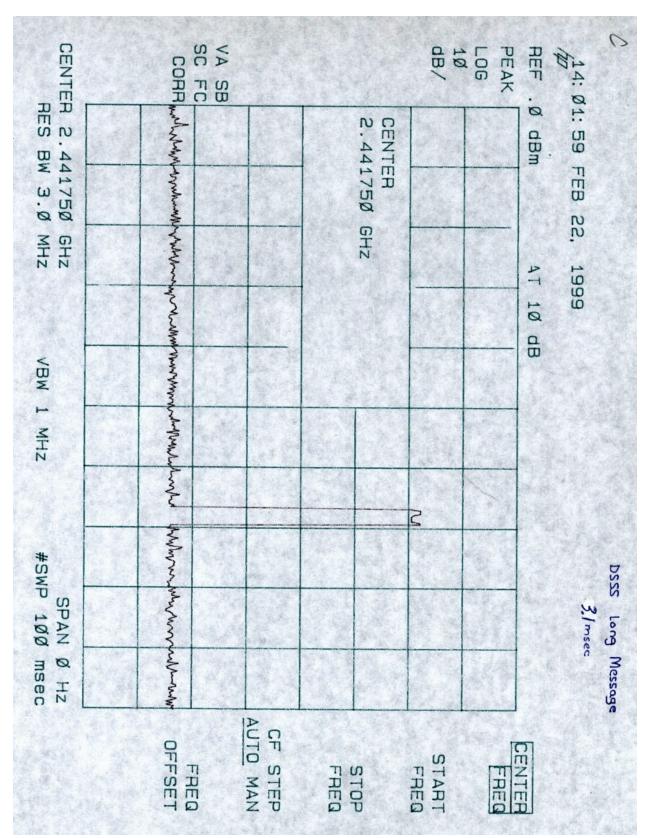
WiData Corporation, Tracking System Tag FCC ID: NSQTFF-1000-00AA Date of Test: February 9-11, 1999

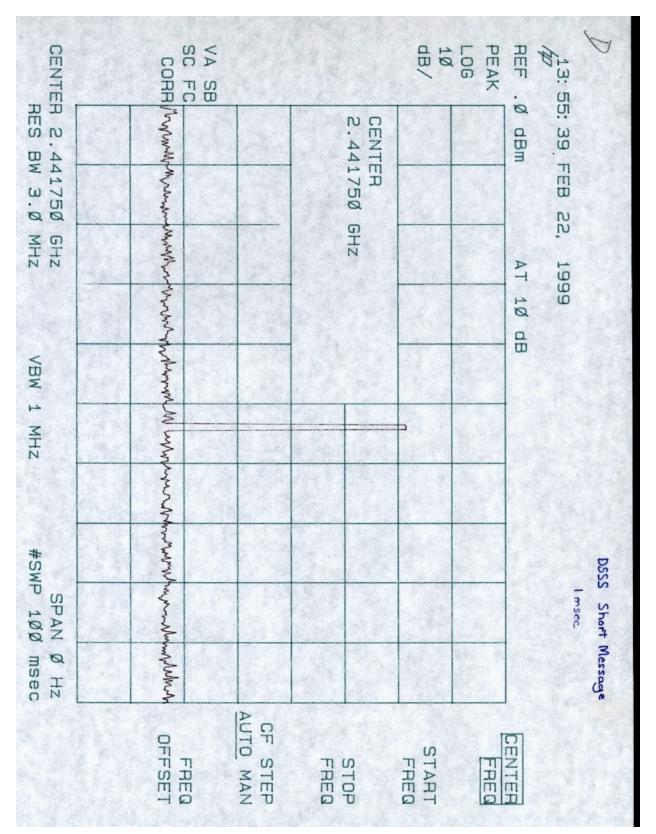
4.13 Transmitter Duty Cycle Calculation and Measurements, FCC Rule 15.35(b), (c)

The EUT antenna output port was connected to the input of the spectrum analyzer. The analyzer center frequency was set to EUT RF channel carrier. The SWEEP function on the analyzer was set to ZERO SPAN. The transmitter ON time was determined from the resultant time-amplitude display:

Duty cycle = Maximum ON time in 100 msec/100


Duty cycle correction,  $dB = 20 * \log(DC)$ 


|   | See attached spectrum analyzer chart(s) for transmitter timing |
|---|----------------------------------------------------------------|
| X | See transmitter timing diagram provided by manufacturer        |


Plots A-D



Date of Test: February 9-11, 1999







- 6.0 List of Exhibits
- Exhibit 1 ID Label Format
- Exhibit 2 ID Label Location
- *Exhibit 3* Equipment Photographs
- *Exhibit 4* Block Diagram
- *Exhibit 5* **Circuit Diagram**
- *Exhibit 6* **This Test Report**
- *Exhibit 7* **Test Setup Photos**
- Exhibit 8Instruction Manual
- *Exhibit 9* Antenna Information