

 \dots

 \mathcal{T}

Pico 2400 1W 2.4GHz Frequency Hopping Module Model: p2400 **FCC ID: NS9P2400**

Applicant:

Microhard Systems Inc. 150 Country Hills Landing NW Calgary, Alberta Canada T3K 5P3

In Accordance With

Federal Communications Commission (FCC) Part 15, Subpart C, Section 15.247 Frequency Hopping Spread Spectrum (FHSS)

UltraTech's File No.: 16MCRS096 FCC15C247

This Test report is Issued under the Authority of Tri M. Luu Vice President of Engineering UltraTech Group of Labs

Date: October 5, 2016

Report Prepared by: Dan Huynh

Tested by: Hung Trinh

Issued Date: October 5, 2016

Test Dates: July 23 – September 12, 2016

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

This test report shall not be reproduced, except in full, without a written approval from UltraTech

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

AT-1945

SL2-IN-E-1119R

TABLE OF CONTENTS

EXHIBIT	1. INTRODUCTION	1
1.1. 1.2. 1.3.	SCOPE RELATED SUBMITTAL(S)/GRANT(S) NORMATIVE REFERENCES	1 1 1
EXHIBIT	2. PERFORMANCE ASSESSMENT	2
2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	CLIENT INFORMATION EQUIPMENT UNDER TEST (EUT) INFORMATION EUT'S TECHNICAL SPECIFICATIONS ASSOCIATED ANTENNA DESCRIPTIONS LIST OF EUT'S PORTS ANCILLARY EQUIPMENT	2 3 3 3 4
EXHIBIT	3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	5
3.1. 3.2.	CLIMATE TEST CONDITIONS OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	5 5
EXHIBIT	4. SUMMARY OF TEST RESULTS	6
4.1. 4.2. 4.3.	LOCATION OF TESTS APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	6 6 6
EXHIBIT	5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	7
5.1. 5.2. 5.3. 5.4. 5.5. 5.6.	POWER LINE CONDUCTED EMISSIONS [§15.207(a)] COMPLIANCE WITH FCC PART 15 – GENERAL TECHNICAL REQUIREMENTS PROVISIONS FOR FREQUENCY HOPPING SYSTEMS [§ 15.247(a)(1)] PEAK CONDUCTED OUTPUT POWER [§ 15.247(b)(1)] TRANSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205] RF EXPOSURE REQUIRMENTS [§§ 15.247(i), 1.1310 & 2.1091]	7 10 12 52 54 85
EXHIBIT	6. TEST EQUIPMENT LIST	88
EXHIBIT	7. MEASUREMENT UNCERTAINTY	89
7.1. 7.2.	LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY RADIATED EMISSION MEASUREMENT UNCERTAINTY	89 89

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Section 15.247
Title:	Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15
Purpose of Test:	Equipment Certification for Part 15C Spread Spectrum Transmitter
Test Procedures:	 ANSI C63.4 ANSI C63.10 FCC Public Notice DA 00-705
Environmental Classification:	[x] Commercial, industrial or business environment [x] Residential environment

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3. NORMATIVE REFERENCES

Publication	Year	Title
47 CFR Parts 0-19	2016	Code of Federal Regulations (CFR), Title 47 – Telecommunication
ANSI C63.4	2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz
ANSI C63.10	2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
CISPR 22 & EN 55022	2008-09, Edition 6.0 2006	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances
FCC Public Notice DA 00-705	2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
FCC ET Docket No. 99-231	2002	Amendment to FCC Part 15 of the Commission's Rules Regarding to Spread Spectrum Devices

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT		
Name:	Microhard Systems Inc.	
Address:	150 Country Hills Landing NW Calgary, Alberta Canada T3K 5P3	
Contact Person:	Mr. Hany Shenouda Phone #: 403 248-0028 Fax #: 403 248 2762 Email Address: shenouda@microhardcorp.com	

MANUFACTURER		
Name:	Microhard Systems Inc.	
Address:	150 Country Hills Landing NW Calgary, Alberta Canada T3K 5P3	
Contact Person:	Mr. Hany Shenouda Phone #: 403 248-0028 Fax #: 403 248-2762 Email Address: shenouda@microhardcorp.com	

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Microhard Systems Inc.	
Product Name:	Pico 2400 1W 2.4GHz Frequency Hopping Module	
Model Name or Number:	p2400	
Serial Number:	Test Sample	
Type of Equipment:	Spread Spectrum Transmitter	
Input Power Supply Type:	External Regulated DC Sources	
Primary User Functions of EUT:	OEM module	

2.3. EUT'S TECHNICAL SPECIFICATIONS

Transmitter		
Equipment Type:	MobileBase Station (fixed use)	
Intended Operating Environment: Residential Commercial, industrial or business environment		
Power Supply Requirement: 3.3 VDC		
RF Output Power Rating:	20 - 30 dBm	
Operating Frequency Range:	2401.6 – 2477.6 MHz	
RF Output Impedance:	50 Ω	
Duty Cycle:	Continuous	
Modulation Type:	GFSK	
Antenna Connector Type:	UFL	

2.4. ASSOCIATED ANTENNA DESCRIPTIONS

Manufacturer	Туре	Model/Part Number	Gain
Shenzhen Norminson Technology CO.LTD	Rubber Ducky	NW001	2.5dBi
	Patch Antenna	MHS034210	14 dBi,
	Yagi Antenna	MHS034150	14.5 dBi
	Omni Directional	MHS034040	15 dBi,

2.5. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	RF IN/OUT Port	1	UFL	Shielded coaxial cable with unique coupling connectors
2	DC Supply & I/O Port	1	Pin Header	No cable, direct connection

2.6. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1		
Description:	Test Jig	
Brand name:	Microhard Systems Inc.	
Model Name or Number:	N/A	
Connected to EUT's Port:	I/O Port	

Ancillary Equipment # 2		
Description:	AC/DC Adapter	
Brand name:	BI Switching Power Supply	
Model Name or Number:	BI30-120200-AdU	
Connected to EUT's Port:	Test Jig of the EUT	

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21 to 23 °C
Humidity:	45 to 58%
Pressure:	102 kPa
Power Input Source:	3.3 VDC

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	 Each of lowest, middle and highest channel frequencies transmits continuously for emissions measurements. The EUT operates in normal Frequency Hopping mode for occupancy duration, and frequency separation.
Special Test Software & Hardware:	Test software provided by the Applicant is installed to allow the EUT to operate in hopping mode or at each channel frequency continuously. For example, the transmitter will be operated at each of lowest, middle and highest frequencies individually continuously during testing.
Transmitter Test Antenna:	The EUT is tested with the antenna fitted in a manner typical of normal intended use as non-integral antenna equipment as described with the test results.

Transmitter Test Signals	
Frequency Band(s):	2401.6 – 2477.6 MHz
Frequency(ies) Tested: (Near lowest, near middle & near highest frequencies in the frequency range of operation.)	2401.6 MHz, 2439.6 MHz and 2477.6 MHz
RF Power Output: (measured maximum output power at antenna terminals)	29.95 dBm, 0.9886 W (conducted)
Normal Test Modulation:	GFSK
Modulating Signal Source:	Internal

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2017-04-02.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Section(s)	Test Requirements	Compliance (Yes/No)
15.203	Antenna requirements	Yes
15.207(a)	AC Power Line Conducted Emissions	Yes
15.247(a)	Provisions for Frequency Hopping Systems	Yes
15.247(b)(1)	Peak Conducted Output Power	Yes
15.247(d), 15.209 & 15.205	Transmitter Spurious Radiated Emissions	Yes
15.247(i), 1.1307, 1.1310, 2.1091	RF Exposure	Yes

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES None.

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. POWER LINE CONDUCTED EMISSIONS [§15.207(a)]

5.1.1. Limit(s)

The equipment shall meet the limits of the following table:

Frequency of emission	Conducted Limits (dBµV)	
(MHz)	Quasi-peak	Average
0.15–0.5 0.5–5 5-30	66 to 56* 56 60	56 to 46* 46 50

*Decreases linearly with the logarithm of the frequency

5.1.2. Method of Measurements

ANSI C63.4

5.1.3. Test Arrangement

 ULTRATECH GROUP OF LABS
 File #: 16MCRS096_FCC15C247

 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
 October 5, 2016

 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com
 October 5, 2016

5.1.4. Test Data

Plot 5.1.4.2. Power Line Conducted Emissions (Tx Mode) Line Voltage: 120 VAC; Line Tested: Neutral

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

FCC Section	FCC Rules	Manufacturer's Clarification
15.203	 Described how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT. The exception is in those cases where EUT must be professionally installed. In order to demonstrate that professional installation is required, the following 3 points must be addressed: The application (or intended use) of the EUT The installation requirements of the EUT The method by which the EUT will be marketed 	The antenna employs a unique/integral antenna connector.
15.204	 Provided the information for every antenna proposed for use with the EUT: type (e.g. Yagi, patch, grid, dish, etc), manufacturer and model number gain with reference to an isotropic radiator 	See proposed antenna listed in user manual.
15.247(a)	Description of how the EUT meets the definition of a frequency hopping spread spectrum, found in Section 2.1. Based on the technical description.	See Operational Description
15.247(a)	Pseudo Frequency Hopping Sequence: Describe how the hopping sequence is generated. Provide an example of the hopping sequence channels, in order to demonstrate that the sequence meets the requirements specified in the definition of a frequency hopping spread spectrum system, found in Section 2.1	See Operational Description
15.247(a)	Equal Hopping Frequency Use: Describe how each individual EUT meets the requirement that each of its hopping channels is used equally on average (e.g. that each new transmission event begins on the next channel in the hopping sequence after final channel used in the previous transmission events).	See Operational Description

5.2. COMPLIANCE WITH FCC PART 15 – GENERAL TECHNICAL REQUIREMENTS

FCC Section	FCC Rules	Manufacturer's Clarification
15.247(a)	System Receiver Input Bandwidth: Describe how the associated receiver(s) complies with the requirement that its input bandwidth (either RF or IF) matches the bandwidth of the transmitted signal.	See Operational Description
15.247(a)	System Receiver Hopping Capability: Describe how the associated receiver(s) has the ability to shift frequencies in synchronization with the transmitted signals	See Operational Description
15.247(g)	Describe how the EUT complies with the requirement that it be designed to be capable of operating as a true frequency hopping system	See Operational Description
15.247(h)	Describe how the EUT complies with the requirement that it not have the ability to coordinated with other FHSS is an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters	See Operational Description

5.3. PROVISIONS FOR FREQUENCY HOPPING SYSTEMS [§ 15.247(a)(1)]

5.3.1. Limits

§ 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

§ 15.247(a)(1)(iiiFrequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.3.2. Method of Measurements

FCC Public Notice DA 00-705 and ANSI C63.10

5.3.3. Test Arrangement

5.3.4. Test Data

Test Description	FCC Specification	Measured Values		Comments
Frequency Hopping Systems Requirements	The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.	-		See Note 1
BW of the		Channel Spacing	20 dB BW	See Note 2
hopping		50 kHz	31.90 kHz	
channer		100 kHz	62.53 kHz	
		280 kHz	246.49 kHz	
		400 kHz	370.34 kHz	
Channel Hopping Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.	49.80 kHz for 50 kHz CS 99.20 kHz for 100 kHz CS 277.56 kHz for 280 kHz CS 400.80 kHz for 400 kHz CS		See Note 2
Number of hopping frequencies	Shall use at least 15 channels.	76 hopping frequencies		See Note 1 and 2
Average Time of Occupancy	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.	Channel Spacing	Dwell time in 30.4s period	See Note 2
		50 kHz	62.12 ms	
		100 kHz	26.46 ms	
	Period = 0.4 seconds * 76 (number of hopping channels employed) = 30.4 seconds	280 kHz	57.92 ms	
		400 kHz	39.85 ms	
Note 1 : See operational description exhibit for details. Note 2 : See the following plots for details.				

Plot 5.3.4.1. 20 dB Bandwidth, 2401.6 MHz, 24686 bps, 50 kHz CS, Power Scheme Raw, Raw Power 63

Plot 5.3.4.2. 20 dB Bandwidth, 2439.6 MHz, 24686 bps, 50 kHz CS, Power Scheme Raw, Raw Power 63

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.3. 20 dB Bandwidth, 2477.6 MHz, 24686 bps, 50 kHz CS, Power Scheme Raw, Raw Power 63

Plot 5.3.4.4. 20 dB Bandwidth, 2401.6 MHz, 57600 bps, 100 kHz CS, Power Scheme Raw, Raw Power 63

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247

October 5, 2016

Plot 5.3.4.5. 20 dB Bandwidth, 2439.6 MHz, 57600 bps, 100 kHz CS, Power Scheme Raw, Raw Power 63

Plot 5.3.4.6. 20 dB Bandwidth, 2477.6 MHz, 57600 bps, 100 kHz CS, Power Scheme Raw, Raw Power 63

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.7. 20 dB Bandwidth, 2401.6 MHz, 230400 bps, 280 kHz CS, Power Scheme Raw, Raw Power 63

Plot 5.3.4.8. 20 dB Bandwidth, 2439.6 MHz, 230400 bps, 280 kHz CS, Power Scheme Raw, Raw Power 63

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.9. 20 dB Bandwidth, 2477.6 MHz, 230400 bps, 280 kHz CS, Power Scheme Raw, Raw Power 63

Plot 5.3.4.10. 20 dB Bandwidth, 2401.6 MHz, 345600 bps, 400 kHz CS, Power Scheme Raw, Raw Power 63

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Date:

Plot 5.3.4.12. 20 dB Bandwidth, 2477.6 MHz, 345600 bps, 400 kHz CS, Power Scheme Raw, Raw Power 63

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

23.JUL.2016 11:28:21

File #: 16MCRS096_FCC15C247 October 5, 2016

Page 19 of 89 FCC ID: NS9P2400

Plot 5.3.4.14. Carrier Frequency Separation, 2439.6 MHz, 57600 bps, 100 kHz CS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com October 5, 2016

File #: 16MCRS096_FCC15C247

Plot 5.3.4.15. Carrier Frequency Separation, 2439.6 MHz, 230400 bps, 280 kHz CS

Plot 5.3.4.16. Carrier Frequency Separation, 2439.6 MHz, 345600 bps, 400 kHz CS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Plot 5.3.4.17. Number of Hopping Frequencies, 24686 bps 50 kHz CS 25 Hopping Channels from 2.4 – 2.403 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.25. Number of Hopping Frequencies, 57600 bps 100 kHz CS 0 Hopping Channel from 2.406 – 2.435 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Plot 5.3.4.27. Number of Hopping Frequencies, 57600 bps 100 kHz CS 8 Hopping Channels from 2.440 – 2.446 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.28. Number of Hopping Frequencies, 57600 bps 100 kHz CS 0 Hopping Channel from 2.446 – 2.473 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247

October 5, 2016

Plot 5.3.4.30. Number of Hopping Frequencies, 57600 bps 100 kHz CS 76 Total Number of Hopping Channels from 2.4 – 2.4835 GHz

Plot 5.3.4.31. Number of Hopping Frequencies, 230400 bps 280 kHz CS 16 Hopping Channels from 2.4 – 2.406 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.34. Number of Hopping Frequencies, 230400 bps 280 kHz CS 13 Hopping Channels from 2.434 – 2.44 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247

October 5, 2016

Plot 5.3.4.36. Number of Hopping Frequencies, 230400 bps 280 kHz CS 0 Hopping Channels from 2.446 – 2.467 MHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.38. Number of Hopping Frequencies, 230400 bps 280 kHz CS 14 Hopping Channels from 2.472 – 2.476 MHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.40. Number of Hopping Frequencies, 230400 bps 280 kHz CS 76 Total Number of Hopping Channels from 2.4 – 2.4835 MHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.42. Number of Hopping Frequencies, 345600 bps 400 kHz CS 14 Hopping Channels from 2.406 – 2.412 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.44. Number of Hopping Frequencies, 345600 bps 400 kHz CS 13 Hopping Channels from 2.434 – 2.440 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.46. Number of Hopping Frequencies, 345600 bps 400 kHz CS 0 Hopping Channels from 2.446 – 2.467 MHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.48. Number of Hopping Frequencies, 345600 bps 400 kHz CS 15 Hopping Channels from 2.472 – 2.4835 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.51. Time of Occupancy, 2401.6 MHz, 24686 bps, 50 kHz CS Average time of occupancy = (Dwell Time) x (number of hops within a period) = 31.06 ms x 2 = 62.12 ms

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.53. Time of Occupancy, 2439.6 MHz, 24686 bps, 50 kHz CS Average time of occupancy = (Dwell Time) x (number of hops within a period) = 31.06 ms x 2 = 62.12 ms

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.55. Time of Occupancy, 2477.6 MHz, 24686 bps, 50 kHz CS Average time of occupancy = (Dwell Time) x (number of hops within a period) = 31.06 ms x 2 = 62.12 ms

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.57. Time of Occupancy, 2401.6 MHz, 57600 bps 100 kHz CS Average time of occupancy = (Dwell Time) x (number of hops within a period) = 13.23 ms x 2 = 26.46 ms

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.59. Time of Occupancy, 2439.6 MHz, 57600 bps 100 kHz CS Average time of occupancy = (Dwell Time) x (number of hops within a period) = 13.23 ms x 2 = 26.46 ms

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.61. Time of Occupancy, 2477.6 MHz, 57600 bps 100 kHz CS Average time of occupancy = (Dwell Time) x (number of hops within a period) = 13.23 ms x 2 = 26.46 ms

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Page 45 of 89

Plot 5.3.4.62. Time of Occupancy, 2401.6 MHz, 230400 bps, 280 kHz CS Dwell Time @ 2401.6 MHz = 1.4128 ms

Plot 5.3.4.63. Time of Occupancy, 2401.6 MHz, 230400 bps, 280 kHz CS Average time of occupancy = (Dwell Time) x (number of hops within a period) = 1.4128 ms x 41 = 57.92 ms

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.65. Time of Occupancy, 2439.6 MHz, 230400 bps, 280 kHz CS Average time of occupancy = (Dwell Time) x (number of hops within a period) = 1.4128 ms x 41 = 57.92 ms

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.67. Time of Occupancy, 2477.6 MHz, 230400 bps, 280 kHz CS Average time of occupancy = (Dwell Time) x (number of hops within a period) = 1.4128 ms x 41 = 57.92 ms

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.68. Time of Occupancy, 2401.6 MHz, 345600bps, 400 kHz CS Dwell Time @ 2401.6 MHz = 971.94 μs

Plot 5.3.4.69. Time of Occupancy, 2401.6 MHz, 345600bps, 400 kHz CS Average time of occupancy = (Dwell Time) x (number of hops within a period) = 971.94µs x 41 = 39.85 ms

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.3.4.71. Time of Occupancy, 2439.6 MHz, 345600bps, 400 kHz CS Average time of occupancy = (Dwell Time) x (number of hops within a period) = 971.94 μs x 41 = 39.85 ms

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Plot 5.3.4.72. Time of Occupancy, 2477.6 MHz, 345600bps, 400 kHz CS Dwell Time @ 2477.6 MHz = 971.94 μs

Plot 5.3.4.73. Time of Occupancy, 2477.6 MHz, 345600bps, 400 kHz CS Average time of occupancy = (Dwell Time) x (number of hops within a period) = 971.94 μs x 41 = 39.85 ms

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

5.4. PEAK CONDUCTED OUTPUT POWER [§ 15.247(b)(1)]

5.4.1. Limits

§15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

§15.247(b)(4): The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.4.2. Method of Measurements

FCC Public Notice DA 00-705 and ANSI C63.10.

5.4.3. Test Arrangement

5.4.4. Test Data

Remark(s):

The highest data rate (345600 bps) and highest channel space (400 kHz) were used for power measurements to represent for all data scheme as the worst case derived from exploratory testing.

Power Setting 1: High Power Setting for 2.5 dBi NW001 Dipole Antenna with Assembly Antenna Gain of 1.74 dBi (2.5dBi – 0.76 dB Insertion Loss), Raw Power Setting 63								
Frequency Peak Output Power Assembly EIRP Output Power Limit Limit								
(10172)	(dBm)	(W)	(dBi)	(abiii)	(dBm)	(dBm)		
2401.6	29.95	0.9886	1.74	31.69	30.00	36.00		
2439.6 29.85 0.9661 1.74 31.59 30.00 36.00								
2477.6	29.46	0.8831	1.74	31.20	30.00	36.00		

Power Setting 2: High Power Setting for 14 dBi MHS034210 Patch Antenna with Assembly Antenna Gain of 10.14 dBi (14dBi – 3.86 dB Insertion Loss), Raw Power Setting 23									
Frequency Peak Output Power Assembly EIRP Peak Conducted Eigen Output Power Limit Li									
	(dBm)	(W)	(dBi)	(abiii)	(dBm)	(dBm)			
2401.6	22.53	0.1791	10.14	32.67	30.00	36.00			
2439.6	22.53	22.53 0.1791 10.14 32.67 30.00 3e							
2477.6	22.40	0.1738	10.14	32.54	30.00	36.00			

Power Setting 3: High Power Setting for 14.5 dBi MHS034150 Yagi Antenna with Assembly Antenna Gain of 10.64 dBi (14.5dBi – 3.86 dB Insertion Loss), Raw Power Setting 23								
Frequency Peak Output Power Assembly EIRP Peak Conducted Output Power Limit								
(10172)	(dBm)	(W)	(dBi)	(abiii)	(dBm)	(dBm)		
2401.6	22.53	0.1791	10.64	33.17	30.00	36.00		
2439.6	22.53	0.1791	10.64	33.17	30.00	36.00		
2477.6	22.40	0.1738	10.64	33.04	30.00	36.00		

Power Setting 4: High Power Setting for 15 dBi MHS034040 Omni Directional Antenna with Assembly Antenna Gain 13.44 dBi (15dBi – 1.56 dB Insertion Loss), Raw Power Setting 23									
Frequency (MHz) Peak Output Power Assembly EIRP Antenna Gain (dRm) Peak Conducted Limit									
	(dBm)	(W)	(dBi)	(автт)	(dBm)	(dBm)			
2401.6	22.53	0.1791	13.44	35.97	30.00	36.00			
2439.6	2439.6 22.53 0.1791 13.44 35.97 30.00 36.0								
2477.6	22.40	0.1738	13.44	35.84	30.00	36.00			

Power Setting 5: Low Power Setting for All Antenna Types, Raw Power Setting 19							
Frequency Data Bate Peak Output Power at Antenna Terminal							
(MHz)	Dula Hale	(dBm)	(W)				
2401.6	High	19.85	0.0966				
2439.6	High	19.98	0.0995				
2477.6	High	19.98	0.0995				

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

5.5. TRANSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205]

5.5.1. Limit

§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
10.495–0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125–4.128	25.5-25.67	1300–1427	8.025-8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2655–2900	22.01-23.12
8.41425–8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29–12.293	167.72-173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43-36.5
12.57675–12.57725	322-335.4	3600–4400	(2)
13.36–13.41.			

Section 15.205(a) - Restricted Bands of Operation

 1 Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz. 2 Above 38.6

Section	15.209(a) -	Field Streng	th Limits within	Restricted Free	quency Bands

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490 0.490 - 1.705 1.705 - 30.0 30 - 88 88 - 216 216 - 960 Above 960	2,400 / F (kHz) 24,000 / F (kHz) 30 100 150 200 500	300 30 30 3 3 3 3 3 3 3

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

October 5, 2016

5.5.2. **Method of Measurements**

FCC Public Notice DA 00-705, ANSI C63.10 and ANSI 63.4 procedures.

5.5.3. Test Arrangement

ULTRATECH GROUP OF LABS File #: 16MCRS096_FCC15C247 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

5.5.4. Test Data

Remark(s):

- All spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- EUT shall be tested in three orthogonal positions.
- The following test data represent the worst-case derived from exploratory tests.

5.5.4.1. EUT with 2.5 dBi Dipole Antenna, Assembly Antenna Gain of 1.74 dBi, 400 kHz CS, 345600 bps, Raw Power Setting 63

Fundamental	Frequency:	2401.6 MH	lz				
Measured Co	nducted Power:	29.95 dBm	ı				
Frequency Te	est Range:	30 MHz – 2	25 GHz				
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
2401.6	130.35		V				
2401.6	131.10		н				
4803.2	56.58	52.32	V	54.0	111.1	-1.7	Pass*
4803.2	54.01	49.20	н	54.0	111.1	-4.8	Pass*
12008.0	55.56	42.97	V	54.0	111.1	-11.0	Pass*
12008.0	55.39	42.78	н	54.0	111.1	-11.2	Pass*
All other spuri	ous emissions a	and harmonics are	e more than 20	dB below the a	pplicable limit.		

5.5.4.1.1. Spurious Radiated Emissions

*Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

Fundamental	Frequency:	2439.6 MH	lz				
Measured Cor	nducted Power:	29.85 dBm	I				
Frequency Te	st Range:	30 MHz – 2	25 GHz				
Frequency (MHz)	RF Peak Level (dBμV/m)	RF Avg Level (dBμV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
2439.6	130.07		V				
2439.6	130.88		Н				
4879.2	55.70	51.67	V	54.0	110.9	-2.3	Pass*
4879.2	53.21	47.26	Н	54.0	110.9	-6.7	Pass*
7318.8	54.05	44.44	V	54.0	110.9	-9.6	Pass*
7318.8	53.22	41.08	Н	54.0	110.9	-12.9	Pass*
12198.0	57.14	46.76	V	54.0	110.9	-7.2	Pass*
12198.0	56.60	43.79	Н	54.0	110.9	-10.2	Pass*
All other spuri	ous emissions a	and harmonics are	e more than 20	dB below the a	pplicable limit.		

*Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Fundamental	Frequency:	2477.6 MH	lz				
Measured Co	nducted Power:	29.46 dBm	ı				
Frequency Te	st Range:	30 MHz – 2	25 GHz				
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
2477.6	129.15		V				
2477.6	130.84		Н				
4955.2	55.54	52.00	V	54.0	110.8	-2.0	Pass*
4955.2	53.13	46.20	Н	54.0	110.8	-7.8	Pass*
7432.8	54.96	45.29	V	54.0	110.8	-8.7	Pass*
7432.8	53.67	41.52	Н	54.0	110.8	-12.5	Pass*
12388.0	58.36	46.91	V	54.0	110.8	-7.1	Pass*
12388.0	57.72	45.96	Н	54.0	110.8	-8.0	Pass*
All other spuri	ous emissions a	and harmonics are	e more than 20	dB below the a	pplicable limit.		

*Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

5.5.4.1.2. Band – Edge RF Radiated Emissions

Plot 5.5.4.1.2.2. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Pseudorandom Channel Hopping Mode, Low End of Frequency Band

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.5.4.1.2.3. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Single Frequency Mode, Low End of Frequency Band

Plot 5.5.4.1.2.4. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Pseudorandom Channel Hopping Mode, Low End of Frequency Band

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.5.4.1.2.5. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Single Frequency Mode, High End of Frequency Band

Plot 5.5.4.1.2.6. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Pseudorandom Channel Hopping Mode, High End of Frequency Band

Trace 1: RBW = 1 MHz, VBW = 3 MHz Trace 2: RBW = 200 kHz, VBW = 1 MHz, Delta at 2483.5 MHz: -67.18 dBµV/m Trace 3: RBW = 1 MHz, VBW = 10 Hz Peak Band-Edge at 2483.5 MHz: Peak = 130.84 dBµV/m - 67.18 dB = 63.66 dBµV/m (limit 74 dBµV/m)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.5.4.1.2.8. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Single Frequency Mode, High of Frequency Band

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Plot 5.5.4.1.2.10. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

Trace 1: RBW = 1 MHz, VBW = 3 MHz Trace 2: RBW = 200 kHz, VBW = 1 MHz, Delta at 2483.5 MHz: -67.75 dBµV/m Trace 3: RBW = 1 MHz, VBW = 10 Hz Peak Band-Edge at 2483.5 MHz: Peak= 129.15 dBµV/m – 67.75 dB = 61.40 dBµV/m (limit 74 dBµV/m)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

5.5.4.2. EUT with 14 dBi Patch Antenna, Assembly Antenna Gain of 10.14 dBi, 400 kHz CS, 345600 bps, Raw Power Setting 23

5.5.4.2.1. Spurious Radiated Emissions

Fundamental	Frequency:	cy: 2401.6 MHz					
Measured Cor	nducted Power:	22.53 dBm	ı				
Frequency Te	est Range:	30 MHz – 1	25 GHz				
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
2401.6	129.07		V				
2401.6	129.33		Н				
30 -25000	*	*	V	*	109.3	*	*
*Spurious emi	issions and harr	monics are more t	han 20 dB belo	w the applicabl	e limit.		

Fundamental Frequency: Measured Conducted Power:		2439.6 MH 22.53 dBm	2439.6 MHz 22.53 dBm							
Frequency rest Range:		30 MHZ - 20 GHZ								
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBμV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail			
2439.6	129.95		V							
2439.6	129.71		Н							
30 -25000	*	*	V	*	110.0	*	*			
*Spurious emissions and harmonics are more than 20 dB below the applicable limit.										

Fundamental Frequency:		2477.6 MH	2477.6 MHz							
Measured Conducted Power:		22.40 dBm	22.40 dBm							
Frequency Test Range:		30 MHz –	30 MHz – 25 GHz							
Frequency (MHz)	RF Peak Level (dBμV/m)	RF Avg Level (dBμV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail			
2477.6	130.10		V							
2477.6	130.49		н							
30 -25000	*	*	V	*	110.5	*	*			
*Spurious emissions and harmonics are more than 20 dB below the applicable limit.										

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

5.5.4.2.2. Band – Edge RF Radiated Emissions

Plot 5.5.4.2.2.2. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Pseudorandom Channel Hopping Mode, Low End of Frequency Band

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.5.4.2.2.3. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Single Frequency Mode, Low End of Frequency Band

Plot 5.5.4.2.2.4. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Pseudorandom Channel Hopping Mode, Low End of Frequency Band

. 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.5.4.2.2.6. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

Plot 5.5.4.2.2.7. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

Trace 1: RBW = 1 MHz, VBW = 3 MHz Trace 2: RBW = 200 kHz, VBW = 1 MHz, Delta at 2483.5 MHz: -63.40 dBμV/m Trace 3: RBW = 1 MHz, VBW = 10 Hz Peak Band-Edge at 2483.5 MHz: Peak = 130.49 dBμV/m – 63.40 dB = 67.09 dBμV/m (limit 74 dBμV/m)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.5.4.2.2.9. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

Plot 5.5.4.2.2.10. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

Trace 1: RBW = 1 MHz, VBW = 3 MHz Trace 2: RBW = 200 kHz, VBW = 1 MHz, Delta at 2483.5 MHz: -62.60 dBµV/m Trace 3: RBW = 1 MHz, VBW = 10 Hz Peak Band-Edge at 2483.5 MHz: Peak = 130.10 dBµV/m – 62.60 dB = 67.50 dBµV/m (limit 74 dBµV/m)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016
5.5.4.3. EUT with 14.5 dBi Yagi Antenna, Assembly Antenna Gain of 10.64 dBi, 400 kHz CS, 345600 bps, Raw Power Setting 23

5.5.4.3.1. Spurious Radiated Emissions

Fundamental Frequency: 2401.6 MHz		łz								
Measured Conducted Power:		22.53 dBm	22.53 dBm							
Frequency Te	st Range:	30 MHz –	30 MHz – 25 GHz							
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBμV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail			
2401.6	130.99		V							
2401.6	129.02		н							
30 -25000	*	*	V	*	111.0	*	*			
*Spurious emi	*Spurious emissions and harmonics are more than 20 dB below the applicable limit.									

Fundamental Frequency: Measured Conducted Power:		2439.6 MH 22.53 dBm	2439.6 MHz 22.53 dBm							
Frequency Te	st Range:	30 MHz – 2	30 MHz – 25 GHz							
Frequency (MHz)	RF Peak Level (dBμV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail			
2439.6	130.57		V							
2439.6	130.22		Н							
30 -25000	*	*	V	*	110.6	*	*			
*Spurious emi	*Spurious emissions and harmonics are more than 20 dB below the applicable limit.									

Fundamental	Frequency:	2477.6 MH	Ηz						
Measured Conducted Power:		22.40 dBn	22.40 dBm						
Frequency Te	est Range:	30 MHz –	25 GHz						
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBμV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass∕ Fail		
2477.6	130.68		V						
2477.6	130.87		н						
30 -25000	*	*	V	*	110.9	*	*		
*Spurious emissions and harmonics are more than 20 dB below the applicable limit.									

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

5.5.4.3.2. Band – Edge RF Radiated Emissions

Plot 5.5.4.3.2.2. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Pseudorandom Channel Hopping Mode, Low End of Frequency Band

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.5.4.3.2.3. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Single Frequency Mode, Low End of Frequency Band

Plot 5.5.4.3.2.4. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Pseudorandom Channel Hopping Mode, Low End of Frequency Band

ULTRATECH GROUP OF LABS

. 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.5.4.3.2.6. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

Plot 5.5.4.3.2.7. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

Trace 1: RBW = 1 MHz, VBW = 3 MHz Trace 2: RBW = 200 kHz, VBW = 1 MHz, Delta at 2483.5 MHz: -62.66 dBµV/m Trace 3: RBW = 1 MHz, VBW = 10 Hz Peak Band-Edge at 2483.5 MHz: Peak = 130.87 dBµV/m – 62.66 dB = 68.21 dBµV/m (limit 74 dBµV/m)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.5.4.3.2.9. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

Plot 5.5.4.3.2.10. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

Trace 1: RBW = 1 MHz, VBW = 3 MHz Trace 2: RBW = 200 kHz, VBW = 1 MHz, Delta at 2483.5 MHz: -62.20 dBµV/m Trace 3: RBW = 1 MHz, VBW = 10 Hz Peak Band-Edge at 2483.5 MHz: Peak = 130.68 dBµV/m – 62.20 dB = 68.48 dBµV/m (limit 74 dBµV/m)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

5.5.4.4. EUT with 15 dBi Omni Directional Antenna, Assembly Antenna Gain of 13.44 dBi, 400 kHz CS, 345600 bps, Raw Power Setting 23

5.5.4.4.1. Spurious Radiated Emissions

Fundamental Frequency: 2401.6 MHz		lz								
Measured Conducted Power:		22.53 dBm	22.53 dBm							
Frequency Te	st Range:	30 MHz –	30 MHz – 25 GHz							
Frequency (MHz)	RF Peak Level (dBμV/m)	RF Avg Level (dBμV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail			
2401.6	128.79		V							
2401.6	126.14		н							
30 -25000	*	*	V	*	108.8	*	*			
*Spurious emi	*Spurious emissions and harmonics are more than 20 dB below the applicable limit.									

Fundamental Frequency:243Measured Conducted Power:22.5Frequency Test Range:30 M		2439.6 MH 22.53 dBm 30 MHz – ∶	439.6 MHz 2.53 dBm 30 MHz – 25 GHz						
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBμV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail		
2439.6	129.77		V						
2439.6	127.54		Н						
30 -25000	*	*	V	*	109.8	*	*		
*Spurious em	*Spurious emissions and harmonics are more than 20 dB below the applicable limit.								

Fundamental	Frequency:	2477.6 MHz						
Measured Conducted Power:		22.40 dBn	22.40 dBm					
Frequency Te	est Range:	30 MHz –	30 MHz – 25 GHz					
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBμV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail	
2477.6	130.49		V					
2477.6	128.08		н					
30 -25000	*	*	V	*	110.5	*	*	
*Spurious em	*Spurious emissions and harmonics are more than 20 dB below the applicable limit.							

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

5.5.4.4.2. Band – Edge RF Radiated Emissions

Plot 5.5.4.4.2.2. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Pseudorandom Channel Hopping Mode, Low End of Frequency Band

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

Plot 5.5.4.4.2.3. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Single Frequency Mode, Low End of Frequency Band

Plot 5.5.4.4.2.4. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Pseudorandom Channel Hopping Mode, Low End of Frequency Band

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.5.4.4.2.6. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

Plot 5.5.4.4.2.7. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

Trace 1: RBW = 1 MHz, VBW = 3 MHz Trace 2: RBW = 200 kHz, VBW = 1 MHz, Delta at 2483.5 MHz: -62.91 dBμV/m Trace 3: RBW = 1 MHz, VBW = 10 Hz Peak Band-Edge at 2483.5 MHz: Peak = 128.08 dBμV/m – 62.91 dB = 65.17 dBμV/m (limit 74 dBμV/m)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

Plot 5.5.4.4.2.9. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

Plot 5.5.4.4.2.10. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Pseudorandom Channel Hopping Mode, High End of Frequency Band

Trace 1: RBW = 1 MHz, VBW = 3 MHz Trace 2: RBW = 200 kHz, VBW = 1 MHz, Delta at 2483.5 MHz: -63.21 dBµV/m Trace 3: RBW = 1 MHz, VBW = 10 Hz Peak Band-Edge at 2483.5 MHz: Peak = 130.49 dBµV/m - 63.21 dB = 67.28 dBµV/m (limit 74 dBµV/m)

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: 16MCRS096_FCC15C247 October 5, 2016

5.6. RF EXPOSURE REQUIRMENTS [§§ 15.247(i), 1.1310 & 2.1091]

§ **1.1310:** The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b).

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)						
	(A) Limits for Occupational/Controlled Exposures									
0.3-3.0	614	1.63	*(100)	6						
3.0-30	1842/f	4.89/f	*(900/f ²)	6						
30-300	61.4	0.163	1.0	6						
300-1500			f/300	6						
1500-100,000			5	6						
	(B) Limits for Gener	al Population/Uncontrolle	d Exposure							
0.3-1.34	614	1.63	*(100)	30						
1.34-30	824/f	2.19/f	*(180/f ²)	30						
30-300	27.5	0.073	0.2	30						
300-1500			f/1500	30						
1500-100,000			1.0	30						

f = frequency in MHz

* = Plane-wave equivalent power density

Note 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

Note 2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

5.6.1. Method of Measurements

Calculation Method of Power Density/RF Safety Distance:

$$S = \frac{PG}{4\pi \cdot r^2} = \frac{EIRP}{4\pi \cdot r^2}$$

Where,P: power input to the antenna in mWEIRP: Equivalent (effective) isotropic radiated power.S: power density mW/cm²G: numeric gain of antenna relative to isotropic radiatorr: distance to centre of radiation in cm

5.6.2. RF Evaluation

5.6.2.1. Standalone

Frequency (MHz)	EIRP (dBm)	EIRP (mW)	Evaluation Distance, r (cm)	Power Density, S (mW/cm ²)	MPE Limit (mW/cm ²)	Margin (mW/cm²)
2401.6	36	3981.072	25	0.507	1.0	-0.493

5.6.2.2. Co-location

Pursuant to KDB 447498 D01 General RF Exposure Guidance v06, Section 7.2:

Simultaneous transmission MPE test exclusion applies when the sum of the MPE ratios for all simultaneously transmitting antennas incorporated in a host device is \leq 1.0, according to calculated/estimated, numerically modeled, or measured field strengths or power density.

Co-location will only applies to EUT with 2.5 dBi dipole antenna, worst case EIRP of 32.5 dBm will be used in colocation at the minimum of 33 cm evaluation separation distance required by the operating configurations and exposure conditions of the host device.

Frequency (MHz)	EUT EIRP (dBm)	EUT EIRP (mW)	Evaluation Distance (cm)	Power Density (mW/cm ²)	FCC MPE Limit (mW/cm ²)	MPE Ratio
2401.6	32.5	1778.279	33	0.13	1.0	0.130

The maximum calculated MPE ratio of the EUT with 2.5 dBi dipole antenna

The maximum calculated MPE ratio for the EUT with 2.5 dBi dipole antenna is 0.130, this configuration can be colocated with other antennas provided the sum of the MPE ratios for all the other simultaneous transmitting antennas incorporated in a host device is $\leq 1.0 - 0.130 \leq 0.870$. The following table addresses the co-location of the EUT with 2.5 dBi antenna with the specified radio modules.

*Radio Module	Frequency (MHz)	EIRP (mW)	Evaluation Distance (cm)	Power Density (mW/cm ²)	FCC MPE Limit (mW/cm ²)	MPE Ratio	MPE Ratio of EUT with 2.5 dBi antenna	Sum of MPE Ratio	Verdict
Data Card Module (FCC ID: RI7LN930, IC: 5131A-LN930)	824.2	2511.890	33	0.184	0.549	0.335	0.130	0.465	Compliant
UMTS/LTE Data Module (FCC ID: XPYTOBYL201, IC: 8595A-TOBYL201)	710.0	2398.833	33	0.175	0.473	0.370	0.130	0.500	Compliant
LE910NA V2 LTE/3G Module (FCC ID: RI7LE910NAV2, IC: 5131A-LE910NAV2)	699.0	1156.112	33	0.084	0.466	0.180	0.130	0.310	Compliant

EUT with 2.5 dBi dipole antenna co-location with radio module indentified in this table

* The test data of the radio modules represented in this table is the worst-case configuration (maximum MPE ratio) derived from the original radio modules MPE reports. Refer to these reports for details.

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Cal. Due Date
Spectrum Analyzer	Agilent	E7401A	US40240432	9 kHz–1.5 GHz	14 Apr 2017
Attenuator	Pasternack	PE7010-20	-	DC–2 GHz	03 Feb 2017
L.I.S.N	Schwarzbeck	NSLK8127	8127276	0.10 -30 MHz	24 Jun 2017
Spectrum Analyzer	Rohde & Schwarz	FSEK30	100077	20Hz-40 GHz	21 Nov 2016
Attenuator	Pasternack	7024-20	6	DC-26.5 GHz	Cal on use
DC Block	Hewlett Packard	11742A	12460	0.045 – 26.5 GHz	Cal on use
EMI Receiver	Rohde & Schwarz	ESU40	100037	20Hz-40 GHz	08 May 2017
RF Amplifier	Com-Power	PAM-0118A	551016	0.5 – 18 GHz	17 Jul 2017
RF Amplifier	Hewlett Packard	84498	3008A00769	1 – 26.5 GHz	05 May 2017
Biconilog	EMCO	3142	9601-1005	26-1000 MHz	12 May 2017
Horn Antenna	EMCO	3155	5955	1 – 18 GHz	21 Apr 2017
Horn Antenna	EMCO	3160-09	118385	18 – 26.5 GHz	04 Aug 2017
High Pass Filter	K&L	11SH10- 4000/T12000	4	Cut off 2400 MHz	Cal on use
Band Reject Filter	Micro-Tronics	BRM50701	105	Cut off 2.4-2.483 GHz	Cal on use
EMI Receiver	Rohde & Schwarz	FSU26	200946	20Hz–26.5 GHz	Jul 21, 2018
Attenuator	Pasternack	7024-10	4	DC-26.5 GHz	Cal on use

EXHIBIT 6. TEST EQUIPMENT LIST

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

	Line Conducted Emission Measurement Uncertainty (9 kHz – 30 MHz):	Measured	Limit
u _c	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{l=1}{\overset{m}{\sum}}u_i^2(y)}$	<u>+</u> 1.44	<u>+</u> 1.8
U	Expanded uncertainty U: $U = 2u_c(y)$	<u>+</u> 2.89	<u>+</u> 3.6

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{l=1}{\overset{m}{\sum}}u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.79	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{l=1}{\overset{m}{\sum}}u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured (dB)	Limit (dB)
u _c	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{l=1}{\overset{m}{\sum}} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration