ENGINEERING TEST REPORT

5.8GHz 802.11a 1W OEM Module Model: n802.11a-30 FCC ID: NS9NA30

Applicant:

Microhard Systems Inc.

150 Country Hills Landing NW Calgary, Alberta Canada T3K 5P3

In Accordance With

Federal Communications Commission (FCC) Part 15, Subpart C, Section 15.247 Digital Modulation Systems (DTS)

UltraTech's File No.: MCRS-060F15C247

This Test report is Issued under the Authority of

Tri M. Luu

Vice President of Engineering UltraTech Group of Labs

Date: May 29, 2013

Report Prepared by: Dan Huynh Tested by: Mr. Hung Trinh

Issued Date: May 29, 2013 Test Dates: April 21 - May 28, 2013

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

 $oxed{Large}$

FCC

91038

1309

46390-2049

NVLAP LAB CODE 200093-0

TABLE OF CONTENTS

EXHIBIT	1. INTRODUCTION	1
1.1. 1.2. 1.3.	SCOPERELATED SUBMITTAL(S)/GRANT(S)NORMATIVE REFERENCES	1 1 1
EXHIBIT	2. PERFORMANCE ASSESSMENT	2
2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	CLIENT INFORMATION EQUIPMENT UNDER TEST (EUT) INFORMATION EUT'S TECHNICAL SPECIFICATIONS ASSOCIATED ANTENNA DESCRIPTIONS LIST OF EUT'S PORTS ANCILLARY EQUIPMENT	2 3 3
EXHIBIT	3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	5
3.1. 3.2.	CLIMATE TEST CONDITIONSOPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	
EXHIBIT	4. SUMMARY OF TEST RESULTS	6
4.1. 4.2. 4.3.	LOCATION OF TESTS	6
EXHIBIT	5. TEST DATA	7
5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7.	POWER LINE CONDUCTED EMISSIONS [§15.207(a)]	10 23 26 37 46 53
EXHIBIT		
EXHIBIT	7. MEASUREMENT UNCERTAINTY	56
7.1.	LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	
7.2.	RADIATED EMIGGION MEASUREMENT UNCERTAINTT	อท

EXHIBIT 1. INTRODUCTION

1.1. **SCOPE**

Reference:	FCC Part 15, Subpart C, Section 15.247
Title:	Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15 – Radio Frequency Devices
Purpose of Test:	Equipment Certification for Digital Modulation Systems (DTS) Transmitter.
Test Procedures:	ANSI C63.4ANSI C63.10
Environmental Classification:	[x] Commercial, industrial or business environment [x] Residential environment

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3. **NORMATIVE REFERENCES**

Publication	Year	Title
47 CFR Parts 0-19	2012	Code of Federal Regulations (CFR), Title 47 – Telecommunication
ANSI C63.4	2009	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz
ANSI C63.10	2009	American National Standard for Testing Unlicensed Wireless Devices
CISPR 22 & EN 55022	2008-09, Edition 6.0 2006	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances
FCC, KDB Publication No. 558074 D01 DTS Meas Guidance v02	2012	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. **CLIENT INFORMATION**

APPLICANT		
Name:	Microhard Systems Inc.	
Address:	150 Country Hills Landing NW Calgary, Alberta Canada T3K 5P3	
Contact Person:	Mr. Hany Shenouda Phone #: 403 248-0028 Fax #: 403 248 2762 Email Address: shenouda@microhardcorp.com	

MANUFACTURER		
Name:	Microhard Systems Inc.	
Address:	150 Country Hills Landing NW Calgary, Alberta Canada T3K 5P3	
Contact Person:	Mr. Hany Shenouda Phone #: 403 248-0028 Fax #: 403 248-2762 Email Address: shenouda@microhardcorp.com	

EQUIPMENT UNDER TEST (EUT) INFORMATION 2.2.

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Microhard Systems Inc.
Product Name:	5.8GHz 802.11a 1W OEM Module
Model Name or Number:	n802.11a-30
Serial Number:	Test Sample
Type of Equipment:	Digital Transmission System (DTS)
Input Power Supply Type:	External Regulated DC Sources
Primary User Functions of EUT:	802.11a module

2.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER		
Equipment Type:	MobileBase Station (fixed use)	
Intended Operating Environment:	Commercial, industrial or business environmentResidential environment	
Power Supply Requirement:	3.3VDC	
RF Output Power Rating:	0 dBm to 30 dBm	
Operating Frequency Range:	5745 to 5825 MHz	
RF Output Impedance:	50 Ohm	
Duty Cycle:	100%	
Modulation Type:	802.11a	
Antenna Connector Type:	MMCX	

2.4. ASSOCIATED ANTENNA DESCRIPTIONS

Antenna Type	Maximum Gain (dBi)	
Rubber Ducky	4	
Patch Antennas	23	
The highest gain antenna from each of the above antenna types were selected for testing to represents the		

The highest gain antenna from each of the above antenna types were selected for testing to represents the worst-case. Refer to user manual for antennas list information.

2.5. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	RF IN/OUT Port	1	MMCX	Shielded coaxial cable with unique coupling connectors
2	DC Supply & I/O Port	1	Pin Header	No cable, direct connection

File #: MCRS-060F15C247

2.6. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1		
Description:	Test Jig	
Brand name:	Microhard Systems Inc.	
Model Name or Number:	N/A	
Connected to EUT's Port:	I/O Port	

Ancillary Equipment # 2		
Description:	Switching AC/DC Power Adaptor	
Brand name:	BL	
Model Name or Number:	Bl30-120200-AdU	
Connected to EUT's Port:	Test Jig of the EUT	

Ancillary Equipment # 3		
Description:	Laptop	
Brand name:	Dell	
Model Name or Number:	PPL	
Connected to EUT's Port:	Test Jig of the EUT	

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21 to 23 °C
Humidity:	45 to 58%
Pressure:	102 kPa
Power Input Source:	3.3VDC

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	Each of lowest, middle and highest channel frequencies transmits continuously for emissions measurements.		
Special Test Software:	Special software and hardware provided by the Applicant to operate the EUT at each channel frequency continuously. For example, the transmitter will be operated at each of the lowest, middle and highest frequencies individually continuously during testing.		
Special Hardware Used:	Test Jig		
Transmitter Test Antenna:	The EUT is tested with the antenna fitted in a manner typical of normal intended use as non-integral antenna equipment as described with the test results.		

Transmitter Test Signals	
Frequency Band(s):	5745 - 5825 MHz
Frequency(ies) Tested:	5745 MHz, 5785 MHz and 5825 MHz
RF Power Output: (measured maximum output power at antenna terminals)	29.93 dBm, 0.984 W (conducted)
Normal Test Modulation:	802.11a
Modulating Signal Source:	Internal

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2014-04-04.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Section(s)	Test Requirements	Compliance (Yes/No)
15.203	Antenna requirements	Yes*
15.207(a)	AC Power Line Conducted Emissions	Yes
15.247(a)(2)	6 dB Bandwidth	Yes
15.247(b)(3)	Peak Conducted Output Power - DTS	Yes
15.247(d)	Band-Edge and RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes
15.247(d), 15.209 & 15.205	Transmitter Spurious Radiated Emissions	Yes
15.247(e)	Power Spectral Density	Yes
15.247(i), 1.1307, 1.1310, 2.1091	RF Exposure	Yes

^{*} The EUT complies with the requirement; it employs a unique (non-standard) antenna.

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

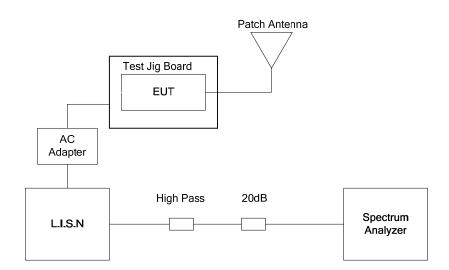
File #: MCRS-060F15C247 May 29, 2013

EXHIBIT 5. TEST DATA

5.1. POWER LINE CONDUCTED EMISSIONS [§15.207(a)]

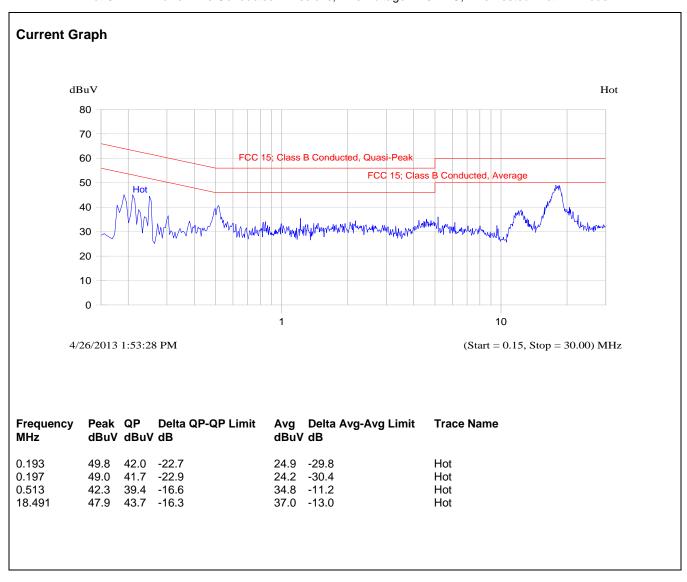
5.1.1. Limit(s)

The equipment shall meet the limits of the following table:

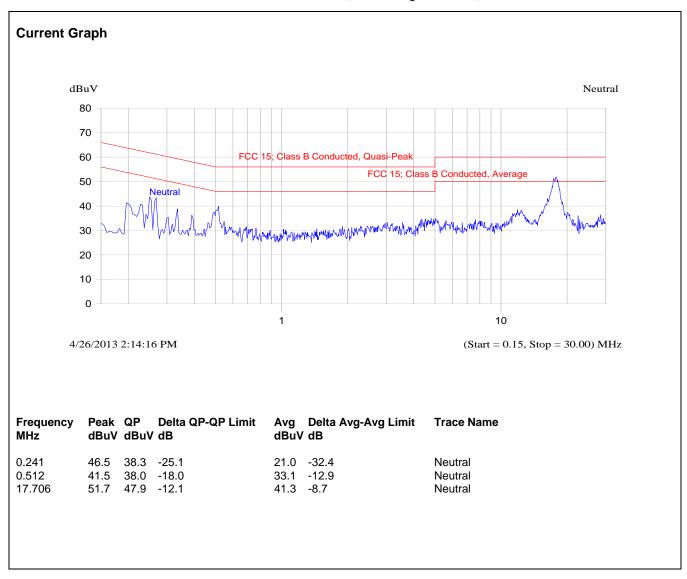

Frequency of emission	Conducted Limits (dBμV)			
(MHz)	Quasi-peak	Average		
0.15–0.5 0.5–5 5-30	66 to 56* 56	56 to 46* 46 50		

^{*}Decreases linearly with the logarithm of the frequency

5.1.2. Method of Measurements


ANSI C63.4-2009

5.1.3. Test Arrangement

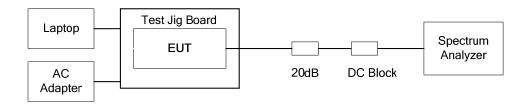


5.1.4. Test Data

Plot 5.1.4.1. Power Line Conducted Emissions; Line Voltage: 120 VAC; Line Tested: Hot: Tx Mode

Plot 5.1.4.2. Power Line Conducted Emissions; Line Voltage: 120 VAC; Line Tested: Neutral

5.2. OCCUPIED BANDWIDTH [§ 15.247(a)(2)]


5.2.1. Limit(s)

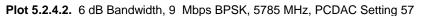
Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.2.2. Method of Measurements

KDB Publication No. 558074 D01 DTS Meas Guidance v02, Section 7.1 Option 1 DTS (6dB) Channel Bandwidth.

5.2.3. Test Arrangement

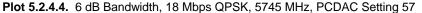
5.2.4. Test Data

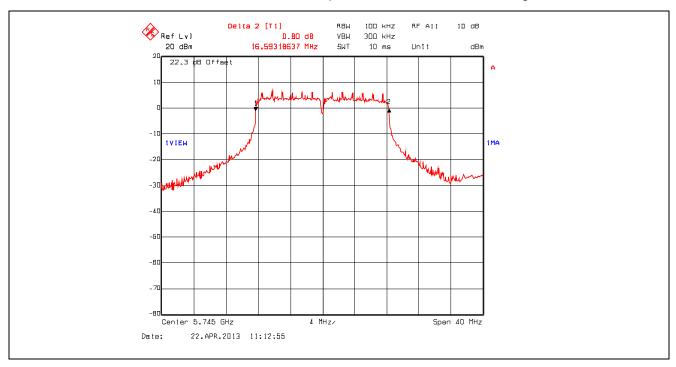

Operating Mode	Frequency (MHz)	6 dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	
	5745	16.43	17.88	
9 Mbps BPSK	5785	16.59	17.64	
	5825	16.43	17.56	
	5745	16.59	17.31	
18 Mbps QPSK	5785	16.59	17.39	
	5825	16.59	17.31	
	5745	16.59	17.23	
36 Mbps 16-QAM	5785	16.59	17.15	
	5825	16.59	17.15	
	5745	16.59	18.12	
54 Mbps 64-QAM	5785	16.59	18.04	
	5825	16.59	17.64	

See the following plots for detailed measurements.

File #: MCRS-060F15C247

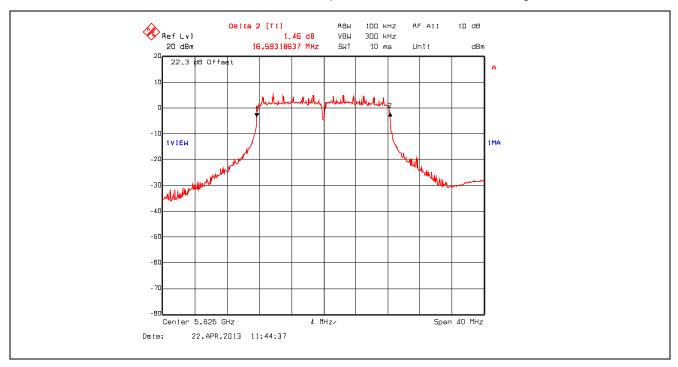
Delta 2 [T1] RRW 100 kHz RF AII 1D dB Ref Lv J 1.D5 dB VBW 300 kHz 16,43286573 MHz 20 dBm SWT Unit dBm 10 m.s 22.3 dB Offse 1MA **1VIEW** Center 5.745 GHz Span 40 MHz 4 MHz/ Date: 22.APR.2013 11:03:42


Plot 5.2.4.1. 6 dB Bandwidth, 9 Mbps BPSK, 5745 MHz, PCDAC Setting 57



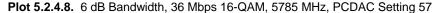
Delta 2 [T1] RF AII RRW 100 kHz 1D dB Ref Lv J 1.40 dB VBW 300 kHz 16,43286573 MHz 20 dBm SWT Unit dBm 10 m.s 22.3 dB Offse **1VIEW** 1MA While Center 5.825 GHz Span 40 MHz 4 MHz/ Date: 22.APR.2013 11:42:05

Plot 5.2.4.3. 6 dB Bandwidth, 9 Mbps BPSK, 5825 MHz, PCDAC Setting 57



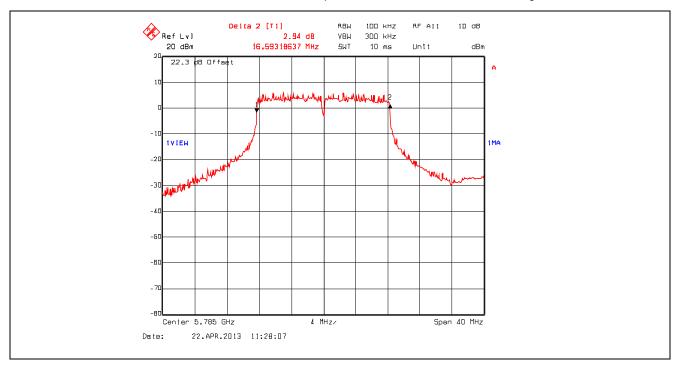
Delta 2 [T1] RBW 100 kHz RF AII 1D dB Ref Lv J . D.89 dB VBW 300 kHz 16,59318637 MHz 20 dBm SWT Unit dBm 10 m.s 22.3 dB Offse 1MA **1VIEW** Center 5.785 GHz Span 40 MHz 4 MHz/ Date: 22.APR.2013 11:32;41

Plot 5.2.4.5. 6 dB Bandwidth, 18 Mbps QPSK, 5785 MHz, PCDAC Setting 57

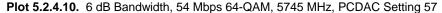

Center 5.745 GHz

22.APR.2013 11:16:37

Date:


Delta 2 [T1] RF AII RBW 100 kHz 1D dB Ref Lv] 1.22 dB ٧BW 300 kHz 16,59318637 MHz 20 dBm SWT Unit dBm 10 m.s 22.3 dB Offse 1MA **1VIEW** -60

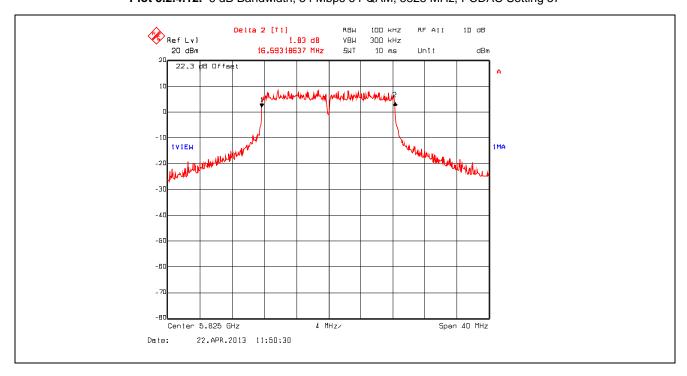
Plot 5.2.4.7. 6 dB Bandwidth, 36 Mbps 16-QAM, 5745 MHz, PCDAC Setting 57


4 MHz/

Span 40 MHz

Delta 2 [T1] RF AII RRW 100 kHz 1D dB Ref Lv J 1.80 dB VBW 300 kHz 16,59318637 MHz 20 dBm SWT Unit dBm 10 m.s 22.3 dB Offse 1MA 1MAX Center 5.825 GHz Span 40 MHz 4 MHz/ Date: 22.APR.2013 11:48:24

Plot 5.2.4.9. 6 dB Bandwidth, 36 Mbps 16-QAM, 5825 MHz, PCDAC Setting 57

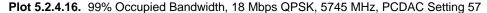


Delta 2 [T1] RF AII RRW 1ПП кнг 1D dB Ref Lv J 1.76 dB VBW 300 kHz 16,59318637 MHz 20 dBm SWT Unit dBm 10 m.s 22.3 dB Offse when happen the work of MULANIANANA **1VIEW** 1MA -30 Center 5.785 GHz Span 40 MHz 4 MHz/ Date: 22.APR.2013 11:24;22

Plot 5.2.4.11. 6 dB Bandwidth, 54 Mbps 64-QAM, 5785 MHz, PCDAC Setting 57

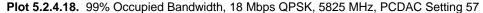


Marker 1 [Ti] 300 kHz 20 dB RRW RF AII Ref Lv J 1D.17 dBm VBW 1 MHz 5.74167335 GHz 30 dBm SWT Unit dBm 5 ms 22.3 dB Offse **▼**1 [T1] 10.17 dBm 5.74167335 GHz 7.87575150 MHZ [T1] -2.67 dBr .73598196 GHz [11] -2.58 dBr 5.75385772 GHz **TVIEW** -50 Center 5.745 GHz Span 40 MHz 4 MHz/ Date: 22.APR.2013 13:21:33


Plot 5.2.4.13. 99% Occupied Bandwidth, 9 Mbps BPSK, 5745 MHz, PCDAC Setting 57



Marker 1 [Ti] 300 kHz 20 dB RRW RF AII Ref Lv J 5.45 dBm VBW 1 MHz 5.82263527 GHz 30 dBm SWT Unit dBm 5 ms 22.3 dB Offse **▼**1 [T1] 6,45 dBm 5.82263527 GHz 7.55511022 MHZ [T1] 4.13 dB .81622244 GHz -4.09 dBi .83377756 GHz **TVIEW** Center 5.825 GHz Span 40 MHz 4 MHz/ Date: 22.APR.2013 12:55:24


Plot 5.2.4.15. 99% Occupied Bandwidth, 9 Mbps BPSK, 5825 MHz, PCDAC Setting 57



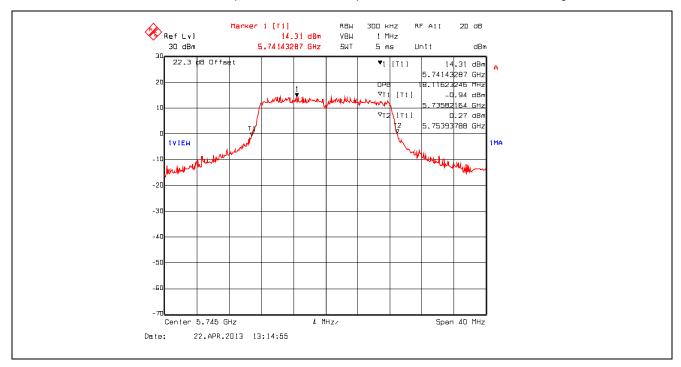
Marker 1 [T1] 300 kHz RF AII 20 dB RRW Ref Lv J 9.41 dBm VBW 1 MHz 5.78744489 GHz 30 dBm SWT Unit dBm 5 ms 22.3 dB Offse **▼**1 [T1] 9,41 dBm 5.78744489 GHz 7.39478958 MHZ [T1] _1.94 dBr 77630261 GHz -2.05 dBr i.79369<mark>739 GHz</mark> **1VIEW** -20 -50 Center 5.785 GHz Span 40 MHz 4 MHz/ Date: 22.APR.2013 13:05:42

Plot 5.2.4.17. 99% Occupied Bandwidth, 18 Mbps QPSK, 5785 MHz, PCDAC Setting 57



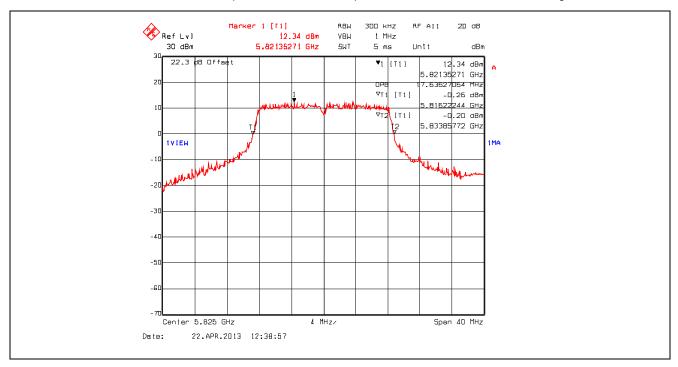
Marker i [Ti] 300 kHz RF AII 20 dB RRW Ref Lv J 11.29 dBm VBW 1 MHz 30 dBm 5.747044D9 GHz SWT Unit dBm 5 ms 22.3 dB Offse **▼**1 [T1] 11.29 dBm 5.74704409 GHz 7.23446894 MHz [T1] □.17 dBr 73638277 GHz T2 [T1] 0.15 dBr 5.75361<mark>723 GHz</mark> **1VIEW** -50 Center 5.745 GHz Span 40 MHz 4 MHz/ Date: 22.APR.2013 13:17;32

Plot 5.2.4.19. 99% Occupied Bandwidth, 36 Mbps 16-QAM, 5745 MHz, PCDAC Setting 57



Marker 1 [[1] RRW 300 kHz RF AII 20 dB Ref Lv J 9.39 dBm VBW 1 MHz 5.82808617 GHz 30 dBm SWT Unit dBm 5 ms 22.3 dB Offse **▼**1 [T1] 9.39 dBm 5.82808617 GHz 7.16430862 MHz ∇T t [T1] -0.92 dBr .81646293 GHz [T1] 0.03 dBr .83361723 GHz **TVIEW** -20 -50 Center 5.825 GHz Span 40 MHz 4 MHz/ Date: 22.APR.2013 12:48:29

Plot 5.2.4.21. 99% Occupied Bandwidth, 36 Mbps 16-QAM, 5825 MHz, PCDAC Setting 57



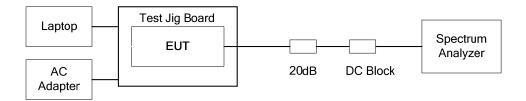
Marker 1 [Ti] 300 kHz 20 dB RRW RF AII Ref Lv J 13.21 dBm VBW 1 MHz 5.78576152 GHz 30 dBm SWT Unit dBm 5 ms 22.3 dB Offse **▼**1 [T1] 13.21 dBm 5.78576152 GHz 8.03607214 MHz [T1] -0.20 dBr .77590180 GHz -1.75 dBr . 79393788 GHz **TVIEW** the whole -50 Center 5.785 GHz Span 40 MHz 4 MHz/ Date: 22.APR.2013 13:10:03

Plot 5.2.4.23. 99% Occupied Bandwidth, 54 Mbps 64-QAM, 5785 MHz, PCDAC Setting 57

5.3. PEAK CONDUCTED OUTPUT POWER - DTS [§ 15.247(b)(3)]

5.3.1. Limit(s)

§ 15.247(b)(3): For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.


§15.247(b)(4): The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

§15.247(b)(4)(ii): Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

5.3.2. Method of Measurements & Test Arrangement

KDB Publication No. 558074 D01 DTS Meas Guidance v02, Section 8.1.1 Option 1.

5.3.3. Test Arrangement

5.3.4. Test Data

5.3.4.1. Peak Power Output for Rubber Ducky Antenna with Antenna Assembly Gain of 2.88 dBi

Operation Mode	Frequency (MHz)	Modulation / Data Rate (Mbps)	Software/ PCDAC Power Setting	Peak Conducted Power (dBm)	Peak EIRP (dBm)	Peak Conducted Power Limit (dBm)	EIRP Limit (dBm)
		BPSK / 9	57	27.92	See Notes 1 & 2	30	36
	5745	QPSK / 18	57	28.07	See Notes 1 & 2	30	36
	5745	16-QAM / 36	57	28.15	See Notes 1 & 2	30	36
		64-QAM / 54	64	29.93	See Notes 1 & 2	30	36
		BPSK / 9	57	26.60	See Notes 1 & 2	30	36
802.11a	5785	QPSK / 18	57	27.05	See Notes 1 & 2	30	36
High Power	5765	16-QAM / 36	57	27.04	See Notes 1 & 2	30	36
		64-QAM / 54	64	29.92	See Notes 1 & 2	30	36
		BPSK / 9	57	25.85	See Notes 1 & 2	30	36
	5825	QPSK / 18	57	26.37	See Notes 1 & 2	30	36
		16-QAM / 36	57	26.55	See Notes 1 & 2	30	36
		64-QAM / 54	64	29.53	See Notes 1 & 2	30	36
	5745	BPSK / 9	12	0.02	See Notes 1 & 2	30	36
		QPSK / 18	12	0.03	See Notes 1 & 2	30	36
		16-QAM / 36	12	0.01	See Notes 1 & 2	30	36
		64-QAM / 54	12	0.01	See Notes 1 & 2	30	36
	5785	BPSK / 9	12	-0.04	See Notes 1 & 2	30	36
802.11a Low		QPSK / 18	12	-0.55	See Notes 1 & 2	30	36
Power		16-QAM / 36	12	-0.48	See Notes 1 & 2	30	36
1 OWCI		64-QAM / 54	12	-0.57	See Notes 1 & 2	30	36
	5825	BPSK / 9	12	0.00	See Notes 1 & 2	30	36
		QPSK / 18	12	-1.65	See Notes 1 & 2	30	36
		16-QAM / 36	12	-1.66	See Notes 1 & 2	30	36
		64-QAM / 54	12	-0.60	See Notes 1 & 2	30	36

Notes:

^{1.} The EIRP shall be calculated based on the transmitter antenna gain (G_{dBi}) , cable loss (CL_{dB}) and peak output power at antenna terminal (P_{dBm}) . Calculated EIRP = $P_{dBm} + G_{dBi} - CL_{dB}$

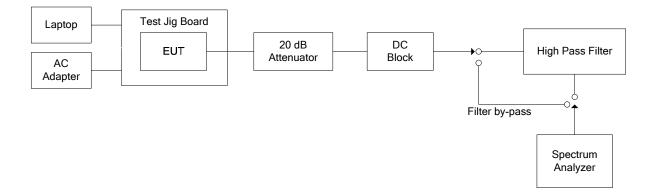
^{2.} EIRP shall not exceed 36 dBm limit (Power Setting = 36 dBm - G_{dBi} + CL_{dB}). See Operating Manual for instruction of power setting.

5.3.4.2. Peak Power Output for Patch Antenna with Antenna Assembly Gain of 19.94 dBi for Fixed, **Point to Point Operations**

Operation Mode	Frequency (MHz)	Modulation / Data Rate (Mbps)	Software/ PCDAC Power Setting	Peak Conducted Power (dBm)	Peak EIRP (dBm)	Peak Conducted Power Limit (dBm)	EIRP Limit (dBm)
		BPSK / 9	51	23.11	43.05	30	n/a
	E74E	QPSK / 18	51	23.58	43.52	30	n/a
	5745	16-QAM / 36	51	23.87	43.81	30	n/a
		64-QAM / 54	64	29.93	49.87	30	n/a
	5785	BPSK / 9	51	22.23	42.17	30	n/a
802.11a		QPSK / 18	51	22.93	42.87	30	n/a
		16-QAM / 36	51	23.06	43.00	30	n/a
		64-QAM / 54	64	29.92	49.86	30	n/a
	5825	BPSK / 9	51	21.88	41.82	30	n/a
		QPSK / 18	51	21.99	41.93	30	n/a
		16-QAM / 36	51	22.14	42.08	30	n/a
		64-QAM / 54	64	29.53	49.47	30	n/a

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

5.4. TRANSMITTER BAND-EDGE & SPURIOUS CONDUCTED EMISSIONS [§ 15.247(d)]

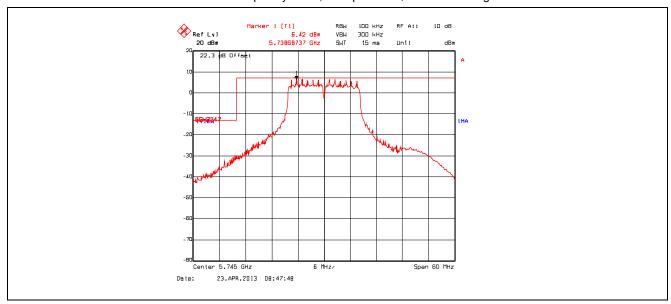

5.4.1. Limit(s)

§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

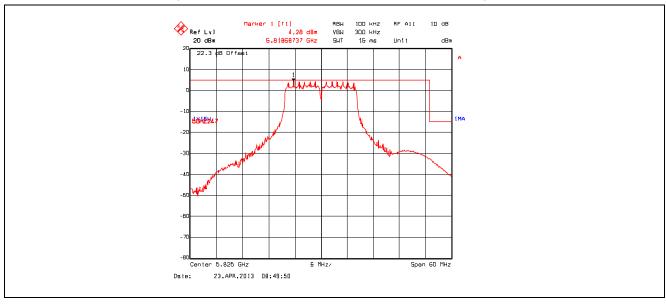
5.4.2. Method of Measurements

KDB Publication No. 558074 D01 DTS Meas Guidance v02, Section 10.2.5 Band-Edge Measurements and ANSI C63.10

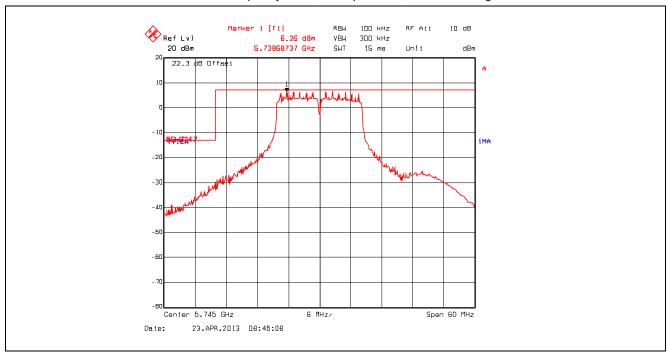
5.4.3. Test Arrangement



5.4.4. Test Data


5.4.4.1. Band-Edge RF Conducted Emissions

Remark(s): Exploratory tests performed to determined worst-case test configurations, the following test results represent the worst-case.

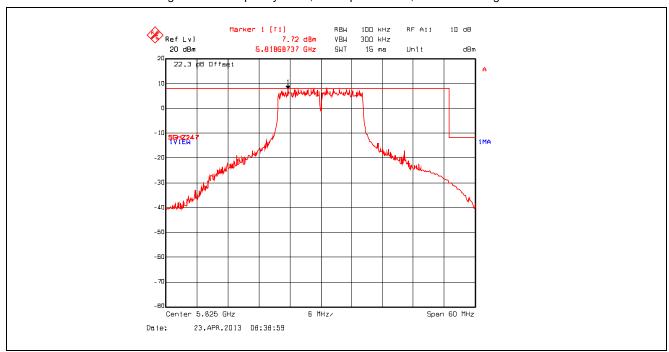

Plot 5.4.4.1.1. Band-Edge RF Conducted Emissions Low End of Frequency Band, 9 Mbps BPSK, PCDAC Setting 57

Plot 5.4.4.1.2. Band-Edge RF Conducted Emissions High End of Frequency Band, 9 Mbps BPSK, PCDAC Setting 57

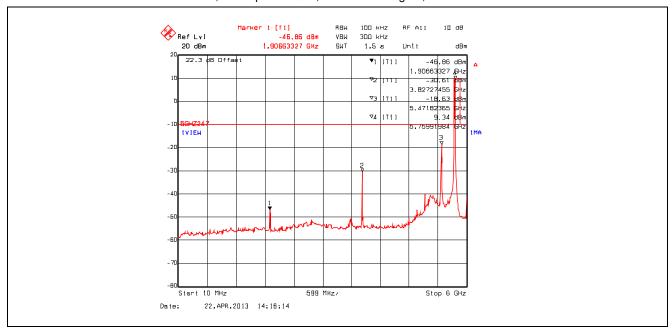
Plot 5.4.4.1.3. Band-Edge RF Conducted Emissions Low End of Frequency Band, 18 Mbps QPSK, PCDAC Setting 57

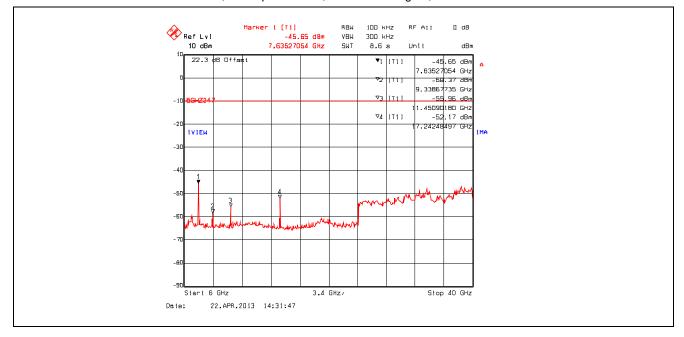
Plot 5.4.4.1.4. Band-Edge RF Conducted Emissions High End of Frequency Band, 18 Mbps QPSK, PCDAC Setting 57


Plot 5.4.4.1.5. Band-Edge RF Conducted Emissions Low End of Frequency Band, 36 Mbps 16-QAM, PCDAC Setting 57

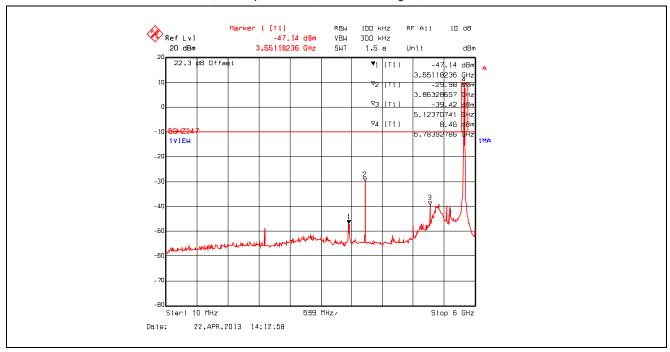

Plot 5.4.4.1.6. Band-Edge RF Conducted Emissions High End of Frequency Band, 36 Mbps 16-QAM, PCDAC Setting 57

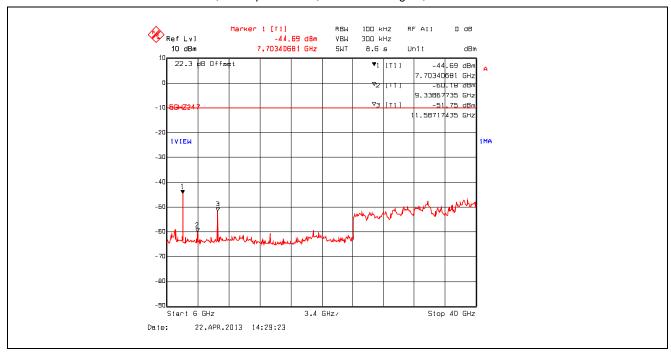
Plot 5.4.4.1.7. Band-Edge RF Conducted Emissions Low End of Frequency Band, 54 Mbps 64-QAM, PCDAC Setting 64

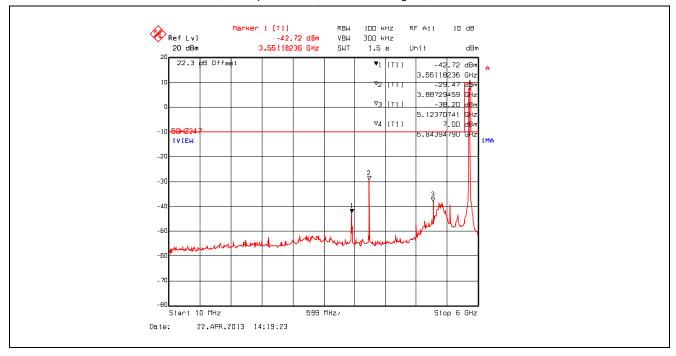

Plot 5.4.4.1.8. Band-Edge RF Conducted Emissions High End of Frequency Band, 54 Mbps 64-QAM, PCDAC Setting 64

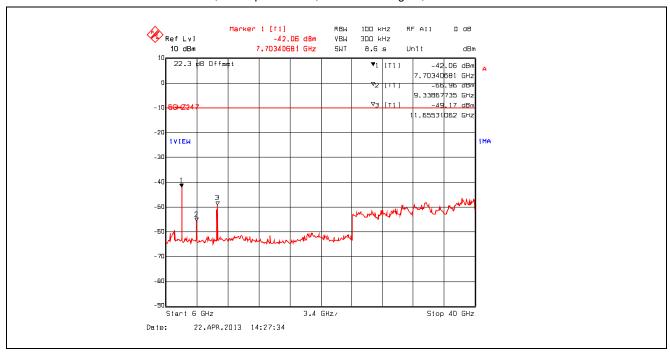

5.4.4.2. Conducted Spurious Emissions

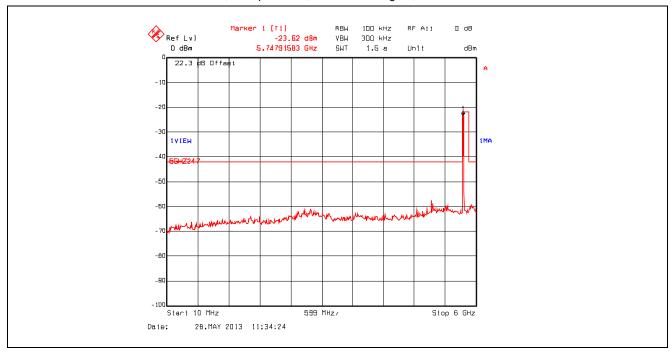
Remark: The following test results are the worst-case measurements.


Plot 5.4.4.2.1. Conducted Spurious Emissions - High Power 5745 MHz, 54 Mbps 64-QAM, PCDAC Setting 64, 10 MHz – 6 GHz

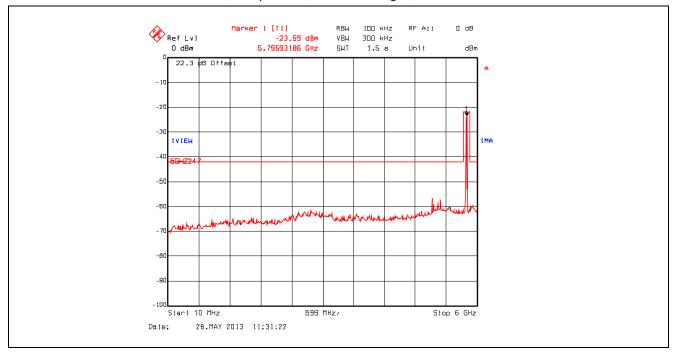

Plot 5.4.4.2.2. Conducted Spurious Emissions - High Power 5745 MHz, 54 Mbps 64-QAM, PCDAC Setting 64, 6 GHz – 40 GHz


Plot 5.4.4.2.3. Conducted Spurious Emissions - High Power 5785 MHz, 54 Mbps 64-QAM, PCDAC Setting 64, 10 MHz – 6 GHz

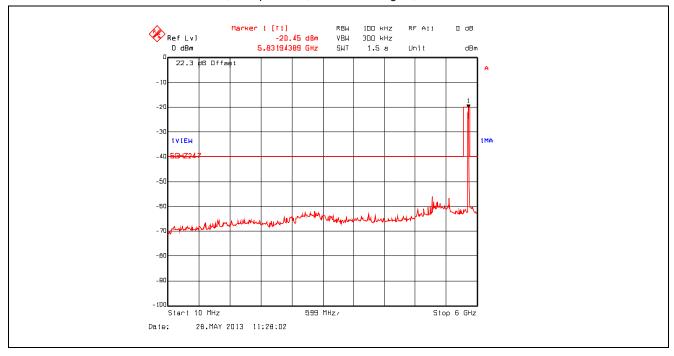

Plot 5.4.4.2.4. Conducted Spurious Emissions - High Power 5785 MHz, 54 Mbps 64-QAM, PCDAC Setting 64, 6 GHz – 40 GHz


Plot 5.4.4.2.5. Conducted Spurious Emissions - High Power 5825 MHz, 54 Mbps 64-QAM, PCDAC Setting 64, 10 MHz – 6 GHz


Plot 5.4.4.2.6. Conducted Spurious Emissions - High Power 5825 MHz, 54 Mbps 64-QAM, PCDAC Setting 64, 6 GHz – 40 GHz


Plot 5.4.4.2.7. Conducted Spurious Emissions - Low Power 5745 MHz, 9 Mbps BPSK, PCDAC Setting 12, 10 MHz – 6 GHz

Plot 5.4.4.2.8. Conducted Spurious Emissions - Low Power 5745 MHz, 9 Mbps BPSK, PCDAC Setting 12, 6 GHz – 40 GHz


Plot 5.4.4.2.9. Conducted Spurious Emissions - Low Power 5785 MHz, 9 Mbps BPSK, PCDAC Setting 12, 10 MHz – 6 GHz

Plot 5.4.4.2.10. Conducted Spurious Emissions - Low Power 5785 MHz, 9 Mbps BPSK, PCDAC Setting 12, 6 GHz – 40 GHz

Plot 5.4.4.2.11. Conducted Spurious Emissions - Low Power 5825 MHz, 9 Mbps BPSK, PCDAC Setting 12, 10 MHz – 6 GHz

Plot 5.4.4.2.12. Conducted Spurious Emissions - Low Power 5825 MHz, 9 Mbps BPSK, PCDAC Setting 12, 6 GHz – 40 GHz

5.5. TRANSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205]

5.5.1. Limit

§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Section 15.205(a) - Restricted Bands of Operation

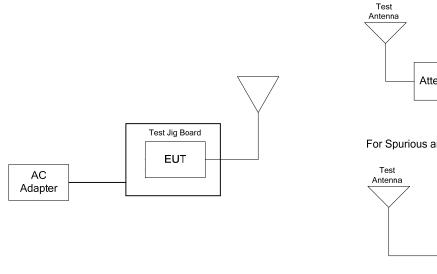
MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
1 0.495–0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125–4.128	25.5-25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108-121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9-150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675	156.7-156.9	2655–2900	22.01–23.12
8.41425–8.41475	162.0125-167.17	3260-3267	23.6–24.0
12.29–12.293	167.72-173.2	3332–3339	31.2–31.8
12.51975–12.52025	240-285	3345.8–3358	36.43–36.5
12.57675–12.57725	322-335.4	3600–4400	(2)
13.36–13.41.			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

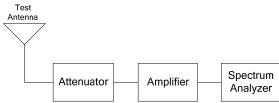
Section 15.209(a) - Field Strength Limits within Restricted Frequency Bands

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2,400 / F (kHz)	300
0.490 - 1.705	24,000 / F (kHz)	30
1.705 - 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 – 960	200	3
Above 960	500	3

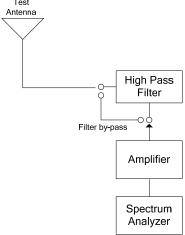
File #: MCRS-060F15C247


May 29, 2013

² Above 38.6


5.5.2. **Method of Measurements**

ANSI C63.10 and ANSI 63.4 procedures.


5.5.3. Test Arrangement

For Band-Edge

For Spurious and Harmonics

5.5.4. Test Data

Remark(s):

- All spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- EUT shall be tested in three orthogonal positions.
- The following test results are the worst-case measurements, derived from exploratory tests.

5.5.4.1. EUT with 4 dBi Rubber Ducky Antenna and 1.12 dB Assembly Cable Loss

5.5.4.1.1. Spurious Radiated Emissions

Fundamental Frequency: 5745 MHz

Power Setting and Operating Mode: 29.93 dBm, 54 Mbps 64-QAM, PCDAC Setting 64

30 MHz - 40 GHz Frequency Test Range:

Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
5745	120.23		V				
5745	120.75		Н				
11490	70.52	53.69	V	54.0	100.8	-0.3	Pass*
11490	69.41	52.61	Н	54.0	100.8	-1.4	Pass*

All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

Fundamental Frequency: 5785 MHz

Power Setting and Operating Mode: 29.92 dBm, 54 Mbps 64-QAM, PCDAC Setting 64

Frequency Test Range: 30 MHz - 40 GHz

Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
5785	119.38		V				
5785	121.68		Н				
11570	70.39	53.03	V	54.0	101.7	-1.0	Pass*
11570	69.46	52.63	Н	54.0	101.7	-1.4	Pass*

All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

Fundamental Frequency: 5825 MHz

Power Setting and Operating Mode: 29.53 dBm, 54 Mbps 64-QAM, PCDAC Setting 64

Frequency Test Range: 30 MHz – 40 GHz

Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
5825	121.25		V				
5825	122.02		Н				
11650	69.52	51.22	V	54.0	102.0	-2.8	Pass*
11650	67.55	50.94	Н	54.0	102.0	-3.1	Pass*

All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

5.5.4.1.2. Band-Edge RF Radiated Emissions

Plot 5.5.4.1.2.1. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Low End of Frequency Band, 54 Mbps 64-QAM, PCDAC Setting 64

Plot 5.5.4.1.2.2. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization High End of Frequency Band, 54 Mbps 64-QAM, PCDAC Setting 64

Plot 5.5.4.1.2.3. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Low End of Frequency Band, 54 Mbps 64-QAM, PCDAC Setting 64

Plot 5.5.4.1.2.4. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization High End of Frequency Band, 54 Mbps 64-QAM, PCDAC Setting 64

5.5.4.2. EUT with 23 dBi Patch Antenna and 3.06 dB Assembly Cable Loss

5.5.4.2.1. Spurious Radiated Emissions

Fundamental Frequency: 5745 MHz

Power Setting and Operating Mode: 29.93 dBm, 54 Mbps 64-QAM, PCDAC Setting 64

Frequency Test Range: 30 MHz – 40 GHz

Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
5745	139.14		V				
5745	139.21		Н				
11490	69.14	51.96	V	54.0	119.2	-2.0	Pass*
11490	69.56	53.63	Н	54.0	119.2	-0.4	Pass*

All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

Fundamental Frequency: 5785 MHz

Power Setting and Operating Mode: 29.92 dBm, 54 Mbps 64-QAM, PCDAC Setting 64

Frequency Test Range: 30 MHz – 40 GHz

Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
5785	137.79		V				
5785	138.01		Н				
11570	67.97	51.70	V	54.0	118.0	-2.3	Pass*
11570	69.96	53.76	Н	54.0	118.0	-0.2	Pass*

All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

Fundamental Frequency: 5825 MHz

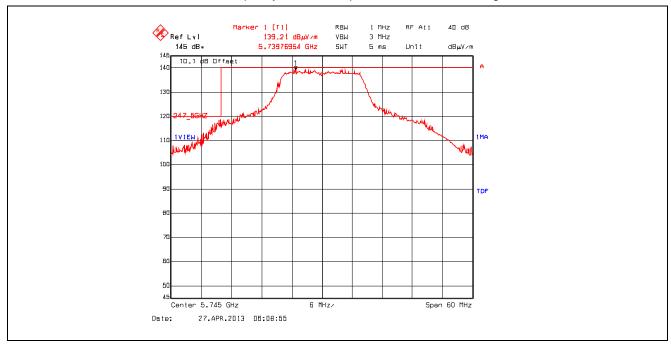
Power Setting and Operating Mode: 29.53 dBm, 54 Mbps 64-QAM, PCDAC Setting 64

Frequency Test Range: 30 MHz – 40 GHz

Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
5825	137.17		V				
5825	137.82		Н				
11650	66.21	49.95	V	54.0	117.8	-4.1	Pass*
11650	69.36	52.80	Н	54.0	117.8	-1.2	Pass*

All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

ULTRATECH GROUP OF LABS


^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

^{*}Field strength of emissions appearing within restricted frequency bands shall not exceed the limits in § 15.209.

5.5.4.2.2. Band-Edge RF Radiated Emissions

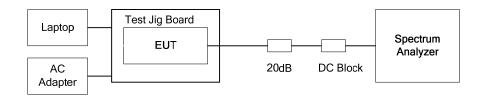
Plot 5.5.4.2.2.1. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization Low End of Frequency Band, 54 Mbps 64-QAM, PCDAC Setting 64

Plot 5.5.4.2.2.2. Band-Edge RF Radiated Emissions at 3 m, Horizontal Polarization High End of Frequency Band, 54 Mbps 64-QAM, PCDAC Setting 64

Plot 5.5.4.2.2.3. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization Low End of Frequency Band, 54 Mbps 64-QAM, PCDAC Setting 64

Plot 5.5.4.2.2.4. Band-Edge RF Radiated Emissions at 3 m, Vertical Polarization High End of Frequency Band, 54 Mbps 64-QAM, PCDAC Setting 64

5.6. POWER SPECTRAL DENSITY [§ 15.247(e)]


5.6.1. Limit(s)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

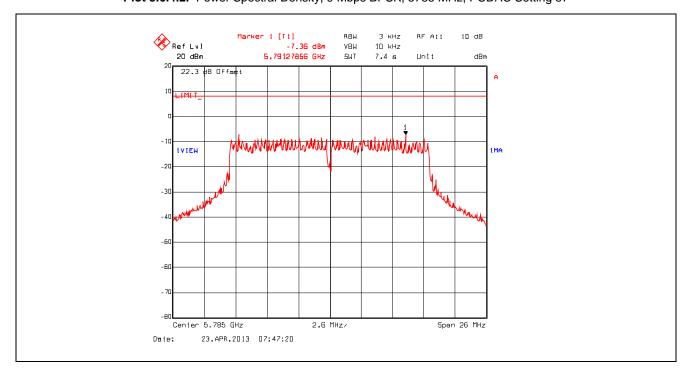
5.6.2. Method of Measurements

KDB Publication No. 558074 D01 DTS Meas Guidance v02, Section 9.1 Option 1.

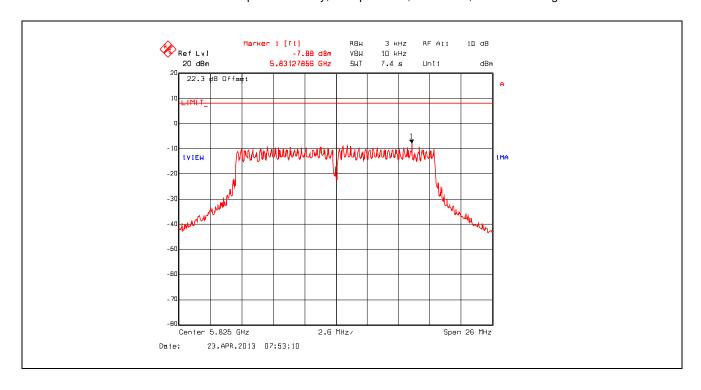
5.6.3. Test Arrangement

5.6.4. Test Data

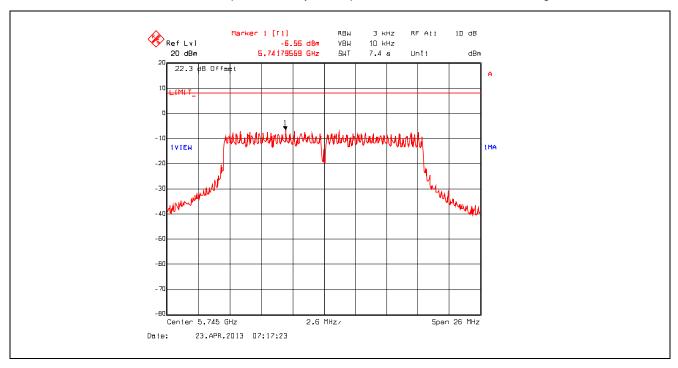
Remark: Measurement method: Section 9.1 Option 1 Peak Power Spectral Density


Operating Mode	Frequency (MHz)	*PSD in 3 kHz BW (dBm)	Limit (dBm)	Margin (dB)
	5745	-7.03	8	-15.03
9 Mbps BPSK	5785	-7.36	8	-15.36
	5825	-7.88	8	-15.88
	5745	-6.56	8	-14.56
18 Mbps QPSK	5785	-7.48	8	-15.48
	5825	-9.00	8	-17.00
	5745	-6.33	8	-14.33
36 Mbps 16-QAM	5785	-9.00	8	-17.00
	5825	-8.47	8	-16.47
	5745	-4.24	8	-12.24
54 Mbps 64-QAM	5785	-5.77	8	-13.77
	5825	-5.98	8	-13.98

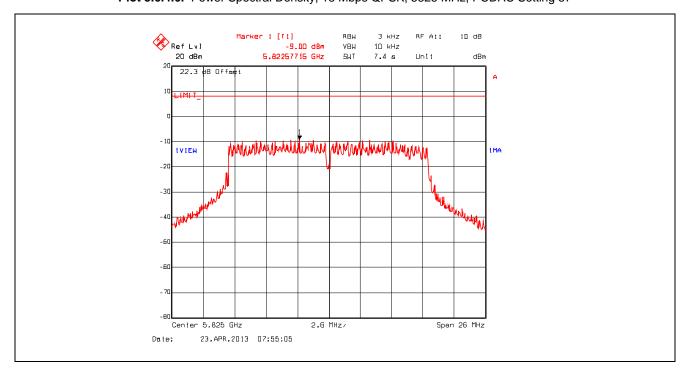
See the following plots for measurement details.


Marker 1 [T1] 1D dB 3 kHz RF AII Ref Lvl -7.D3 dBm VBW 10 kHz 20 dBm 5.74377555 GHz 5WT 7.4 s Unit dBm 22.3 dB Offset utajinduthauhantun pultuanindunghunghudhanh 1 V I EW Center 5.745 GHz 2.6 MHz/ Span 26 MHz 23.APR.2013 07:15:25 Date:

Plot 5.6.4.1. Power Spectral Density, 9 Mbps BPSK, 5745 MHz, PCDAC Setting 57

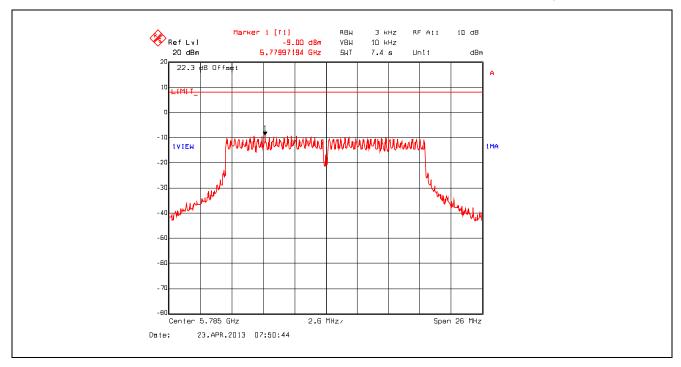


Plot 5.6.4.3. Power Spectral Density, 9 Mbps BPSK, 5825 MHz, PCDAC Setting 57


Plot 5.6.4.4. Power Spectral Density, 18 Mbps QPSK, 5745 MHz, PCDAC Setting 57

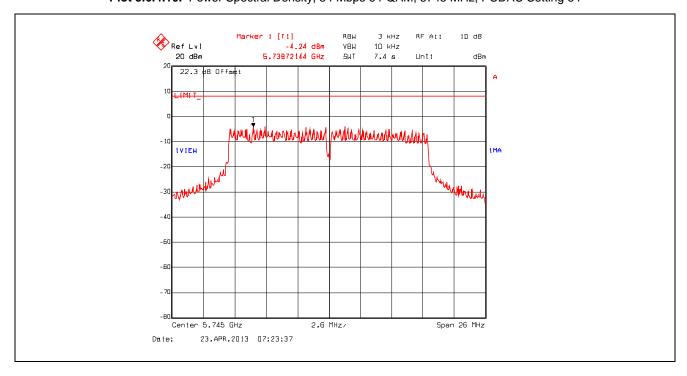
Marker 1 [T1] 111 dB 3 kHz RF AII Ref Lvl -7.48 dBm VBW 10 kHz 20 dBm 5.78909018 GHz 5WT 7.4 s Unit dBm 22.3 dB Offaet 1 V I EW -20 2.6 MHz/ Center 5.785 GHz Span 26 MHz 23.APR.2013 07:49:02 Date:

Plot 5.6.4.5. Power Spectral Density, 18 Mbps QPSK, 5785 MHz, PCDAC Setting 57



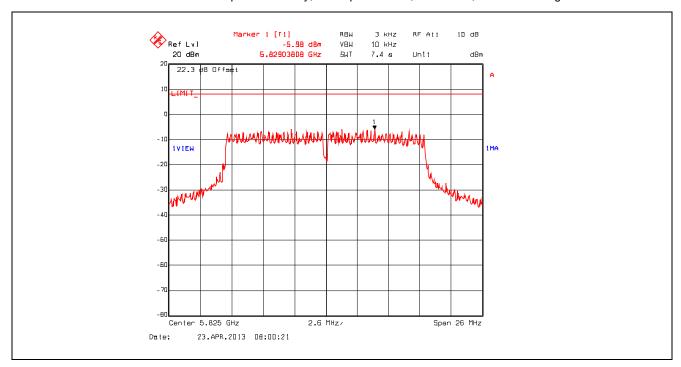
Marker 1 [T1] 1D dB RRW 3 kHz RF All Ref Lvl -6.33 dBm VBW 10 kHz 20 dBm 5.741535D7 GHz 5WT 7.4 s Unit dBm 22.3 dB Offset www.hardellering 1 V I EW Center 5.745 GHz 2.6 MHz/ Span 26 MHz 23.APR.2013 07:20:25 Date:

Plot 5.6.4.7. Power Spectral Density, 36 Mbps 16-QAM, 5745 MHz, PCDAC Setting 57



Marker 1 [T1] 111 dB RRW 3 kHz RF AII Ref Lvl -B.47 dBm VBW 10 kHz 5.82997595 GHz 20 dBm 5WT 7.4 s Unit dBm 22.3 dB Offaet 1 V I EW -20 Center 5.825 GHz 2.6 MHz/ Span 26 MHz 23.APR.2013 07:57:49 Date:

Plot 5.6.4.9. Power Spectral Density, 36 Mbps 16-QAM, 5825 MHz, PCDAC Setting 57



Marker 1 [T1] 1D dB 3 kHz RF All Ref Lvl -5.77 dBm VBW 10 kHz 5.78684970 GHz 20 dBm 5WT 7.4 s Unit dBm 22.3 dB Offset Maring Maring James James Maring Mari 1 V I EW Center 5.785 GHz 2.6 MHz/ Span 26 MHz 23.APR.2013 07:33:26 Date:

Plot 5.6.4.11. Power Spectral Density, 54 Mbps 64-QAM, 5785 MHz, PCDAC Setting 64

5.7. RF EXPOSURE REQUIRMENTS [§§ 15.247(i), 1.1310 & 2.1091]

The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation.

FCC 47 CFR § 1.1310:

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f2)	6
30–300	61.4	0.163	1.0	6
300–1500			f/300	6
1500–100,000			5	6
(B) Limits t	for General Populati	on/Uncontrolled Exp	oosure	
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30
30–300	27.5	0.073	0.2	30
300–1500			f/1500	30
1500–100,000			1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.
Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for
exposure or can not exercise control over their exposure.

exposure or can not exercise control over their exposure.

5.7.1. Method of Measurements

Refer to Sections 1.1310, 2.1091

In order to demonstrate compliance with MPE requirements (see Section 2.1091), the following information is typically needed:

- (1) Calculation that estimates the minimum separation distance (20 cm or more) between an antenna and persons required to satisfy power density limits defined for free space.
- (2) Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement
- (3) Any caution statements and/or warning labels that are necessary in order to comply with the exposure limits
- (4) Any other RF exposure related issues that may affect MPE compliance

File #: MCRS-060F15C247

Calculation Method of RF Safety Distance:

$$S = \frac{P \cdot G}{4 \cdot \pi \cdot r^2} = \frac{EIRP}{4 \cdot \pi \cdot r^2}$$

Where: P: power input to the antenna in mW

EIRP: Equivalent (effective) isotropic radiated power

S: power density mW/cm²

G: numeric gain of antenna relative to isotropic radiator

r: distance to centre of radiation in cm

5.7.2. RF Evaluation

Evaluation of RF Exposi	Evaluation of RF Exposure Compliance Requirements							
RF Exposure Requirements	Compliance with FCC Rules							
Minimum calculated separation distance between antenna and persons required: *18 cm (For EIRP ≤ 36 dBm) and 88 cm (for fixed, point to point operations)	Manufacturer' instruction for separation distance between antenna and persons required: 23 cm (For EIRP ≤ 36 dBm) and 88 cm (for fixed, point to point operations)							
Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement	Antenna installation and device operating instructions shall be provided to installers to maintain and ensure compliance with RF exposure requirements.							
Caution statements and/or warning labels that are necessary in order to comply with the exposure limits	Refer to User's Manual for RF Exposure Information.							
Any other RF exposure related issues that may affect MPE compliance	None.							

^{*}The minimum separation distance between the antenna and bodies of users are calculated using the following formula:

RF EXPOSURE DISTANCE LIMITS

$$r = \sqrt{\frac{P \cdot G}{4 \cdot \pi \cdot S}} = \sqrt{\frac{EIRP}{4 \cdot \pi \cdot S}}$$

For EIRP < 36 dBm

 $S = 1.0 \text{ mW/cm}^2$ EIRP = $36 \text{ dBm} = 10^{36/10} \text{ mW} = 3981 \text{ mW (Worst Case)}$

$$\text{(Minimum Safe Distance, r)} = \sqrt{\frac{EIRP}{4 \cdot \pi \cdot S}} = \sqrt{\frac{3981}{4 \cdot \pi \cdot (1.0)}} \approx 18cm \qquad \text{(Minimum Safe Distance, r)} = \sqrt{\frac{EIRP}{4 \cdot \pi \cdot S}} = \sqrt{\frac{97051}{4 \cdot \pi \cdot (1.0)}} \approx 88cm$$

For fixed, point to point operations

 $S = 1.0 \text{ mW/cm}^2$ EIRP = $49.87 \text{ dBm} = 10^{49.87/10} \text{ mW} = 97051 \text{ mW} \text{ (Worst Case)}$

(Minimum Safe Distance, r) =
$$\sqrt{\frac{EIRP}{4 \cdot \pi \cdot S}} = \sqrt{\frac{97051}{4 \cdot \pi \cdot (1.0)}} \approx 88cm$$

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSEK30	100077	20Hz-40 GHz	02 Nov 2013
Attenuator	Narda	4768-20	6	DC-40 GHz	Cal on use
DC Block	Hewlett Packard	11742A	12460	0.045–26.5 GHz	Cal on use
Spectrum Analyzer	Agilent	E7401A	US40240432	9 kHz–1.5 GHz	01 May 2013*
Attenuator	Pasternack	PE7010-20	-	DC-2 GHz	11 Jan 2014
L.I.S.N	EMCO	3810/2	2209	9 kHz -30 MHz	28 Aug 2013
High Pass Filter	K&L	11SH10- 8000/T18000	3	Cut off 5 GHz	Cal on use
RF Amplifier	Hewlett Packard	84498	3008A00769	1 – 26.5 GHz	06 Aug 2013
Attenuator	Pasternack	PE7024-10	4	DC-26.5 GHz	Cal on use
Horn Antenna	EMCO	3155	5955	1 – 18 GHz	07 Mar 2014
Spectrum Analyzer	Rohde & Schwarz	ESU40	100033	20 Hz – 40 GHz	07 Mar 2014
RF Amplifier	AH System	PAM-0118	225	20 MHz – 18 GHz	25 Mar 2014
Biconi-Log Antenna	ETS Lindgren	3142B	1575	26 – 3000 MHz	04 May 2013*
Horn Antenna	EMCO	3160-09	118385	18 – 26.5 GHz	30 July 2014
Horn Antenna	EMCO	3160-10	102686	26– 40 GHz	30 July 2014

^{*} Equipment was used in the period of April 21- 27, 2013.

EXHIBIT 7. **MEASUREMENT UNCERTAINTY**

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) - Guide to the Expression of Uncertainty in Measurement.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

	Line Conducted Emission Measurement Uncertainty (9 kHz – 30 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.44	<u>+</u> 1.8
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 2.89	<u>+</u> 3.6

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: $U = 2u_c(y)$	<u>+</u> 4.79	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} \sum_{l=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: $U = 2u_c(y)$	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured (dB)	Limit (dB)
u _c	Combined standard uncertainty: $u_c(y) = \sqrt[m]{\sum_{l=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration