A. Approved Antennas

Group	Part Number	Description
Rubber Ducky		
	MHS031100	2dBi, 2.4GHz Rubber Ducky Antenna RPTNC Swivel
	MHS031110	2dBi, 2.4GHz Rubber Ducky Antenna Reverse SMA Swivel
	MHS031120	2dBi, 2.4GHz Rubber Ducky Antenna Reverse SMA Straight
Transit Antenna	ıs	
	MHS031270	3 dBi, 2.4GHz Transit Antenna Magnetic Mount with Ground Plane
	MHS031290	3 dBi, 2.4GHz Transit Antenna Permanent Mount with Ground Plane
	MHS034300	3 dBi, 2.4GHz Compact Omni Antenna w/ Magnetic Base
		Mounts for Transit Antennas have a RPTNC Pigtail
Patch Antennas		
	MHS034200	8 dBi, 2.4GHz Mini Flat Patch Directional Antenna RPTNC Pigtail
	MHS034210	14 dBi, 2.4GHz Flat Patch Directional Antenna RPTNC Pigtail
Yagi Antennas		
	MHS034100	9 dBi, 2.4GHz Yagi Directional Antenna RPTNC Pigtail
	MHS034110	12 dBi, 2.4GHz Yagi Directional Antenna RPTNC Pigtail
	MHS034120	14 dBi, 2.4GHz Yagi Directional Antenna RPTNC Pigtail
	MHS034150	14.5 dBi, 2.4GHz Yagi Directional Antenna RPTNC Pigtail
Omni Directiona	al	
	MHS031260	5 dBi, Omni Directional Antenna RPTNC Pigtail
	MHS034000	6 dBi, 2.4GHz Omni Directional Antenna RPTNC Pigtail
	MHS031340	8 dBi, Omni Directional Antenna RPTNC Pigtail
	MHS034020	10.5 dBi, 2.4GHz Omni Directional Antenna RPTNC Pigtail
	MHS034030	12 dBi, 2.4GHz Omni Directional Antenna RPTNC Pigtail
	MHS034040	15 dBi, 2.4GHz Omni Directional Antenna RPTNC Pigtail

Changes or modifications not expressly approved by Microhard Systems Inc. could void the user's authority to operate the equipment. This device has been tested with MCX and Reverse Polarity SMA connectors with the antennas listed in Appendix A When integrated in OEM products, fixed antennas require installation preventing end-users from replacing them with non-approved antennas. Antennas not listed in the tables must be tested to comply with FCC Section 15.203 (unique antenna connectors) and Section 15.247 (emissions). Please Contact Microhard Systems Inc. if you need more information.

Industry Canada: This device has been designed to operate with the antennas listed below, and having a maximum gain of 14.2 dBi. Antennas not included in this list or having a gain greater than 14.2 dBi are strictly prohibited for use with this device. The required antenna impedance is 50 ohms. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (EIRP) is not more than that required for successful communication.