

RF EXPOSURE REPORT

REPORT NO.: SA140828E03

MODEL NO.: D5001, D3001, D3003

FCC ID: NQ8D5001

RECEIVED: Aug. 28, 2014

TESTED: Sep. 23, 2014

ISSUED: Oct. 03, 2014

APPLICANT: Pace Micro Technology plc

ADDRESS: Saltaire, Shipley, West Yorkshire, BD18 3LF,

UK

ISSUED BY: Bureau Veritas Consumer Products Services

(H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory

LAB ADDRESS: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan,

R.O.C.

TEST LOCATION (1): No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan,

 $R \cap C$

TEST LOCATION (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan,

R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

TABLE OF CONTENTS

REL	EASE CONTROL RECORD	.3
1.	CERTIFICATION	. 4
2.	RF EXPOSURE LIMIT	. 5
3.	MPE CALCULATION FORMULA	. 5
4.	CLASSIFICATION	. 5
5.	ANTENNA GAIN	. 6
6.	CALCULATION RESULT OF MAXIMUM CONDUCTED POWER	. 7

RELEASE CONTROL RECORD

ISSUE NO. REASON FOR CHANGE		DATE ISSUED
SA140828E03	Original release	Oct. 03, 2014

Report No.: SA140828E03 3 of 11 Report Format Version 5.0.1

1. CERTIFICATION

PRODUCT:

DOCSIS 3.0 Wireless Gateway Router with MOCA 2.0

BRAND NAME:

Pace

MODEL NO.:

D5001, D3001, D3003

TEST SAMPLE:

ENGINEERING SAMPLE

APPLICANT:

Pace Micro Technology plc

TESTED DATE:

Sep. 23, 2014

STANDARDS:

FCC Part 2 (Section 2.1091)

KDB 447498 D03

IEEE C95.1

The above equipment (Model: D5001) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: (Midoli Peng, Specialist)

Date: Oct. 03. 2014

Date: Oct. 03, 2014

2. RF EXPOSURE LIMIT

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

FREQUENCY RANGE (MHz)	ELECTRIC FIELD STRENGTH (V/m)	POWER DENSITY (mW/cm²)	AVERAGE TIME (minutes)					
LIMITS FOR GENERAL POPULATION / UNCONTROLLED EXPOSURE								
300-1500			F/1500	30				
1500-100,000			1.0	30				

F = Frequency in MHz

3. MPE CALCULATION FORMULA

 $Pd = (Pout*G) / (4*pi*r^2)$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

pi = 3.1416

r = distance between observation point and center of the radiator in cm

4. CLASSIFICATION

The antenna of this product, under normal use condition, is at least 35cm away from the body of the user. So, this device is classified as **Mobile Device**.

5. ANTENNA GAIN

There are six antennas provided to this EUT, please refer to the following table:

Antenna No.	Transmitter Circuit	Brand	Model	Gain (dBi) (Include cable loss)	Frequency range (GHz to GHz)	Antenna Type	Connecter Type	Cable Length (mm)
LB1	2	Galtronics	02102073-05762B1	2.84	2.4~2.4835	Dipole	i-pex(MHF)	310
LB2	0	Galtronics	02102073-05762C1	3.8	2.4~2.4835	РСВ	i-pex(MHF)	161
LB3	1	Galtronics	02102073-05762A1	4.87	2.4~2.4835	РСВ	i-pex(MHF)	66
HB1	0	Galtronics	02102142-05762B2	5.50 5.27	5.15~5.35 5.47~5.85	Dipole	i-pex(MHF)	130
HB2	2	Galtronics	02102142-05762B1	4.75 5.68	5.15~5.35 5.47~5.85	Dipole	i-pex(MHF)	80
HB3	1	Galtronics	02102142-05762B3	4.03 5.74	5.15~5.35 5.47~5.85	Dipole	i-pex(MHF)	170

6. CALCULATION RESULT OF MAXIMUM CONDUCTED POWER

For WLAN: 15.247(2.4GHz)
For Mode 1 (3TX / CDD Mode)

802.11b

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
2412 - 2462	808.083	8.65	35	0.38469	1.00

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 8.65 dBi$

802.11g

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
2412 - 2462	986.932	8.65	35	0.46983	1.00

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 8.65 dBi$

802.11n (HT20)

FREQUENCY BAND (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
2412 - 2462	995.844	8.65	35	0.47407	1.00

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 8.65 dBi$

802.11n (HT40)

FREQUENCY BAND (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
2422 - 2452	254.792	8.65	35	0.12129	1.00

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 8.65 dBi$

For Mode 2 (3TX / Beamforming Mode)

802.11n (HT20)

FREQUENCY BAND (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
2412 - 2462	531.12	8.65	35	0.25284	1.00

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 8.65dBi$

802.11n (HT40)

	EQUENCY BAND (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
242	22 - 2452	254.792	8.65	35	0.12129	1.00

NOTE: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 8.65 dBi$

For WLAN: 15.407(5GHz) For Mode 1 (3TX / CDD Mode)

802.11a

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
5180 – 5240 & 5745 - 5825	678.435	10.34	35	0.47661	1.00

NOTE: 1. 5150~5250MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 9.55dBi$

2. $5725\sim5850$ MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 10.34$ dBi

802.11ac (VHT20)

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
5180 – 5240 & 5745 - 5825	704.784	10.34	35	0.49512	1.00

NOTE: 1. 5150~5250MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 9.55dBi$

2. $5725 \sim 5850$ MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 10.34$ dBi

802.11ac (VHT40)

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
5190 – 5230 & 5755 - 5795	630.307	10.34	35	0.44280	1.00

NOTE: 1. 5150~5250MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 9.55dBi$

2. $5725 \sim 5850$ MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 10.34$ dBi

802.11ac (VHT80)

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
5210 & 5775	171.995	10.34	35	0.12083	1.00

NOTE: 1. 5150~5250MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 9.55dBi$

2. $5725\sim5850$ MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 10.34$ dBi

For Mode 2 (3TX / Beamforming Mode)

802.11ac (VHT20)

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
5180 – 5240 & 5745 - 5825	398.179	9.55	35	0.23320	1.00

NOTE: 1. 5150~5250MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 9.55dBi$

2. $5725 \sim 5850$ MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 10.34$ dBi

802.11ac (VHT40)

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
5190 – 5230 & 5755 - 5795	359.682	10.34	35	0.25268	1.00

NOTE: 1. 5150~5250MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 9.55dBi$

2. 5725~5850MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 10.34dBi$

802.11ac (VHT80)

FREQUENCY (MHz)	CONDUCTED POWER (mW)	ANTENNA GAIN (dBi)	DISTANCE (cm)	POWER DENSITY (mW/cm²)	LIMIT (mW/cm²)
5210 & 5775	171.995	10.34	35	0.12083	1.00

NOTE: 1. 5150~5250MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 9.55dBi$

2. $5725 \sim 5850$ MHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20})^2 / 3] = 10.34$ dBi

10 of 11

CONCLUSION:

Both of the 2.4GHz and 5GHz can transmit simultaneously, the formula of calculated the MPE is:

CPD₁ / LPD₁ + CPD₂ / LPD₂ +etc. < 1 CPD = Calculation power density LPD = Limit of power density

Therefore, the worst-case situation is 0.47407 / 1 + 0.49512 / 1 = 0.969, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

-- END ---