

TEST REPORT

Test Report No. : 4788881257.1
Applicant: PC Partner Limited
FCC ID: NPFH142
Product Description: LED Wristband
Trade Mark: -
Model Number: H142-Rechargeable
Listed Model(s) H142-CR2032
Test Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of Test: Mar.15,2019 – Mar.29,2019
Issued by UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch
Address: Room 101, Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Prepared by:

Gary Zhang / Project Engineer

Approved by:

Stephen Guo / Laboratory Manager

This test report consists of 37 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch. The test results in the report only apply to the tested sample.

The issuance of this report in no way implies Listing, Classification or Recognition by UL and does not authorize the use of UL Listing, Classification or Recognition Marks or any other reference to UL on the product or system. UL LLC authorizes the above named company to reproduce this Report provided it is reproduced in its entirety. UL's name or marks cannot be used in any packaging, advertising, promotion or marketing relating to the data in this Report, without UL's prior written permission. UL LLC, its employees, and its agents shall not be responsible to anyone for the use or nonuse of the information contained in this Report, and shall not incur any obligation or liability for damages, including consequential damages, arising out of or in connection with the use of, or inability to use, the information contained in this Report.

UL Verification Services (Guangzhou) Co.,Ltd,Song Shan Lake Branch

Contents

<u>1. TEST STANDARDS AND REPORT VERSION</u>	<u>3</u>
1.1. Test Standards	3
1.2. Report version	3
<u>2. TEST DESCRIPTION</u>	<u>4</u>
<u>3. SUMMARY</u>	<u>5</u>
3.1. Client Information	5
3.2. Product Description	5
3.3. Operation state	6
3.4. EUT configuration	7
3.5. Modifications	7
<u>4. TEST ENVIRONMENT</u>	<u>8</u>
4.1. Address of the test laboratory	8
4.2. Test Facility	8
4.3. Environmental conditions	9
4.4. Statement of the measurement uncertainty	9
4.5. Equipments Used during the Test	10
<u>5. TEST CONDITIONS AND RESULTS</u>	<u>12</u>
5.1. Antenna Requirement	12
5.2. Conducted Emissions (AC Main)	13
5.3. Conducted Peak Output Power	16
5.4. Power Spectral Density	18
5.5. 6dB bandwidth	20
5.6. Restricted band	22
5.7. Band edge and Spurious Emissions (conducted)	24
5.8. Spurious Emissions (radiated)	29
<u>6. TEST SETUP PHOTOS</u>	<u>34</u>
<u>7. EXTERANAL AND INTERNAL PHOTOS</u>	<u>36</u>

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

[FCC Rules Part 15.247](#): Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

[ANSI C63.10:2013](#): American National Standard for Testing Unlicensed Wireless Devices

[KDB 558074 D01 15.247 Meas Guidance v05r01](#): Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	2019-03-29	Original

2. TEST DESCRIPTION

Test Item	FCC Rule	Result	Test Engineer
Antenna requirement	15.203/15.247(c)	PASS	Xiaokang Tan
Line Conducted Emissions (AC Main)	15.207	PASS	Michael Jiao
Conducted Peak Output Power	15.247(b)(3)	PASS	Xiaokang Tan
Power Spectral Density	15.247(e)	PASS	Xiaokang Tan
6dB Bandwidth	15.247(a)(2)	PASS	Xiaokang Tan
Restricted band	15.247(d)/15.205	PASS	Xiaokang Tan
Spurious Emissions	15.247(d)/15.209	PASS	Xiaokang Tan

Note: The measurement uncertainty is not included in the test result.

3. SUMMARY

3.1. Client Information

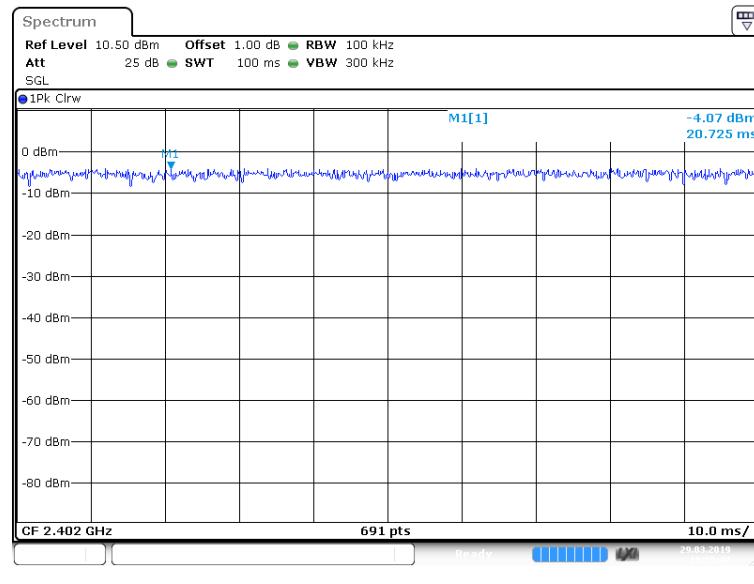
Applicant:	PC Partner Limited
Address:	19/F., Shatin Galleria, 18-24 Shan Mei Street, Fo Tan, Shatin, N.T., Hong Kong
Manufacturer:	PC Partner Limited
Address:	19/F., Shatin Galleria, 18-24 Shan Mei Street, Fo Tan, Shatin, N.T., Hong Kong

3.2. Product Description

Name of EUT:	LED Wristband
Trade Mark:	-
Model No.:	H142-Rechargeable
Listed Model(s):	H142-CR2032
Model difference:	The product model(s) H142-CR2032 is the same PCB layout, electronic schematic and Antenna with H142-Rechargeable, the only difference is the different model names and power supply methods for commercial use.
Power supply:	DC 3.8V from lithium polymer battery for model H142-Rechargeable DC 3.0V from CR2032 batteries for model H142-CR2032
Adapter information:	-
Hardware version:	V1.0.1 for model H142-Rechargeable V1.0 for model H142-CR2032
Software version:	Medea_2_0_9_AB.HEX
Bluetooth	
Version:	Supported BT4.0+BLE
Modulation:	GFSK
Operation frequency:	2402MHz~2480MHz
Channel number:	40
Channel separation:	2MHz
Antenna type:	PCB Antenna
Antenna gain:	0dBi

3.3. Operation state

➤ Test frequency list


According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

Channel	Frequency (MHz)
00	2402
01	2404
:	:
19	2440
:	:
38	2478
39	2480

➤ Test mode

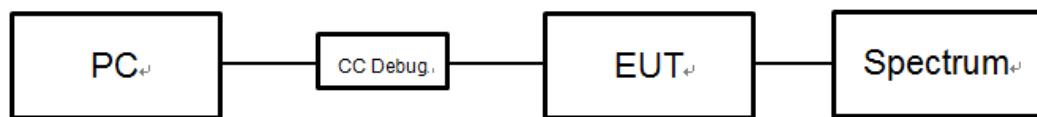
For RF test items

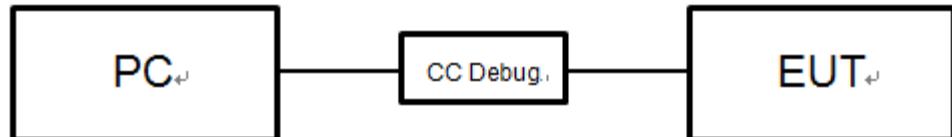
The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated suprious emissions test item:


The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.


3.4. Support unit used in test configuration

Item	Equipment	Manufacturer	Model No.	P/N
1	PC	DELL	OptiPlex 3020 MT	N/A
2	CC Debugger	TEXAS	N/A	N/A

For Conducted Test

For Radiated Test

3.5. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.63 dB	(1)
Conducted spurious emissions 9kHz~40GHz	0.63 dB	(1)
Conducted Disturbance 150kHz~30MHz	3.35 dB	(1)
Radiated Emissions below 1GHz	4.28 dB	(1)
Radiated Emissions above 1GHz	5.16 dB	(1)
Occupied Bandwidth	69 Hz	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Equipments Used during the Test

● Conducted Emission						
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
●	Shielded Room	Albatross projects	N/A	N/A	2018/09/28	2023/09/27
●	EMI Test Receiver	R&S	ESCI	101247	2018/10/27	2019/10/26
●	Artificial Mains	SCHWARZBECK	NNLK 8121	573	2018/10/27	2019/10/26
●	Pulse Limiter	R&S	ESH3-Z2	100499	2018/10/27	2019/10/26
●	RF Connection Cable	HUBER+SUHNER	EF400	N/A	2018/11/15	2019/11/14
●	Test Software	R&S	ES-K1	N/A	N/A	N/A
○	Single Balanced Telecom Pair ISN	FCC	FCC-TLISN-T2-02	20371	2018/10/28	2019/10/27
○	Two Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T4-02	20373	2018/10/28	2019/10/27
○	Four Balanced Telecom Pairs ISN	FCC	FCC-TLISN-T8-02	20375	2018/10/28	2019/10/27
○	V-Network	R&S	ESH3-Z6	100211	2018/10/27	2019/10/26
○	V-Network	R&S	ESH3-Z6	100210	2018/10/27	2019/10/26
○	2-Line V-Network	R&S	ESH3-Z5	100049	2018/10/27	2019/10/26

● Radiated Emission-6th test site						
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
●	Semi-Anechoic Chamber	Albatross projects	SAC-3m-02	N/A	2018/09/30	2021/09/29
●	EMI Test Receiver	R&S	ESCI	100900	2018/10/28	2019/10/27
○	Loop Antenna	R&S	HFH2-Z2	100020	2017/11/20	2020/11/19
●	Ultra-Broadband Antenna	SCHWARZBECK	VULB9163	546	2017/04/05	2020/04/04
●	Pre-Amplifier	SCHWARZBECK	BBV 9742	N/A	2018/11/15	2019/11/14
●	RF Connection Cable	HUBER+SUHNER	N/A	N/A	2018/09/28	2019/09/27
●	RF Connection Cable	HUBER+SUHNER	SUCOFLEX104	501184/4	2018/09/28	2019/09/27
●	Test Software	R&S	ES-K1	N/A	N/A	N/A
●	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
●	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

● Radiated emission-7th test site

Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
●	Semi-Anechoic Chamber	Albatross projects	SAC-3m-01	N/A	2018/09/30	2021/09/29
●	Spectrum Analyzer	R&S	FSP40	100597	2018/10/27	2019/10/26
●	Horn Antenna	SCHWARZBECK	9120D	1011	2017/03/27	2020/03/26
○	Pre-amplifier	BONN	BLWA0160-2M	1811887	2018/11/14	2019/11/13
●	Pre-amplifier	CD	PAP-0102	12004	2018/11/14	2019/11/13
●	Broadband Pre-amplifier	SCHWARZBECK	BBV 9718	9718-248	2018/04/28	2019/04/27
●	RF Connection Cable	HUBER+SUHNER	RE-7-FH	N/A	2018/11/15	2019/11/14
●	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	2018/11/15	2019/11/14
●	Test Software	Audix	E3	N/A	N/A	N/A
●	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
●	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

● RF Conducted Method

Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
●	Signal and spectrum Analyzer	R&S	FSV40	100048	2018/10/28	2019/10/27
●	Spectrum Analyzer	Agilent	N9020A	MY50510187	2018/09/29	2019/09/28
○	Radio communication tester	R&S	CMW500	137688-Lv	2018/09/29	2019/09/28
○	Test software	Tonscend	JS1120-1(LTE)	N/A	N/A	N/A
○	Test software	Tonscend	JS1120-2(WIFI)	N/A	N/A	N/A
○	Test software	Tonscend	JS1120-3(WCDMA)	N/A	N/A	N/A
○	Test software	Tonscend	JS1120-4(GSM)	N/A	N/A	N/A

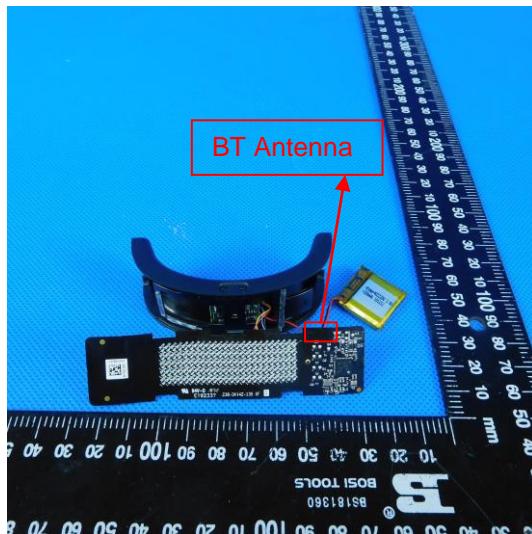
5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

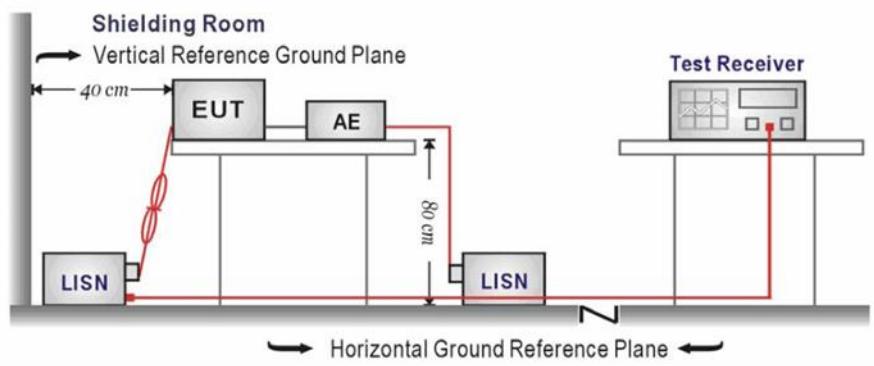
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULTS

Passed Not Applicable

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. Conducted Emissions (AC Main)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Frequency range (MHz)	Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

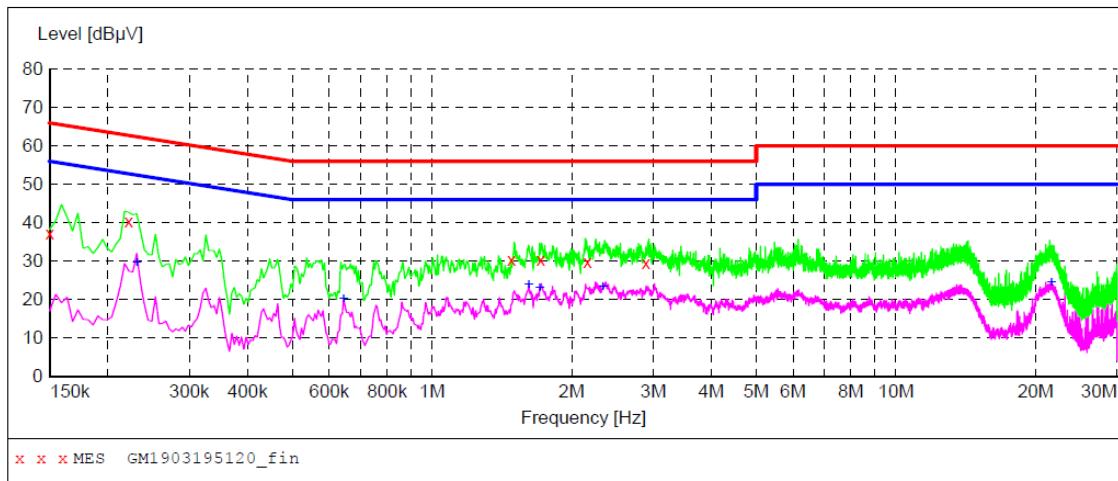
1. The EUT was setup according to ANSI C63.10:2013 requirements.
2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Passed Not Applicable

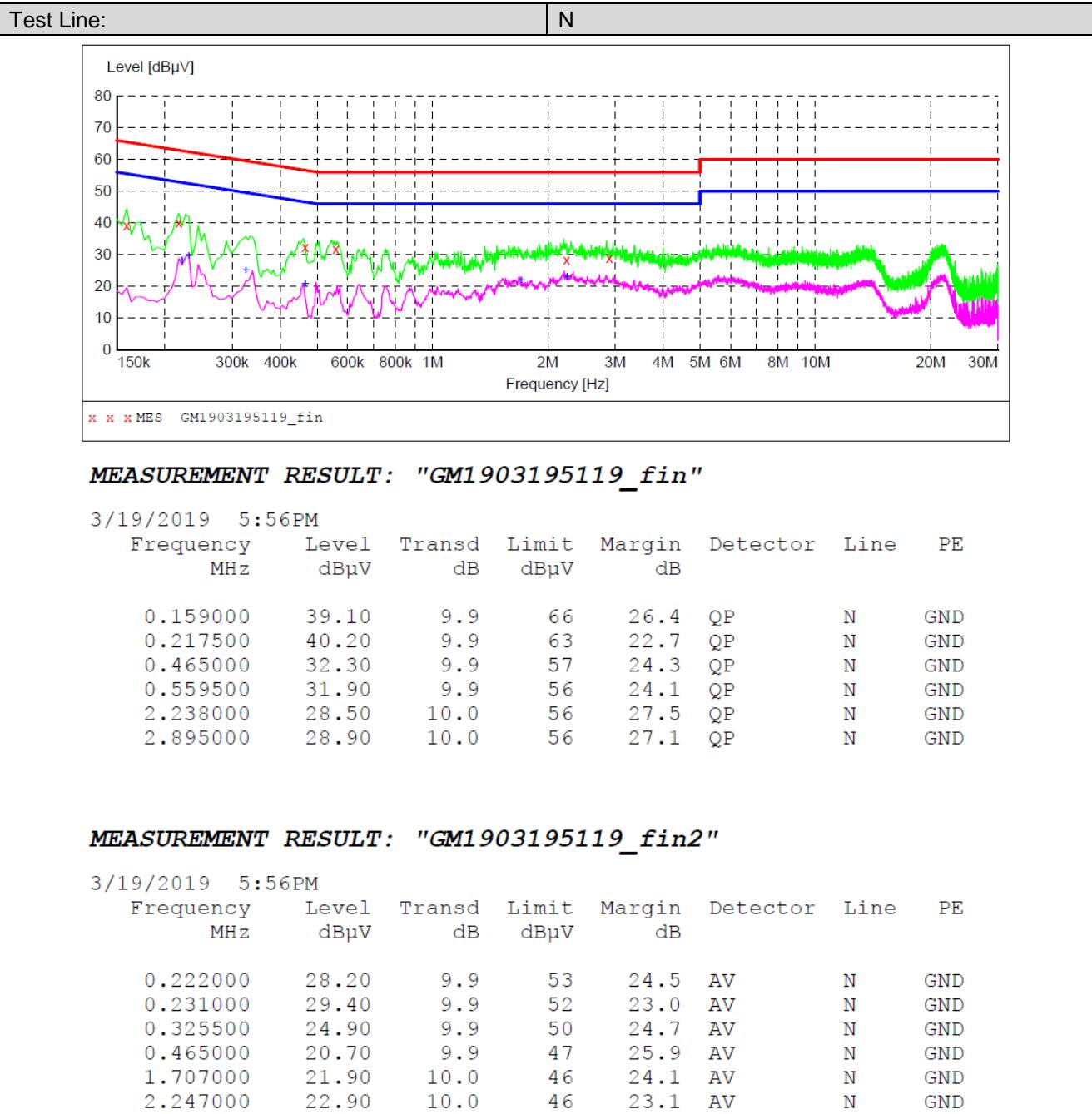

Note:

- 1) Transd = Cable loss + Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin = Limit - Level

Test Line:

L

MEASUREMENT RESULT: "GM1903195120_fin"

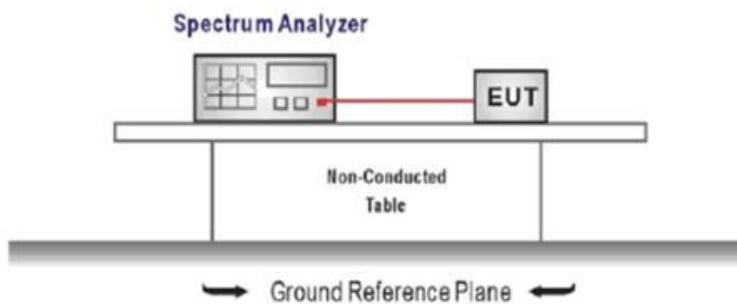

3/19/2019 5:59PM

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.150000	37.20	9.9	66	28.8	QP	L1	GND
0.222000	40.30	9.9	63	22.4	QP	L1	GND
1.482000	30.30	10.0	56	25.7	QP	L1	GND
1.716000	30.40	10.0	56	25.6	QP	L1	GND
2.161500	29.70	10.0	56	26.3	QP	L1	GND
2.890500	29.40	10.0	56	26.6	QP	L1	GND

MEASUREMENT RESULT: "GM1903195120_fin2"

3/19/2019 5:59PM

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.231000	29.50	9.9	52	22.9	AV	L1	GND
0.645000	20.20	9.9	46	25.8	AV	L1	GND
1.617000	23.80	10.0	46	22.2	AV	L1	GND
1.707000	23.00	10.0	46	23.0	AV	L1	GND
2.337000	23.20	10.0	46	22.8	AV	L1	GND
21.664500	24.30	10.6	50	25.7	AV	L1	GND



5.3. Conducted Peak Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30 dBm

TEST CONFIGURATION

TEST PROCEDURE

1. The EUT was tested according to ANSI C63.10: 2013 and KDB 558074 D01 15.247 Meas Guidance v05r01 for compliance to FCC 47 CFR 15.247 requirements.
2. The maximum peak conducted output power may be measured using spectrum analyzer.
3. Configure the spectrum analyzer as shown below:
 - Center frequency=DTS channel center frequency
 - RBW \geq 3 DTS bandwidth
 - VBW \geq 3 \times RBW
 - Span \geq 3 \times RBW
 - Sweep time = auto couple
 - Detector = peak
 - Trace mode = max hold
4. Record the measurement data.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Passed Not Applicable

Type	Channel	Output power (dBm)	Limit (dBm)	Result
BT-BLE	00	-3.47	\leq 30.00	Pass
	19	-3.34		
	39	-3.88		

Test plot as follows:

5.4. Power Spectral Density

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

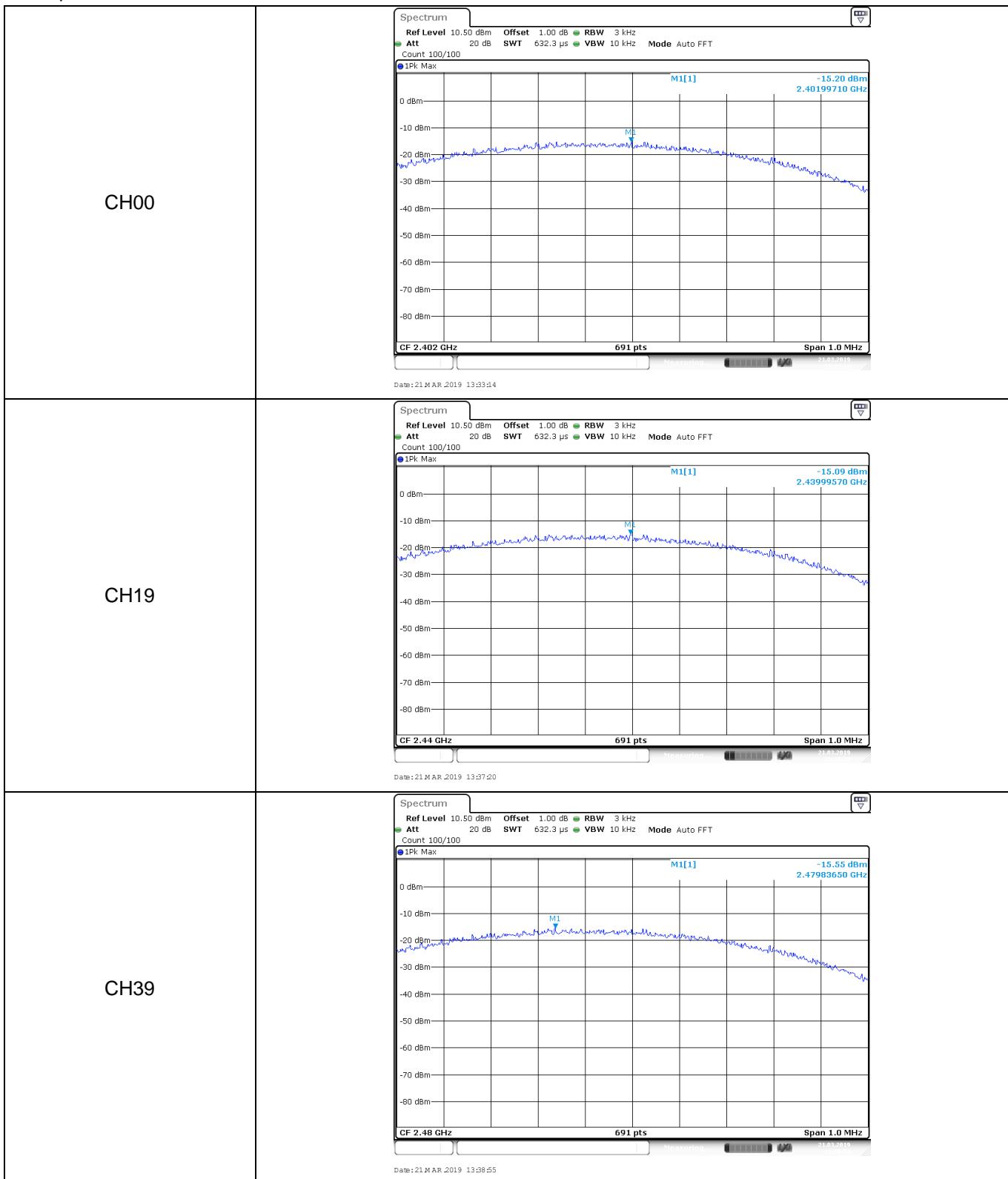
TEST CONFIGURATION

TEST PROCEDURE

1. Connect the antenna port(s) to the spectrum analyzer input,
2. Configure the spectrum analyzer as shown below:
 Center frequency=DTS channel center frequency
 Span =1.5 times the DTS bandwidth
 $RBW = 3 \text{ kHz} \leq RBW \leq 100 \text{ kHz}$, $VBW \geq 3 \times RBW$
 Sweep time = auto couple
 Detector = peak
 Trace mode = max hold
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
4. Use the peak marker function to determine the maximum amplitude level within the RBW.
5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:

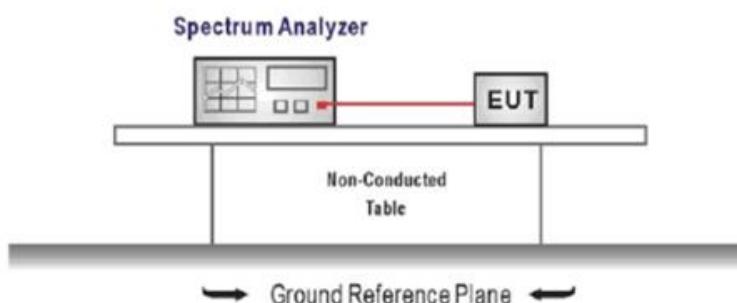
Please refer to the clause 3.3


TEST RESULTS

Passed Not Applicable

Type	Channel	Power Spectral Density(dBm/3KHz)	Limit (dBm/3KHz)	Result
BT-BLE	00	-15.20	≤ 8.00	Pass
	19	-15.09		
	39	-15.55		

Test plot as follows:


5.5. 6dB bandwidth

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

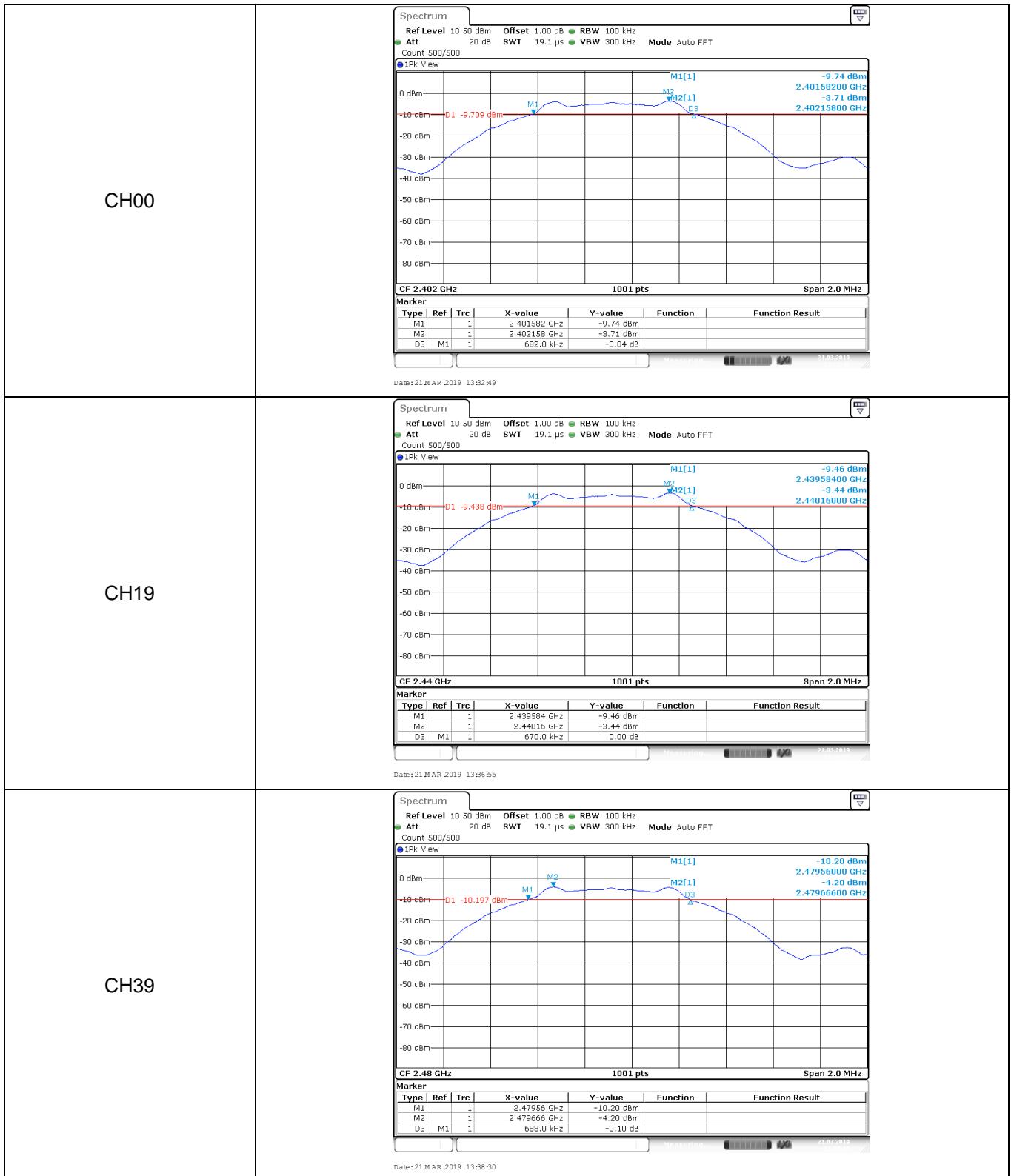
TEST CONFIGURATION

TEST PROCEDURE

1. Connect the antenna port(s) to the spectrum analyzer input.
2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).
 - Center Frequency = DTS channel center frequency
 - Span=2 x DTS bandwidth
 - RBW = 100 kHz, VBW $\geq 3 \times$ RBW
 - Sweep time= auto couple
 - Detector = Peak
 - Trace mode = max hold
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:

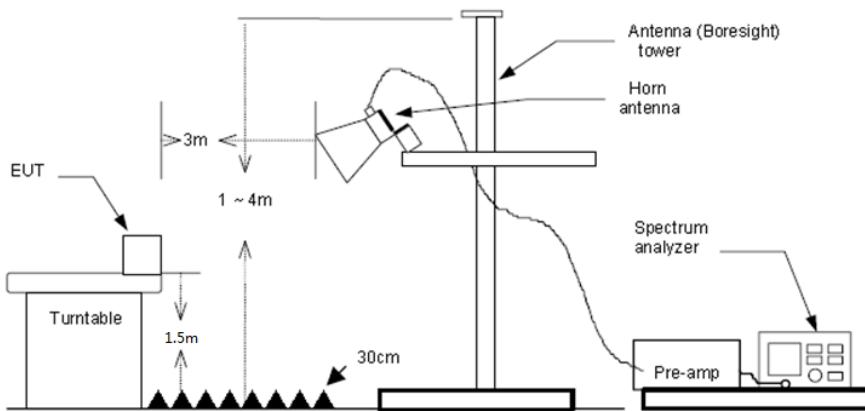
Please refer to the clause 3.3


TEST RESULTS

Passed Not Applicable

Type	Channel	6dB Bandwidth(MHz)	Limit (kHz)	Result
BT-BLE	00	0.68	≥ 500	Pass
	19	0.67		
	39	0.69		

Test plot as follows:


5.6. Restricted band

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.205 and Section 15.209.

Above 1GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION

TEST PROCEDURE

1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
5. The receiver set as follow:
RBW=1MHz, VBW=3MHz Peak detector for Peak value.
RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

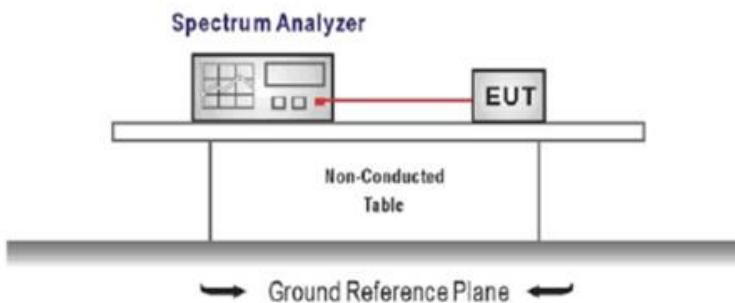
Passed Not Applicable

Note:

- 1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor
- 2) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.

Test channel					CH00				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2310.00	41.14	28.05	6.62	37.59	38.22	74.00	-35.78	Vertical	Peak
2390.03	46.14	27.65	6.75	37.59	42.95	74.00	-31.05	Vertical	Peak
2310.00	33.09	28.05	6.62	37.59	30.17	74.00	-43.83	Horizontal	Peak
2390.03	45.95	27.65	6.75	37.59	42.76	74.00	-31.24	Horizontal	Peak
2310.00	32.43	28.05	6.62	37.59	29.51	54.00	-24.49	Vertical	Average
2390.03	50.50	27.65	6.75	37.59	47.31	54.00	-6.69	Vertical	Average
2310.00	25.78	28.05	6.62	37.59	22.86	54.00	-31.14	Horizontal	Average
2390.03	39.76	27.65	6.75	37.59	36.57	54.00	-17.43	Horizontal	Average

Test channel					CH39				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2483.50	38.71	27.26	6.83	37.59	35.21	74.00	-38.79	Vertical	Peak
2500.00	35.07	27.20	6.84	37.59	31.52	74.00	-42.48	Vertical	Peak
2483.50	38.95	27.26	6.83	37.59	35.45	74.00	-38.55	Horizontal	Peak
2500.00	32.82	27.20	6.84	37.59	29.27	74.00	-44.73	Horizontal	Peak
2483.50	32.32	27.26	6.83	37.59	28.82	54.00	-25.18	Vertical	Average
2500.00	27.34	27.20	6.84	37.59	23.79	54.00	-30.21	Vertical	Average
2483.50	33.65	27.26	6.83	37.59	30.15	54.00	-23.85	Horizontal	Average
2500.00	28.68	27.20	6.84	37.59	25.13	54.00	-28.87	Horizontal	Average



5.7. Band edge and Spurious Emissions (conducted)

LIMIT

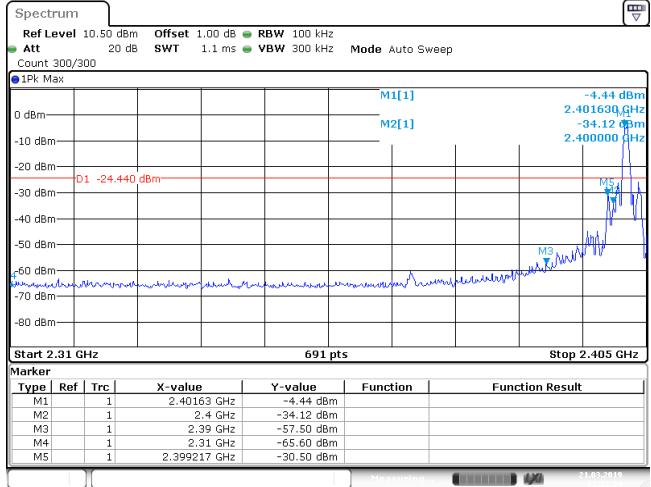
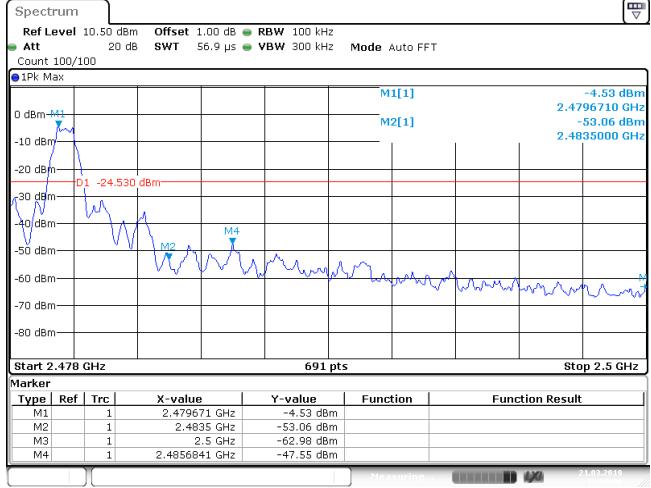
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

1. Connect the antenna port(s) to the spectrum analyzer input.
2. Establish a reference level by using the following procedure
 - Center frequency=DTS channel center frequency
 - The span = 1.5 times the DTS bandwidth.
 - RBW = 100 kHz, VBW $\geq 3 \times$ RBW
 - Detector = peak, Sweep time = auto couple, Trace mode = max hold
 - Allow trace to fully stabilize
 - Use the peak marker function to determine the maximum PSD level

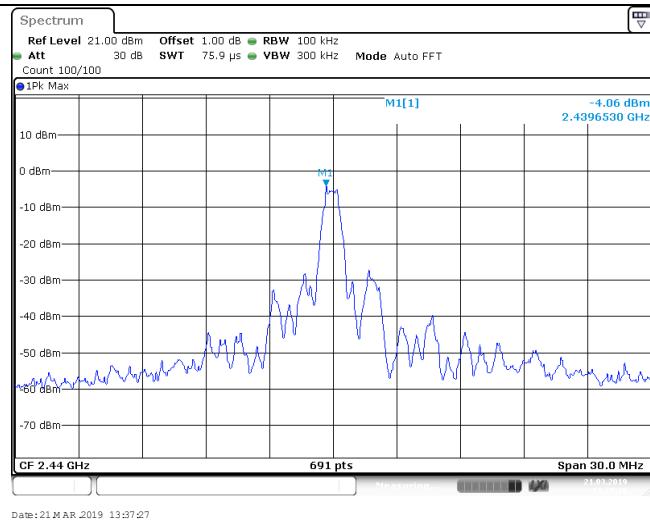
Note that the channel found to contain the maximum PSD level can be used to establish the reference level.
3. Emission level measurement
 - Set the center frequency and span to encompass frequency range to be measured
 - RBW = 100 kHz, VBW $\geq 3 \times$ RBW
 - Detector = peak, Sweep time = auto couple, Trace mode = max hold
 - Allow trace to fully stabilize
 - Use the peak marker function to determine the maximum amplitude level.
4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
5. Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

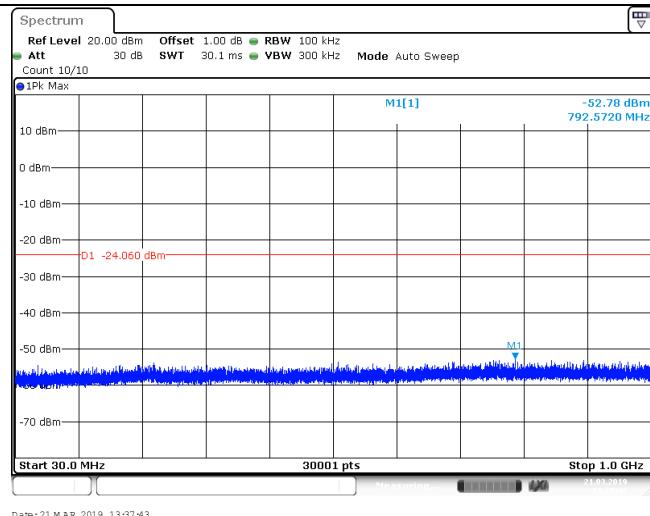


TEST MODE:

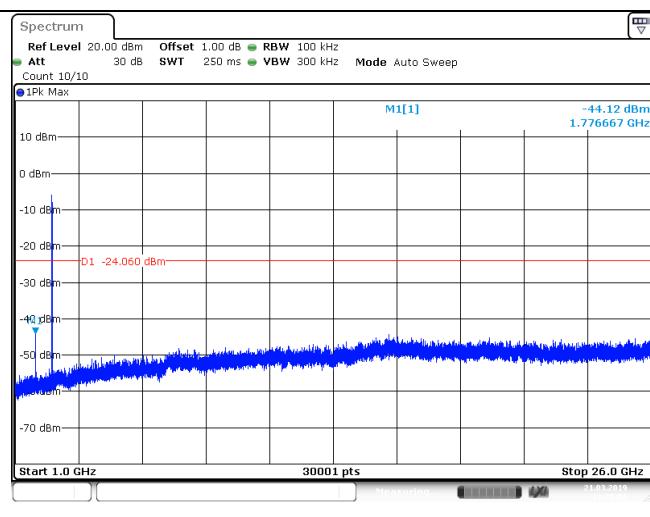
Please refer to the clause 3.3

TEST RESULTS

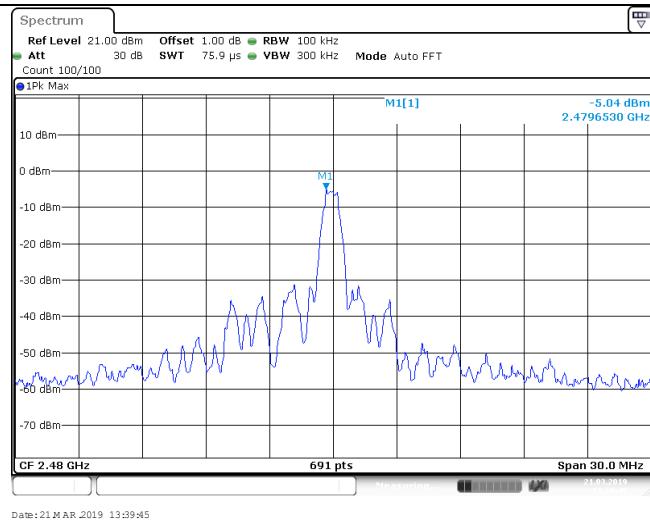
Passed Not Applicable


Test Item:	Band edge																																										
CH00	<p></p> <p>Marker</p> <table border="1"> <thead> <tr> <th>Type</th> <th>Ref</th> <th>Trc</th> <th>X-value</th> <th>Y-value</th> <th>Function</th> <th>Function Result</th> </tr> </thead> <tbody> <tr> <td>M1</td> <td>1</td> <td></td> <td>2.40163 GHz</td> <td>-4.44 dBm</td> <td></td> <td></td> </tr> <tr> <td>M2</td> <td>1</td> <td></td> <td>2.4 GHz</td> <td>-34.12 dBm</td> <td></td> <td></td> </tr> <tr> <td>M3</td> <td>1</td> <td></td> <td>2.39 GHz</td> <td>-57.50 dBm</td> <td></td> <td></td> </tr> <tr> <td>M4</td> <td>1</td> <td></td> <td>2.31 GHz</td> <td>-65.60 dBm</td> <td></td> <td></td> </tr> <tr> <td>M5</td> <td>1</td> <td></td> <td>2.399217 GHz</td> <td>-30.50 dBm</td> <td></td> <td></td> </tr> </tbody> </table> <p>Date: 21 MAR 2019 13:33:24</p>	Type	Ref	Trc	X-value	Y-value	Function	Function Result	M1	1		2.40163 GHz	-4.44 dBm			M2	1		2.4 GHz	-34.12 dBm			M3	1		2.39 GHz	-57.50 dBm			M4	1		2.31 GHz	-65.60 dBm			M5	1		2.399217 GHz	-30.50 dBm		
Type	Ref	Trc	X-value	Y-value	Function	Function Result																																					
M1	1		2.40163 GHz	-4.44 dBm																																							
M2	1		2.4 GHz	-34.12 dBm																																							
M3	1		2.39 GHz	-57.50 dBm																																							
M4	1		2.31 GHz	-65.60 dBm																																							
M5	1		2.399217 GHz	-30.50 dBm																																							
CH39	<p></p> <p>Marker</p> <table border="1"> <thead> <tr> <th>Type</th> <th>Ref</th> <th>Trc</th> <th>X-value</th> <th>Y-value</th> <th>Function</th> <th>Function Result</th> </tr> </thead> <tbody> <tr> <td>M1</td> <td>1</td> <td></td> <td>2.479671 GHz</td> <td>-4.53 dBm</td> <td></td> <td></td> </tr> <tr> <td>M2</td> <td>1</td> <td></td> <td>2.4835 GHz</td> <td>-53.06 dBm</td> <td></td> <td></td> </tr> <tr> <td>M3</td> <td>1</td> <td></td> <td>2.5 GHz</td> <td>-62.98 dBm</td> <td></td> <td></td> </tr> <tr> <td>M4</td> <td>1</td> <td></td> <td>2.4856841 GHz</td> <td>-47.55 dBm</td> <td></td> <td></td> </tr> </tbody> </table> <p>Date: 21 MAR 2019 13:39:06</p>	Type	Ref	Trc	X-value	Y-value	Function	Function Result	M1	1		2.479671 GHz	-4.53 dBm			M2	1		2.4835 GHz	-53.06 dBm			M3	1		2.5 GHz	-62.98 dBm			M4	1		2.4856841 GHz	-47.55 dBm									
Type	Ref	Trc	X-value	Y-value	Function	Function Result																																					
M1	1		2.479671 GHz	-4.53 dBm																																							
M2	1		2.4835 GHz	-53.06 dBm																																							
M3	1		2.5 GHz	-62.98 dBm																																							
M4	1		2.4856841 GHz	-47.55 dBm																																							

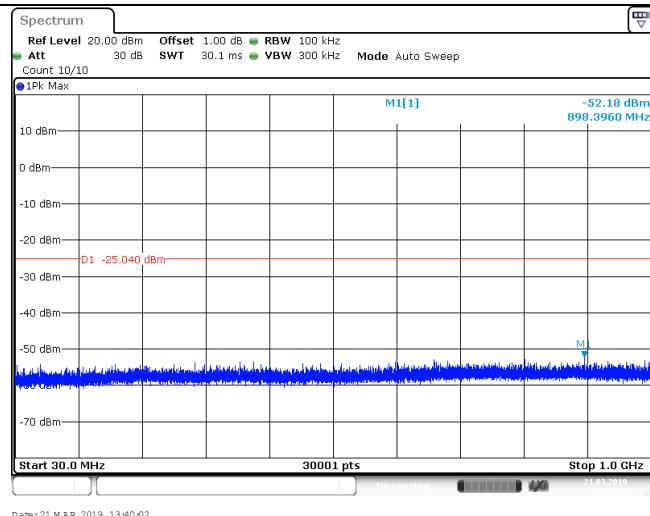

Test Item:	SE
CH00 Reference level	<p>Date: 21 MAR 2019 13:33:31</p>
CH00 30MHz~1000MHz	<p>Date: 21 MAR 2019 13:33:47</p>
CH00 1GHz~26GHz	<p>Date: 21 MAR 2019 13:34:04</p>

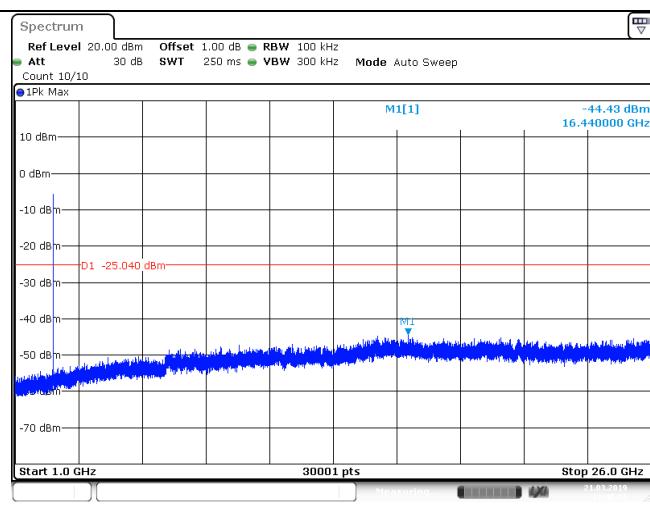

CH19
Reference level

CH19
30MHz~1000MHz



CH19
1GHz~26GHz

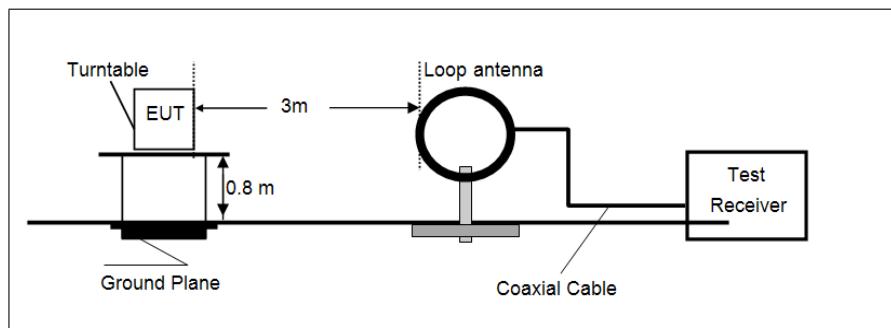



CH39
Reference level

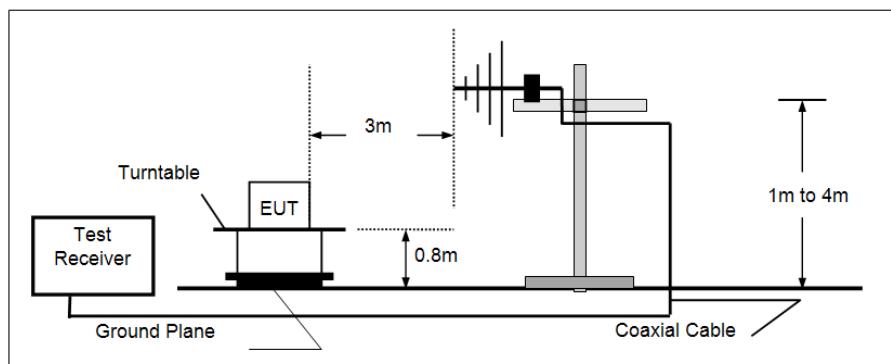
CH39
30MHz~1000MHz

CH39
1GHz~26GHz

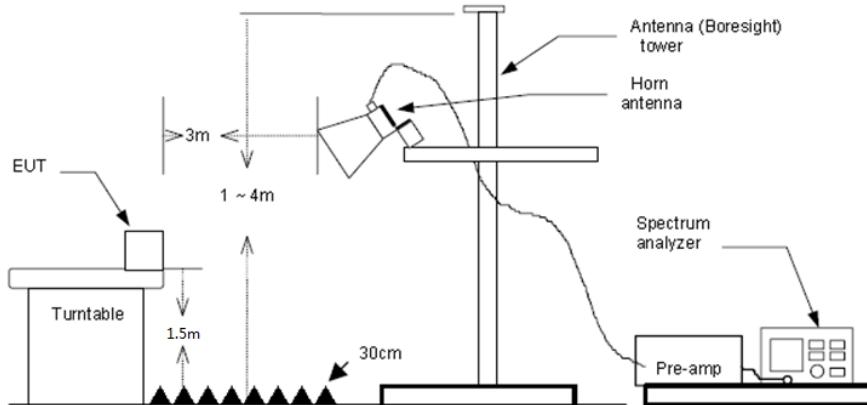
5.8. Spurious Emissions (radiated)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz~1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION


- 9 kHz ~ 30 MHz

- 30 MHz ~ 1 GHz

- Above 1 GHz

TEST PROCEDURE

1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
5. Set to the maximum power setting and enable the EUT transmit continuously.
6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:
RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;
If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
 - (3) From 1 GHz to 10th harmonic:
RBW=1MHz, VBW=3MHz Peak detector for Peak value.
RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

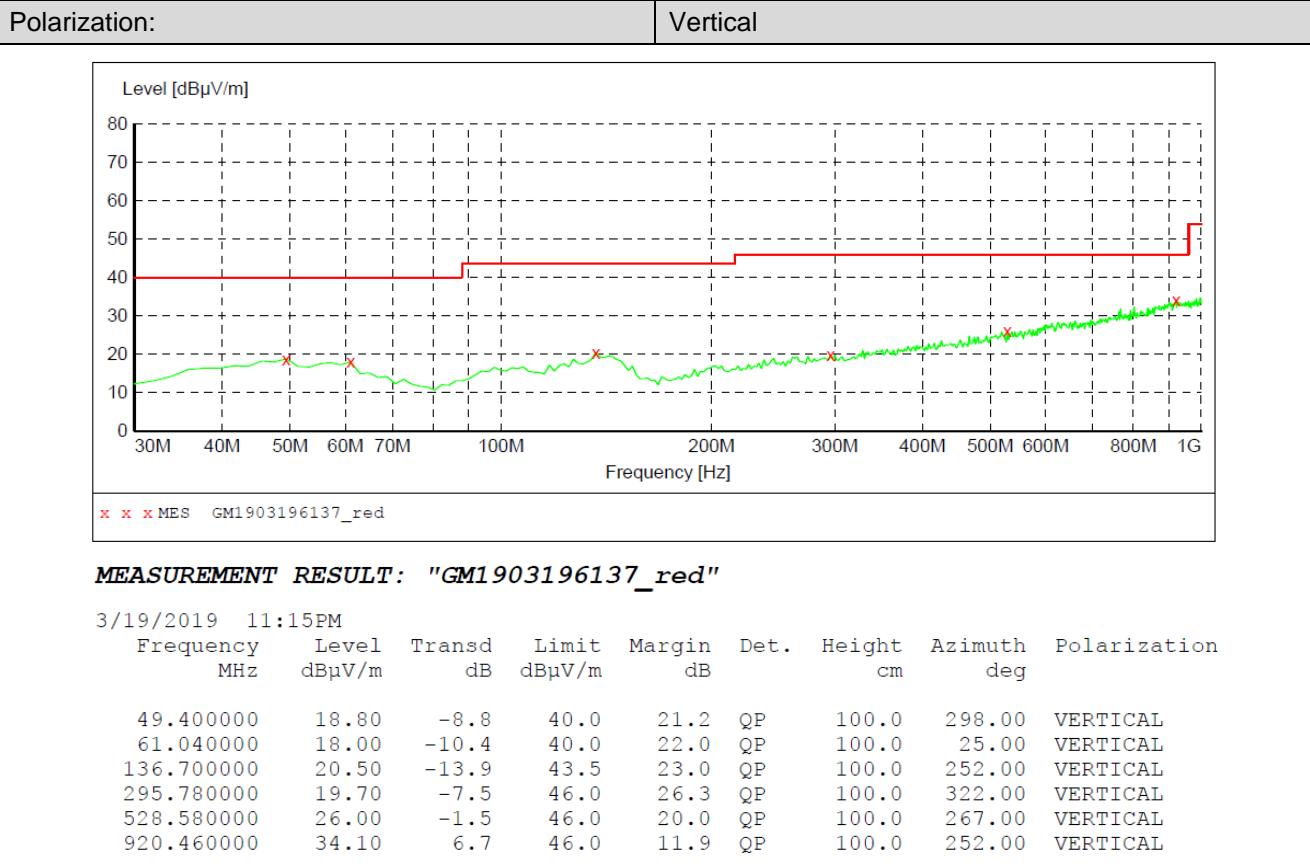
TEST RESULTS

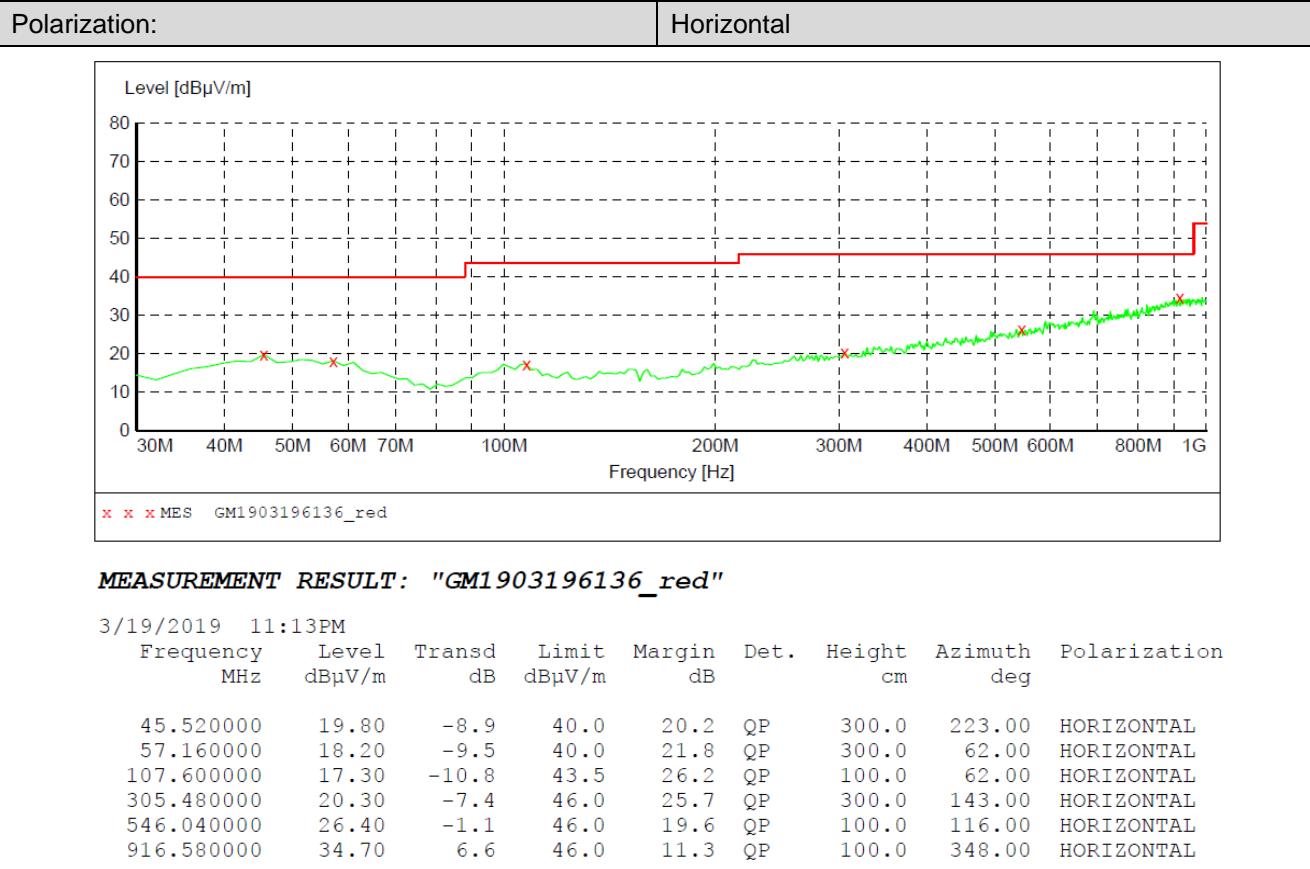
Passed Not Applicable

Note:

- 1) Above 1GHz Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.

➤ **9 kHz ~ 30 MHz**


The EUT was pre-scanned the frequency band (9 kHz ~ 30 MHz), found the radiated level lower than the limit, so don't show on the report.


➤ **30 MHz ~ 1000 MHz**

Have pre-scan all modulation mode, found the BT-BLE mode CH39 which it was worst case, so only the worst case's data on the test report.

➤ 30 MHz ~ 1 GHz

> 1 GHz ~ 25 GHz

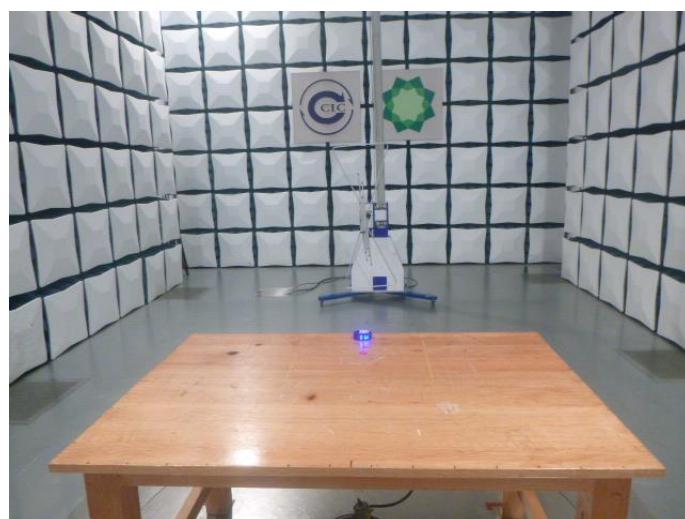
Test channel					CH00				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3200.50	33.28	28.80	7.72	37.40	32.40	74.00	-41.60	Vertical	Peak
4034.78	33.48	29.77	8.81	36.73	35.33	74.00	-38.67	Vertical	Peak
4809.50	43.88	31.58	9.55	35.72	49.29	74.00	-24.71	Vertical	Peak
7190.69	31.96	36.14	11.86	33.54	46.42	74.00	-27.58	Vertical	Peak
3200.50	35.32	28.80	7.72	37.40	34.44	74.00	-39.56	Horizontal	Peak
4809.50	43.92	31.58	9.55	35.72	49.33	74.00	-24.67	Horizontal	Peak
6251.26	32.15	33.00	11.00	33.88	42.27	74.00	-31.73	Horizontal	Peak
7961.43	32.01	36.95	12.49	33.07	48.38	74.00	-25.62	Horizontal	Peak

Test channel					CH19				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3184.25	37.14	28.80	7.70	37.41	36.23	74.00	-37.77	Vertical	Peak
4883.52	45.40	31.43	9.59	35.58	50.84	74.00	-23.16	Vertical	Peak
6678.99	31.10	34.20	11.45	33.72	43.03	74.00	-30.97	Vertical	Peak
7880.77	32.03	36.59	12.87	33.06	48.43	74.00	-25.57	Vertical	Peak
3200.50	34.10	28.80	7.72	37.40	33.22	74.00	-40.78	Horizontal	Peak
4014.29	33.14	29.73	8.79	36.75	34.91	74.00	-39.09	Horizontal	Peak
4883.52	45.39	31.43	9.59	35.58	50.83	74.00	-23.17	Horizontal	Peak
7508.69	31.53	36.11	12.42	33.02	47.04	74.00	-26.96	Horizontal	Peak

Test channel					CH39				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2995.54	42.28	28.60	7.48	37.58	40.78	74.00	-33.22	Vertical	Peak
4958.68	41.20	31.46	9.64	35.45	46.85	74.00	-27.15	Vertical	Peak
7027.82	32.48	35.38	11.85	33.83	45.88	74.00	-28.12	Vertical	Peak
8571.38	32.18	37.19	12.88	32.93	49.32	74.00	-24.68	Vertical	Peak
2995.54	40.63	28.60	7.48	37.58	39.13	74.00	-34.87	Horizontal	Peak
4149.35	32.59	29.95	8.90	36.61	34.83	74.00	-39.17	Horizontal	Peak
4958.68	41.84	31.46	9.64	35.45	47.49	74.00	-26.51	Horizontal	Peak
7338.62	31.58	36.30	12.01	33.29	46.60	74.00	-27.40	Horizontal	Peak

Remark:

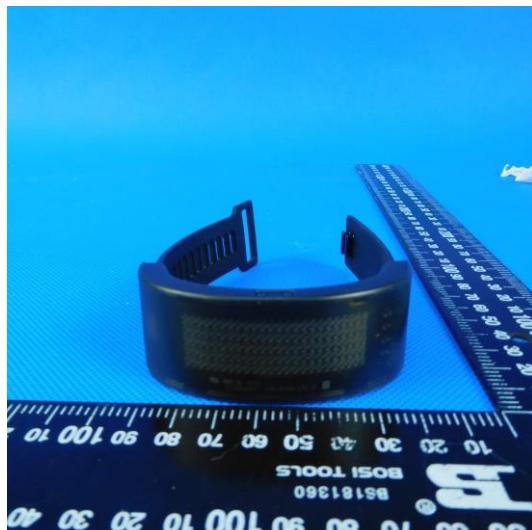
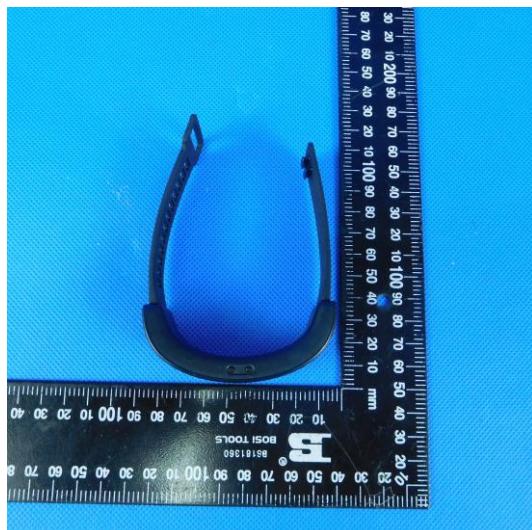
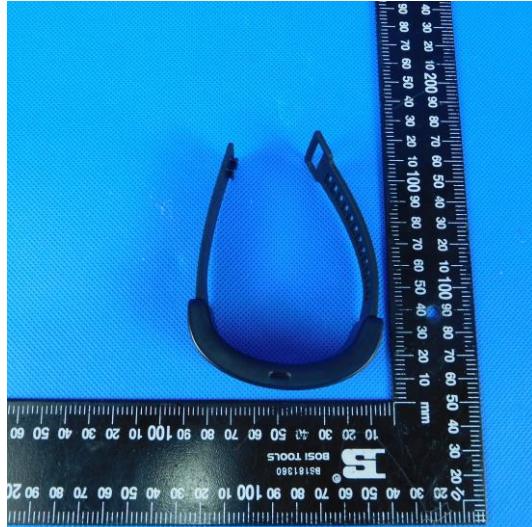
- Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
- The peak level is lower than average limit(54dBuV/m), this data is the too weak instrument of signal is unable to test.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

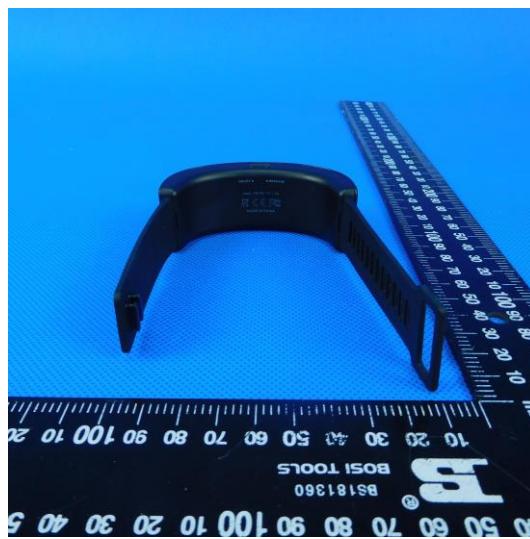


6. TEST SETUP PHOTOS

Conducted Emissions (AC Mains)

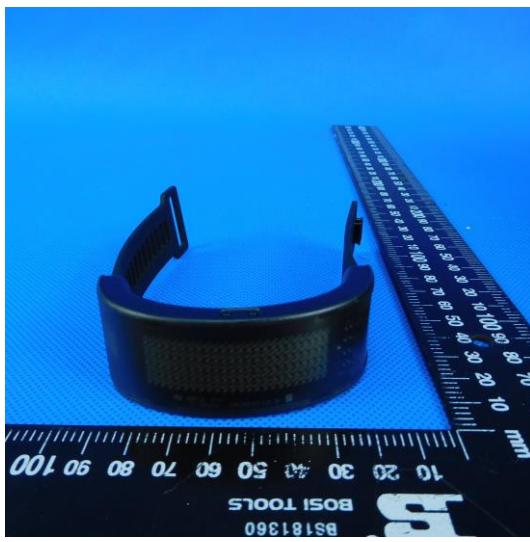
Radiated Emissions

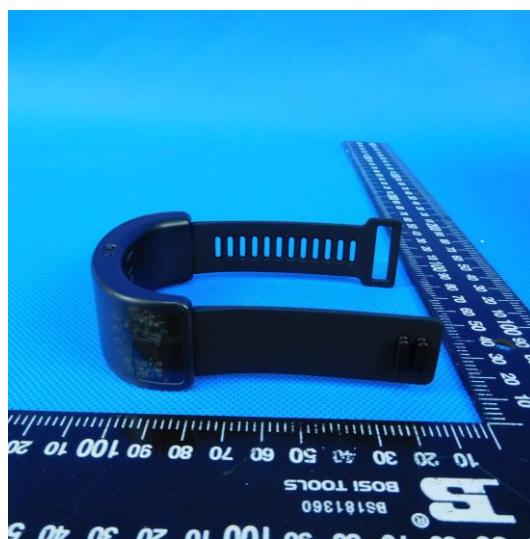




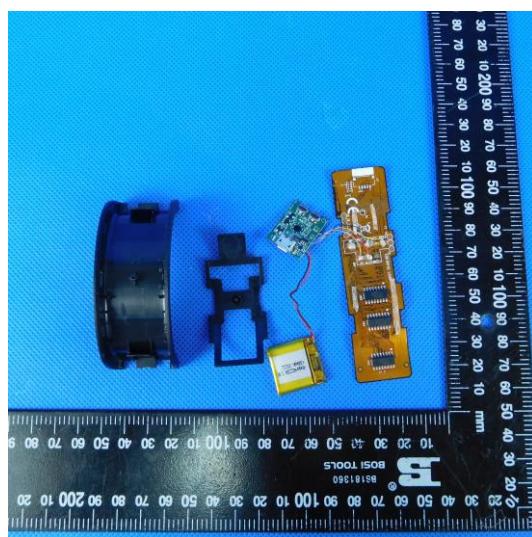
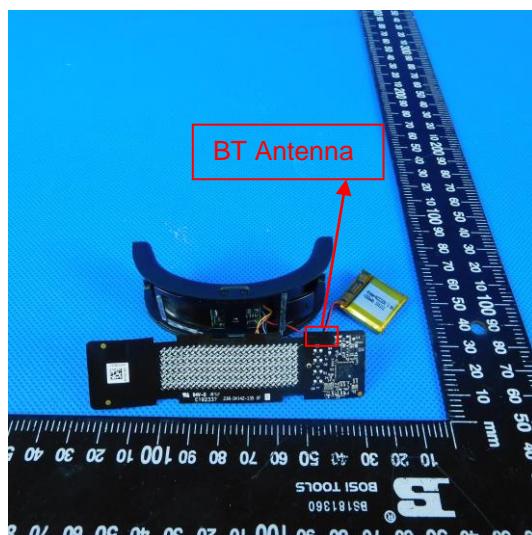


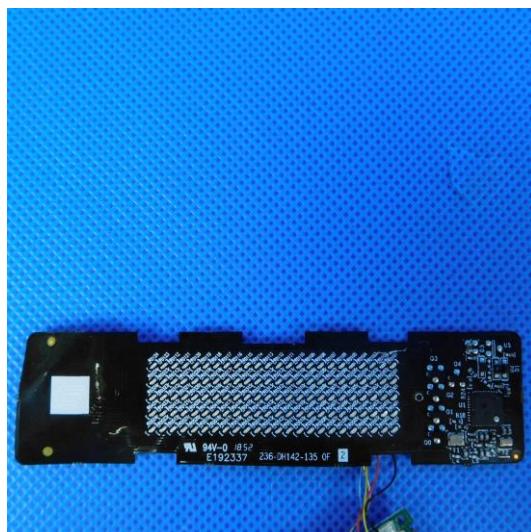
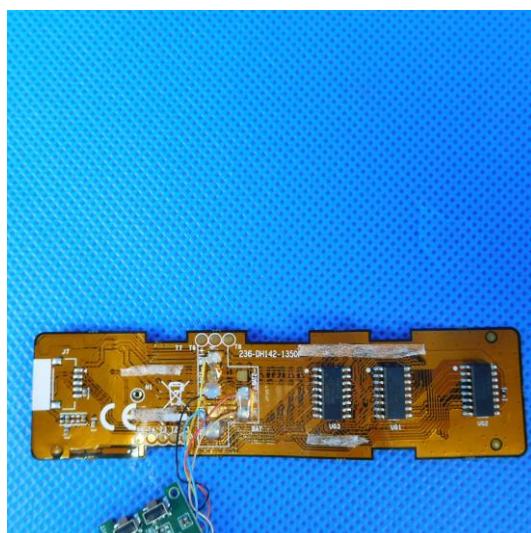
7. EXTERANAL AND INTERNAL PHOTOS

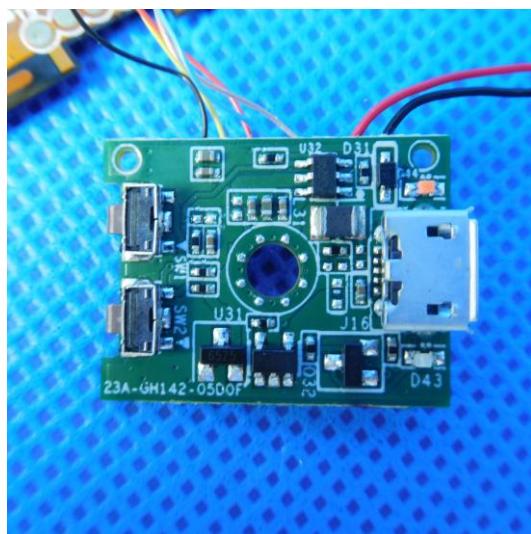
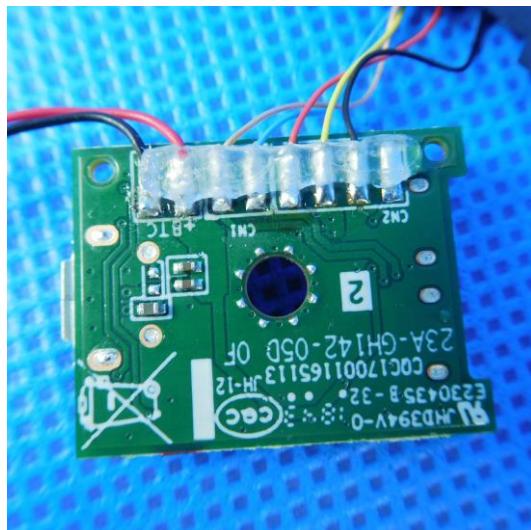
External Photo

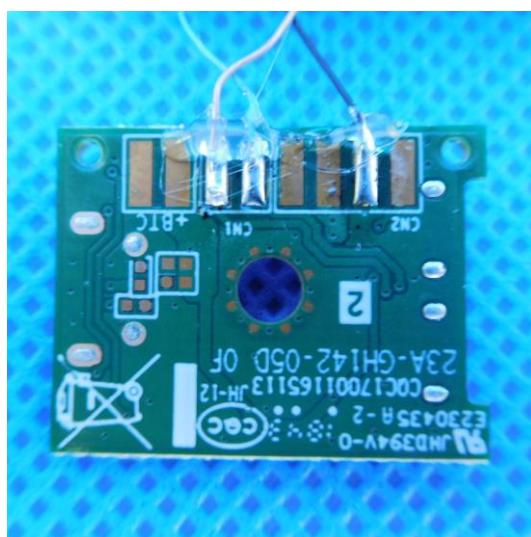

H142-Rechargeable

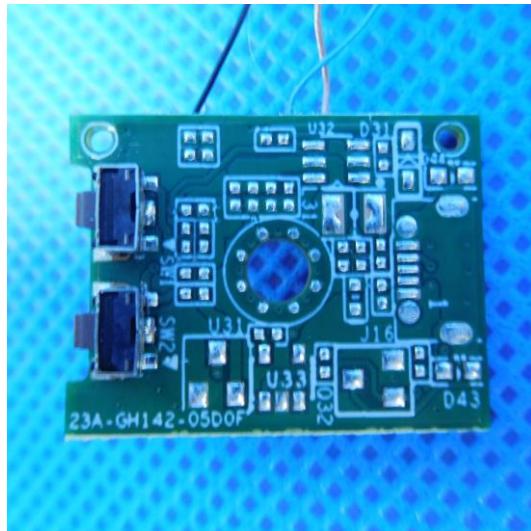




H142-CR2032



Internal Photo





H142-Rechargeable

H142-CR2032

-----End of Report-----