RF Exposure Compliance Requirements Integra Telemetry Radio Modem

Description of Compliance:

The Integra-TR radio is intended for use in the Industrial Monitoring and Control and SCADA markets and will be mounted with a fixed RTU (Remote Terminal Unit). FCC CFR 47 Part 2.1091 requires a minimum separation of 20 cm to be classified as a mobile. The IntegraTR will be professionally installed in such a way that a minimum separation distance as listed in the table below will be maintained between the radiating structure and any person to be classified as a mobile. A typical installation would be with the antenna mounted on a tower. The nominal factory set power is 5.00 Watts (37.00 dBm), but the MPE is calculated for maximum allowed to be within the production specification of 6.00 Watts (37.78 dBm). Note: It is the responsibility of the user to guarantee compliance with the FCC MPE regulations when operating this device in a way other than described above.

Antenna Gain vs. Recommended Safety Distance

	Antenna Gain			
	5 dBi	10 dBi	15 dBi	
Min Safety Distance (max power)	74.8cm	133 cm	236.4 cm	

The calculation for the more stringent specification, a General Population/Uncontrolled Mobile device according to Section 2.1091(b) and Section 1.1310 Note 2 is shown below:

Limits for General Population/Uncontrolled Exposure:

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	Time (mins)
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f (MHz)/1500 (MHz)	30
1500-100000			1.0	30

Environmental Specification: f(MHz)/(150 W/m²) 406.1 MHz/(150 MHz W/m²) = 2.71 W/m² (worst case)

 $S = (PG)/(4\pi R^2)$ (OET Bulletin 65)

Where:

- S = Power Density (mW/cm^2)
- P = Power input to the antenna (mW)
- G = Power Gain of the antenna in the direction of interest relative to an isotropic radiator
- R = Distance to the center of radiation of the antenna (cm)

Distance Calculation for 5dBi antenna:

 $\mathsf{R} = \sqrt{(\mathsf{PG})/(4\pi\mathsf{S}))}$

Antenna Gain: 5.0 dBi $10^{(5 \text{ dBi}/10)} = 3.16$ Power input to the Antenna: 37.78 dBm = $10^{(37 \text{dBm}/10)} = 6000 \text{ mW}$

R = $\sqrt{(6000 \text{ mW}^3.16)/(4\pi^*0.27 \text{ mW/cm}^2))}$ = 74.8 cm (Minimum Distance)

Distance Calculation for 10dBi antenna:

 $R = \sqrt{(PG)/(4\pi S)}$

Antenna Gain: 10.0 dBi $10^{(10 \text{ dBi}/10)} = 10$ Power input to the Antenna: 37.78 dBm = $10^{(37 \text{ dBm}/10)} = 6000 \text{ mW}$

R = $\sqrt{(6000 \text{mW}^*10)/(4\pi^*0.27 \text{ mW/cm}^2))}$ = 133.0 cm (Minimum Distance)

Distance Calculation for 15dBi antenna:

 $\mathsf{R} = \sqrt{(\mathsf{PG})/(4\pi\mathsf{S}))}$

Antenna Gain: 15.0 dBi $10^{(15dBi/10)} = 31.6$ Power input to the Antenna: 37.78 dBm = $10^{(37dBm/10)} = 6000$ mW

R = $\sqrt{(6000 \text{mW}^*31.6)/(4\pi^*0.27 \text{ mW/cm}^2))}$ = 236.4 cm (Minimum Distance)

