CalAmp Wireless Networks Corp.
299 Johnson Avenue, Suite 110
Waseca, MN 56093-0833 USA
Phone: 507-833-8819
Fax: 507-833-6748

FCC Part 90 Certification Application

IC RSS-119 Certification Application
For The

IntegraTR
VHF RADIO MODEM

FCC ID: NP44018450
IC: 773B-4018450

TABLE OF CONTENTS

Page \#Test 1: Transmitter Rated Output Power 3
Test 2: Transmitter Spurious and Harmonic Output 4
Test 3: Transient Frequency Behavior 10
Test 4: Frequency Stability with Variation in Supply Voltage 21
Test 5: Frequency Stability with Variation in Ambient Temperature 24
Test 6: Transmitter Occupied Bandwidth - Mask D 30
12.5 kHz Half Channel Mask D 34
6.25 kHz Full Channel Mask E 56
Test 7: Field Strength of Spurious Radiation 77
Calibration Information 84

NAME OF TEST:

RULE PART NUMBER:

TEST RESULTS:

TEST CONDITIONS:
TEST EQUIPMENT:

Transmitter Rated Power Output
2.1046 (a) (c)

IC: RSS-119 5.4

See results below

Standard Test Conditions
50-Ohm Attenuator, Bird Electronics Model 50-A-FFN-20 (20dB, 50W)
50-Ohm Attenuator, Bird Electronics Model 25-A-MFN-6 (6dB, 25W)
Power Supply, HP 6653A
Digital Multimeter, Instek GDM-8245
Power Meter, Model HP 437B

TEST SET-UP:

TEST RESULTS:

Frequency (MHz)	DC Voltage at Final (Vdc)	DC Current into Final (Adc)	DC Power into Final (W)	RF Power Output (W)
138.025	13.3	1.43	19.0	5.33
138.025	13.3	.78	10.4	1.04
143.0125	13.3	1.40	18.62	5.18
143.0125	13.3	.78	10.32	1.06
150.1	13.3	1.32	17.6	5.53
150.1	13.3	.73	9.71	1.06
161.010	13.3	1.23	16.36	5.21
161.010	13.3	.68	9.04	1.02
173.975	13.3	1.50	20.0	5.28
173.975	13.3	.79	10.5	1.03

NAME OF TEST: Transmitter Spurious and Harmonic Outputs

RULE PART NUMBER:	2.1051, $90.210(\mathrm{c}, 3)(\mathrm{d}, 3)(\mathrm{e}, 3)$ IC: RSS-119 5.8.4, 5.8 .3
MINIMUM STANDARDS:	For $5 \mathrm{Watts}: 50+10 \mathrm{Log}_{10}(5 \mathrm{Watts})=-57.0 \mathrm{dBc}$ or -65 dBc, whichever is the lesser attenuation.
	For $1 \mathrm{Watt}: 50+10 \mathrm{Log}_{10}(1 \mathrm{Watt})=-50 \mathrm{dBc}$ or -70 dBc, whichever is the lesser attenuation.
TEST RESULTS:	Meets minimum standards (see data on following pages)
TEST CONDITIONS:	Standard Test Conditions, 25 C RF Voltage measured at antenna terminals
TEST PROCEDURE:	TIA/EIA - 603-C
TEST EQUIPMENT:	50-Ohm Attenuator, Bird Electronics Model 25-A-MFN-6 (6dB, 25W) 50-Ohm Attenuator, Min-Circuits Model Cat-6 (6dB)
	Power Supply, HP 6653A Spectrum Analyzer, HP-8563E Reference Generator, Agilent E8257D High Pass Filter, Mini Circuits BHP-300

TEST SET-UP:

MEASUREMENT PROCEDURE:

1. The transmitter carrier output frequency are $138.025,143.0125,150.1,161.01$, 173.975. The reference oscillator frequency is 14.40 MHz . The power amplifier has voltage levels at 13.3 Volts for 5 watts.
2. The carrier reference was established on the spectrum analyzer with the filter bypass in place. Then the spectrum was scanned from DC to 2 Fc . Finally, the high pass filter was inserted to null the carrier fundamental and extend the range of the spectrum analyzer for harmonic measurements above 2 Fc .
3. At each spurious frequency, generation substitution was used to establish the true spurious level.
4. The spectrum was scanned to the $10^{\text {th }}$ harmonic of the highest internally generated frequency.

Tuned Frequency Power	$138.025 \mathrm{MHz}$	
	5 Watts	
	37 dBm	
Min. Specification	$-57.0 \mathrm{dBc}$	
Worse Case	-89.28 dBc	
Spurious Frequency (MHz)	Relation to Carrier	Relative to Carrier (dBc)
276.050	2 fo	-89.28
414.075	3 fo	-104.28
552.100	4 fo	-127.20
690.125	5 fo	-124.60
828.150	6 fo	-126.96
966.175	7 fo	-137.00
1104.200	8 fo	-130.70
1242.225	9 fo	-113.20
1380.250	10 fo	-127.70

Tuned Frequency Power	138.025 MHz	
	1 Watt	
	30.0 dBm	
Min. Specification	$-50.0 \mathrm{dBc}$	
Worse Case	-85.40 dBc	
Spurious	Relation to	Relative to
Frequency (MHz)	Carrier	Carrier (dBc)
276.050	2 fo	-85.40
414.075	3 fo	-111.10
552.100	4 fo	-136.00
690.125	5 fo	-123.00
828.150	6 fo	-125.00
966.175	7 fo	-138.00
1104.200	8 fo	-138.00
1242.225	9 fo	-116.00
1380.250	10 fo	-134.00

Tuned Frequency	143.0125 MHz	
Power	5 W atts	
	37 dBm	
Min. Specification	$-57.0 \mathrm{dBc}$	
Worse Case	$-89.28 \mathrm{dBc}$	
Spurious	Relation to	Relative to
Frequency (MHz)	Carrier	Carrier (dBc)
286.0250	2 fo	-89.28
429.0375	3 fo	-104.28
572.0500	4 fo	-127.20
715.0625	5 fo	-124.60
858.0750	6 fo	-126.96
1001.0875	7 fo	-137.00
1144.1000	8 fo	-130.70
1287.1125	9 fo	-113.20
1430.1250	10 fo	-127.70

Tuned Frequency Power	143.0125 MHz	
	1 Watt	
	30.0 dBm	
Min. Specification	$-50.0 \mathrm{dBc}$	
Worse Case	-85.40 dBc	
Spurious	Relation to	Relative to
Frequency (MHz)	Carrier	Carrier (dBc)
286.0250	2 fo	-85.40
429.0375	3 fo	-111.10
572.0500	4 fo	-136.00
715.0625	5 fo	-123.00
858.0750	6 fo	-125.00
1001.0875	7 fo	-138.00
1144.1000	8 fo	-138.00
1287.1125	9 fo	-116.00
1430.1250	10 fo	-134.00

Tuned Frequency	150.1 MHz		Tuned FrequencyPower	150.1 MHz	
Power	5 Watts			1 Watt	
	37 dBm			30.0 dBm	
Min. Specification	$-57.0 \mathrm{dBc}$		Min. Specification	$-50.0 \mathrm{dBc}$	
Worse Case	-103.92 dBc		Worse Case	$-99.38 \mathrm{dBc}$	
Spurious	Relation to	Relative to	Spurious	Relation to	Relative to
Frequency (MHz)	Carrier	Carrier (dBc)	Frequency (MHz)	Carrier	Carrier (dBc)
300.2	2 fo	-103.92	300.2	2 fo	-99.38
450.3	3 fo	-112.10	450.3	3 fo	-119.66
600.4	4 fo	-123.00	600.4	4 fo	-126.98
750.5	5 fo	-123.00	750.5	5 fo	-128.66
900.6	6 fo	-120.50	900.6	6 fo	-138.00
1050.7	7 fo	-128.30	1050.7	7 fo	-138.00
1200.8	8 fo	-122.30	1200.8	8 fo	-138.00
1350.9	9 fo	-104.50	1350.9	9 fo	-138.00
1501.0	10 fo	-121.00	1501.0	10 fo	-103.60

Tuned Frequency	161.010 MHz		Tuned Frequency	161.010 MHz	
Power	5 Watts			1 Watt	
	37 dBm		Power	30.0 dBm	
Min. Specification	$-57.0 \mathrm{dBc}$		Min. Specification	$-50.0 \mathrm{dBc}$	
Worse Case	-103.92 dBc		Worse Case	$-99.38 \mathrm{dBc}$	
Spurious Frequency (MHz)	Relation to Carrier	Relative to Carrier (dBc)	Spurious Frequency (MHz)	Relation to Carrier	Relative to Carrier (dBc)
322.02	2 fo	-103.92	322.02	2 fo	-99.38
483.03	3 fo	-112.10	483.03	3 fo	-119.66
644.04	4 fo	-123.00	644.04	4 fo	-126.98
805.05	5 fo	-123.00	805.05	5 fo	-128.66
966.06	6 fo	-120.50	966.06	6 fo	-138.00
1127.07	7 fo	-128.30	1127.07	7 fo	-138.00
1288.08	8 fo	-122.30	1288.08	8 fo	-138.00
1449.09	9 fo	-104.50	1449.09	9 fo	-138.00
1610.10	10 fo	-121.00	1610.10	10 fo	-103.60

Tuned FrequencyPower	173.975 MHz	
	5 Watts	
	37 dBm	
Min. Specification	$-57.0 \mathrm{dBc}$	
Worse Case	-85.70 dBc	
Spurious	Relation to	Relative to
Frequency (MHz)	Carrier	Carrier (dBc)
347.950	2 fo	-108.92
521.925	3 fo	-115.00
695.900	4 fo	-121.20
869.875	5 fo	-85.70
1043.850	6 fo	-116.00
1217.825	7 fo	-127.00
1391.800	8 fo	-106.50
1565.775	9 fo	-103.00
1739.750	10 fo	-91.80

Tuned Frequency Power	173.975 MHz	
	1 Watt	
	30.0 dBm	
Min. Specification	$-50.0 \mathrm{dBc}$	
Worse Case	-94.4 dBc	
Spurious	Relation to	Relative to
Frequency (MHz)	Carrier	Carrier (dBc)
347.950	2 fo	-101.54
521.925	3 fo	-94.40
695.900	4 fo	-122.70
869.875	5 fo	-126.00
1043.850	6 fo	-138.80
1217.825	7 fo	-133.70
1391.800	8 fo	-133.60
1565.775	9 fo	-122.80
1739.750	10 fo	-116.80

NAME OF TEST: Transient Frequency Behavior
RULE PART NUMBER: 90.214
RSS-119 5.9
MINIMUM STANDARD: $\pm 12.5 \mathrm{kHz}$ channel (used worst case numbers from 138.025 to 173.975 MHz)

TIME INTERVAL	MAXIMUM FREQUENCY DIFFERENCE (kHz)	TIME (ms)
${ } }$	± 12.5	10
T2	± 6.25	25
T3	± 12.5	10

TEST RESULTS: Meets minimum standards, see data on following pages
TEST CONDITIONS: \quad RF Power Level = 5.0 Watts and 1.0 Watt Standard Test Conditions, 25 C

TEST PROCEDURE: TIA/EIA - 603-C

TEST EQUIPMENT: 50-Ohm Attenuator, Bird Electronics Model 50-A-FFN-20 (20dB, 50W)
50-Ohm Attenuator, Bird Electronics Model 25-A-MFN-6 (6dB, 25W)
Power Supply, Agilent 6654A
Modulation Domain Analyzer, HP-53310A
Power Meter, Model HP 437B

Frequency : 138.02500 MHz
Power: 1 W
Key-Down

Key-up

ref ext
TIMEBASE

Reference Left Ctr Right

Panorama
Offil On
ref ext

Frequency: 138.02500 MHz
Power: 5 W
Key-Down

Key-up

ref ext
TIMEBASE

Reference
Leff Ctr Right

Panorama
D日自il On
ref ext

Frequency : 143.01250 MHz
Power: 1 W
Key-Down

Key-up

Frequency: 143.01250 MHz
Power: 5 W
Key-Down

Key-up

Frequency: 150.01000 MHz
Power: 1 W
Key-Down

Key-up

ref ext
TIMEBASE

Reference
Left Ctr Right

Panorama

ref ext

Frequency : 150.01000 MHz
Power: 5 W
Key-Down

Key-up

ref ext
TIMEBASE

Reference

Panorama

ref ext

Frequency: 161.01000 MHz
Power: 1 W
Key-Down

Key-up

ref ext
TIMEBASE

Reference Lefit Ctr Right

Panorama Offil On
ref ext

Frequency: 161.01000 MHz
Power: 5 W
Key-Down

Key-up

ref ext
TIMEBASE

Reference
Lefit Ctr Right

Delay

Panorama
DIf On
ref ext

Frequency: 173.97500 MHz
Power: 1 W
Key-Down
(hp) Freq C rem lsn
TRIGGER
pre-trigger

$\left[\begin{array}{c}\text { Fingsered } \\ \text { Auto }\end{array}\right]$

$-10.00 \mathrm{~ms}$
0.00 s
ref ext
TRI GGER
Key-up

0.00 s
10.00 ms
$2.000 \mathrm{~ms} / \mathrm{div}$
$\mathrm{F}_{1} 173.9760008 \mathrm{M}$
$\mathrm{F}_{2} 173.9740000 \mathrm{M}$

- -2.0000 k 푼

Frequency: 173.97500 MHz
Power: 5 W
Key-Down

Key-up

ref ext
TRIGGER

Time Ref Only
10.00 ms
$2.000 \mathrm{~ms} / \mathrm{div}$
F1 173.9760000 M स
$\mathrm{F}_{2} 173.9740006 \mathrm{M}$

- -2.0000 k स

NAME OF TEST: Frequency Stability with Variation in Supply Voltage
RULE PART NUMBER: 2.1055 (d)(1), 90.213 (a)
RSS-Gen 4.7, RSS-119 5.3

MINIMUM STANDARD: Shall not exceed $\pm 1.50 \mathrm{ppm}$.
TEST RESULTS: Meets minimum standard, see data on following page
TEST CONDITIONS: Standard Test Conditions, 25 C

TEST EQUIPMENT: Frequency Counter, HP 8901A Modulation Analyzer
DC Power Supply, HP 6653A
Digital Voltmeter, Instek GDM-8245
50-Ohm Attenuator, Bird Electronics Model 50-A-FFN-20 (20dB, 50W)
50-Ohm Attenuator, Bird Electronics Model 25-A-MFN-6 (6dB, 25W)

TEST SET-UP:

TEST SET-UP

Channel Frequency: $\quad 138.0250 \mathrm{MHz}$
Tolerance Requirements: $\pm 1.5 \mathrm{ppm}$
Highest Variation: $\quad-0.22 \mathrm{ppm}$
Power Output: 5 Watts

Input Voltage (Vdc)	Frequency	Frequency Error (MHz)	Frequency Error (ppm)
10	138.02499	-10	-0.07
13.3	138.02497	-30	-0.22
16	138.02499	-10	-0.07

Channel Frequency: $\quad 143.0125 \mathrm{MHz}$
Tolerance Requirements: $\pm 1.5 \mathrm{ppm}$
Highest Variation: $\quad-0.21 \mathrm{ppm}$
Power Output: 5 Watts

Input Voltage (Vdc)	Frequency	Frequency Error (MHz)	Frequency Error (Hpm)
10	143.01247	-30	-0.21
13.3	143.01248	-20	-0.14
16	143.01249	-10	-0.07

Channel Frequency: $\quad 150.0100 \mathrm{MHz}$
Tolerance Requirements: $\pm 1.5 \mathrm{ppm}$
Highest Variation: $\quad-0.20 \mathrm{ppm}$
Power Output: 5 Watts

Input Voltage (Vdc)	Frequency	Frequency Error (MHz)	Frequency Error (Hpm)
10	150.00997	-30	-0.20
13.3	150.00998	-20	-0.13
16	150.00998	-20	-0.13

Channel Frequency: $\quad 161.0100 \mathrm{MHz}$
Tolerance Requirements: $\pm 1.5 \mathrm{ppm}$
Highest Variation: $\quad 0.31$ ppm
Power Output: 5 Watts

Input Voltage (Vdc)	Frequency	Frequency Error (MHz)	Frequency Error (Hpm)
10	161.01003	30	0.19
13.3	161.01003	30	0.19
16	161.01005	50	0.31

Channel Frequency: $\quad 173.9750 \mathrm{MHz}$
Tolerance Requirements: $\pm 1.5 \mathrm{ppm}$
Highest Variation: $\quad 0.23 \mathrm{ppm}$
Power Output: 5 Watts

Input Voltage $($ Vdc $)$	Frequency	Frequency Error (MHz)	Frequency Error (ppm)
10	173.97503	30	0.17
13.3	173.97503	30	0.17
16	173.97504	40	0.23

NAME OF TEST: Frequency Stability with Variation in Ambient Temperature
RULE PART NUMBER: 2.1055 (a) (b), 90.213 (a)
RSS-Gen 4.7, RSS-119 5.3
MINIMUM STANDARD: Shall not exceed $\pm 1.50 \mathrm{ppm}$ from test frequency
TEST RESULTS: Meets minimum standard, see data on following page
TEST CONDITIONS: Standard Test Conditions
TEST EQUIPMENT: Frequency Counter, 8901A Modulation Analyzer
DC Power Supply, HP 6653A
Digital Voltmeter, Instek GDM-8245
50-Ohm Attenuator, Bird Electronics Model 50-A-FFN-20 (20dB, 50W)
50-Ohm Attenuator, Bird Electronics Model 25-A-MFN-6 (6dB, 25W)
Climate Chamber, Test Equity Half Cube Model 105

TEST SET-UP:

Channel Frequency:
Voltage \& Power Level:
Highest Variation:
138.02500 MHz
13.3 Volts @ 5 Watts 0.48 ppm

Temperature	Frequency Error	Frequency Error $($ Deg C)
-30	160	1.16
-20	120	0.87
-10	100	0.72
0	100	0.72
10	90	0.65
20	70	0.51
30	20	0.14
40	-40	-0.29
50	-60	-0.43
60	-50	-0.36

Channel Frequency:
Voltage \& Power Level:
Highest Variation:
138.02500 MHz
13.3 Volts @ 1.0 Watts
0.44 ppm

Temperature	Frequency Error	
$($ (Deg C)	(Hz)	Frequency Error (ppm)
-30	173	1.23
-20	110	0.80
-10	90	0.65
0	90	0.65
10	100	0.72
20	80	0.58
30	10	0.07
40	-30	-0.22
50	-60	-0.43
60	-40	-0.29

Channel Frequency:
Voltage \& Power Level:
Highest Variation:
143.01250 MHz
13.3 Volts @ 5 Watts
0.48 ppm

Temperature	Frequency Error	Frequency Error $(\mathrm{Deg} \mathrm{C})$
-30	170	1.27
-20	130	0.80
-10	100	0.67
0	100	0.73
10	100	0.73
20	60	0.53
30	30	-0.20
40	-40	-0.27
50	-70	-0.47
60	-40	-0.27

Channel Frequency:
Voltage \& Power Level:
Highest Variation:
143.01250 MHz
13.3 Volts @ 1.0 Watts
0.44 ppm

Temperature	Frequency Error	Frequency Error $(\mathrm{Deg} \mathrm{C})$
-30	170	1.19
-20	120	0.84
-10	90	0.63
0	110	0.77
10	100	0.70
20	60	0.42
30	10	0.07
40	-40	-0.28
50	-70	-0.49
60	-40	-0.28

Channel Frequency:	150.1000 MHz
Voltage \& Power Level:	13.3 Volts @ 5 Watts
Highest Variation:	0.48 ppm

Temperature	Frequency Error	
$($ Deg C)	(Hz)	Frequency Error (ppm)
-30	190	1.27
-20	120	0.80
-10	100	0.67
0	110	0.73
10	110	0.73
20	80	0.53
30	30	0.20
40	-40	-0.27
50	-70	-0.47
60	-40	-0.27

Channel Frequency:
Voltage \& Power Level:
Highest Variation:
151.01000 MHz
13.3 Volts @ 1.0 Watts
0.44 ppm

Temperature	Frequency Error	
$($ Deg C)	(Hz)	Frequency Error (ppm)
-30	170	1.13
-20	120	0.80
-10	100	0.67
0	110	0.73
10	100	0.67
20	70	0.47
30	10	0.07
40	-40	-0.27
50	-70	-0.47
60	-40	-0.27

Channel Frequency:
Voltage \& Power Level:
Highest Variation:
161.01000 MHz
13.3 Volts @ 5 Watts
0.48 ppm

Temperature	Frequency Error	Frequency Error $(\mathrm{Deg} \mathrm{C})$
-30	110	0.68
-20	40	0.25
-10	20	0.12
0	50	0.31
10	70	0.43
20	60	0.37
30	40	0.25
40	0	0
50	0	0
60	40	0.25

Channel Frequency:
Voltage \& Power Level:
Highest Variation:
161.01000 MHz
13.3 Volts @ 1.0 Watts
0.44 ppm

Temperature	Frequency Error	Frequency Error $(\mathrm{Deg} \mathrm{C})$
-30	110	.68
-20	40	.25
-10	10	0.06
0	50	0.31
10	70	0.43
20	60	0.37
30	30	0.19
40	-20	-0.12
50	0	0
60	50	0.31

Channel Frequency:
Voltage \& Power Level:
Highest Variation:
173.97500 MHz
13.3 Volts @ 5 Watts
0.48 ppm

Temperature	Frequency Error	Frequency Error $(\mathrm{Deg} \mathrm{C})$
-30	110	0.63
-20	40	0.23
-10	20	0.11
0	60	0.34
10	70	0.40
20	60	0.34
30	20	0.11
40	-10	-0.06
50	0	0
60	50	0.29

Channel Frequency:
Voltage \& Power Level:
Highest Variation:
173.97500 MHz
13.3 Volts @ 1.0 Watts
0.44 ppm

Temperature	Frequency Error	Frequency Error $(\mathrm{Deg} \mathrm{C})$
-30	$(\mathrm{~Hz})$	0.69
-20	30	0.17
-10	10	0.06
0	60	0.34
10	70	0.40
20	50	0.29
30	30	0.17
40	0	0
50	0	0
60	60	0.34

RULE PART NUMBER:
2.201, 2.202, 2.1033 (c)(14), 2.1049 (h), 2.1041;90.203(j)(3)

IC: RSS-Gen 4.6.1

Necessary Bandwidth Measururement

This radio modem uses digital modulation signals, passing through a linear $8^{\text {th }}$ order low-pass filter (Raise-Cosine alpha 1 approximation), to an FM transceiver. The necessary bandwidth calculation for this type of modulation (DRCMSK) is not covered by paragraphs (1), (2) or (3) from 2.202(c). Therefore, the approach outlined in (2.202(c)(4)) is applicable in this case.

The measurement explanations are provided in "Annex" (following pages)
Necessary Bandwidth Measurement:
Peak deviation $= \pm 2.26 \mathrm{kHz}$
Modulator signal bit rate 9600 bps,
$\mathrm{Bn}=8080 \mathrm{~Hz}$
The corresponding emission designator prefix for necessary bandwidth $=8 \mathrm{~K} 08$
**
Table 1 - Measurements results for the INTEGRATR unit, $1200 \mathrm{bps}, 4800 \mathrm{bps}, 9600 \mathrm{bps}$ and frequency deviations set to obtain specified values .

unit's software settings	measured data (kHz)		Emission designator
bit rate (data settings)	freq. dev	99% occupied BW	
1200	1.46	4.00	4 K 00
4800	0.75	3.20	3 K 20
4800	2.21	5.67	5 K 67
9600	2.26	8.08	8 K 08

**

Also, Spectrum Efficiency (90.203 (j)(3)) requirement: 4800 bits per second per 6.25 kHz of channel bandwidth. $4800 \mathrm{bps}=1 * 4800 \mathrm{bps}$ so it is efficient for 6.25 kHz channel $9600 \mathrm{bps}=2 * 4800 \mathrm{bps}$ so it is efficient for 12.5 kHz channel

ANNEX

Theory of Measurement

The way to define the Occupied Bandwidth is "the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission" (FCC 2.202), the mathematics are as follows:

$$
\begin{aligned}
& 0.005 * \mathrm{TP}=\mathrm{P}_{(\mathrm{fl} 1}=\int_{0}^{\mathrm{f} 1} \mathrm{PSD}_{(\mathrm{f})} \mathrm{df} \\
& 0.995 * \mathrm{TP}=\mathrm{P}_{(\mathrm{f} 2)}=\int_{0}^{\mathrm{f} 2} \mathrm{PSD}_{(\mathrm{f})} \mathrm{df}
\end{aligned}
$$

$O B W=f 2-f 1$
where TP (total mean power) is

$$
\mathrm{TP}=\int_{0}^{+\infty} \operatorname{PSD}_{(\mathrm{f})} \mathrm{df}=(1 / \mathrm{t}) \int_{-\infty}^{+\infty}\left|\mathrm{z}_{(\mathrm{t})}\right|^{2} \mathrm{dt}
$$

and PSD (power spectral distribution) is

$$
\mathrm{PSD}_{(\mathrm{f})}=\left|\mathrm{Z}_{(\mathrm{f})}\right|^{2}+\left|\mathrm{Z}_{(-\mathrm{f})}\right|^{2} \quad 0 \leq \mathrm{f}<4
$$

and expresses the positive frequency representation of the transmitter output power for $\mathrm{z}(\mathrm{t})$ signal.
By applying these mathematics to the measurements, it is possible to measure the Occupied Bandwidth using the RF signal's trace provided by a digital spectrum analyzer and processed further by computational methods.

The Occupied Bandwidth measurement is in two parts relatively independent of each other. The first gives the RF spectrum profile, and the second calculates the frequency limits and they result in the Occupied bandwidth. While the first involves RF measurement instrumentation, the second is strictly a computational part related to measured trace.

Getting an equally-sampled RF power spectrum profile requires a Digital Spectrum Analyzer. In addition to the instrument's usual requirements, a special attention must be paid to the analyzer's span (bandwidth to be investigated).

This bandwidth must be large enough to contain all the power spectral components created by the transmitter. The frequency step, where the samples are picked, is directly dependent on the span's value.
$\Delta f=$ span/number of points displayed
The frequency resolution will determine the measurement accuracy. So for greater accuracy, less bandwidth will give better values because of the constant number of points that can be displayed. Taking into account the purpose of transmitter, an acceptable balance can be set. For channel-limited transmitters all the power spectral components can be found in main channel and a number of adjacent channels, upper and lower, from the main channel. The relation between these two requirements, number of channels and accuracy, is depicted by:

$$
\mathrm{a}(\%) \cong(2 * \mathrm{k} * \mathrm{n} / \mathrm{N}) * 100
$$

where a is desired accuracy, in percentage units, n is the number of channels in span, including main channel, N is displayed number of points and $\mathrm{k}=$ (authorized bandwidth) /channel bandwidth.
For usual spectrum analyzers $\mathrm{N}=500$, $\mathrm{k}=0.8$ (6) for 6.25 kHz channel transmitters or $\mathrm{k}=0.9(11.25 / 12.5)$ for 12.5 kHz channel transmitters, so $\mathrm{a} \cong \mathrm{n} / 2.5(\%)$ can estimate the expected precision for measurement.

All other requirements for spectrum analyzer are the same as they are for mask compliance determination.

The second part has computational requirements related to the trace's values processing.
The following operations must be performed over the trace's (x, y) points:

1. convert y value in dBm (or the analyzer's display y units) units power sample
2. convert y value in W units power sample,
3. add to total power every power sample and get total power value (W units for total power)
4. set low level $(0.5 \% *$ total power $)$
5. detect x 1 -sample which pass low level (convert f 1 integrals to sample summing)
6. convert (x1-1)-sample value in frequency units (the x-sample is already in occupied bandwidth),
7. store first frequency correspondent to (x1-1)-sample
8. set up level ($99.5 \% *$ total power)
9. detect x 2 -sample which pass up level (convert f2 integrals to sample summing)
10. convert (x 2)-sample value in frequency units (the x -sample is now out of occupied bandwidth),
11. store second frequency correspondent to (x2)-sample
12. read the frequency difference, this is Occupied Bandwidth, and display the result.

Standard calculation precision is all that is required. The main error factor being the y display resolution is covering calculation precision.

The absolute error for this measurement is $-0 /+2 *)$. It is not possible to decrease span bandwidth under 2 channels bandwidth because this will affect the significance of result by cutting off the power's spectral distribution edges.

Measurement Set-Up

For the above requirements, the occupied bandwidth of a transmitter was measured using an HP 8563E Spectrum Analyzer. A spectrum analyzer having adequate macrofunction to perform computational part. The number of power spectrum samples (N) is 500 . Because in test results frequency deviation was also a parameter, measurement instruments were completed with an IFR COM-120 B for frequency deviation determination.

The measurement set-up is:

Random data generator and transceiver loader (software)		Test unit	

The HP 8563E Spectrum Analyzer's parameters are adjusted as follow:
-total span is adjusted at 30 kHz for 6.25 kHz channel and 50 kHz for 12.5 kHz channel.
-RBW is set to 100 Hz , this is better than 1% of total span bandwidth.
-video filter is set to 100 Hz ;
-all other parameter of the instrument are automatically adjusted to obtain calibrated measurements (sweep time $3.05 \mathrm{~s} 6.25 \mathrm{kHz}, 5.08 \mathrm{~s}$ for 12.5 kHz).
-central frequency and reference level are adjusted to the unmodulated carrier frequency and level.
The HP 8563E Spectrum Analyzer's Occupied Bandwidth macrofunction input parameters are:
-central frequency, same as above, the unmodulated carrier frequency.
-channel spacing, 6.25 kHz or 12.5 kHz according to the signal, -percentage of Occupied Bandwidth 99%.

The macro operations are:
-the trace is read;
-follow all the computational steps required.
Each sample is converted from dBm to mW and add to total power (tpow) variable. Then are computed the limits of 0.5% and 99.5% by using variable remaining percent (RemPer), and in same time are stored sample number where these two percentage meet. Then are assigned to the markers the correspondent frequencies of numbers.

- Occupied Bandwidth is then displayed as Delta mode marker (difference between markers).
-return to operational mode.
NOTE 1: The computational part could be performed on every device featured with data acquisition.
NOTE 2: An approximation of the occupied bandwidth calculation can be performed by measuring at the points at which the spectrum, measured with a spectrum analyzer of 100 Hz resolution bandwidth, is 25 dB down relative to the unmodulated carrier reference level.

NAME OF TEST:	Transmitter Occupied Bandwidth for Emission Designators 5K67F1D, 8K08F1D
RULE PART NUMBER:	$\begin{aligned} & \text { 2.202, } 90.209 \text { (b)(5), } 90.210(\mathrm{~d}), 2.1049 \text { (c) (1) } \\ & \text { IC: RSS-119 5.8.3 } \end{aligned}$
MINIMUM STANDARDS:	Mask D Sidebands and Spurious [Rule 90.210 (d), $\mathrm{P}=5$ Watts] Authorized Bandwidth $=11.25 \mathrm{kHz}$ [Rule 90.209(b) (5)] From Fo to 5.625 kHz , down 0 dB . Greater than 5.625 kHz to 12.5 kHz , down $7.27\left(\mathrm{f}_{\mathrm{d}}-2.88 \mathrm{kHz}\right) \mathrm{dB}$. Greater than 12.5 kHz , at least $50+10 \log _{10}(\mathrm{P})$ or 70 dB , whichever is the lesser of the attenuation. Attenuation $=0 \mathrm{~dB}$ at Fo to 5.625 kHz Attenuation $=20 \mathrm{~dB}$ at 5.625 kHz and 70 dB at 12.5 kHz Attenuation $=57 \mathrm{~dB}$ at $>12.5 \mathrm{kHz}$
TEST RESULTS:	Meets minimum standards (see data on following page)
TEST CONDITIONS:	Standard Test Conditions, 25 C RF Power Level = 1 Watt and 5 Watts Voltage $=13.3 \mathrm{VDC}$
TEST PROCEDURE:	TIA/EIA - 603-C
TEST EQUIPMENT:	50-Ohm Attenuator, Bird Electronics Model 50-A-FFN-20 (20dB, 50W) 50-Ohm Attenuator, Bird Electronics Model 25-A-MFN-6 (6dB, 25W) DC Power Supply, Hewlett Packard Model 6653A Spectrum Analyzer, Hewlett Packard Model HP8563E Modulation Analyzer, Hewlett Packard Model HP8901A

TEST SET-UP:

MODULATION SOURCE DESCRIPTION:

The digital modulation type used in the IntegraTR is DRCMSK (Differential Raised Cosine Minimum Shift Keying). A modem using such type of modulation is divided into three main functional units in a CPLD chip:

1. Scrambler:

The scrambler converts the data stream to a new data stream more suitable for FM transmission.
-It randomizes the data to avoid predictable patterns: 00000000 , 111111111, 01010101, 00110011, etc.
-It keeps the power spectrum more compact by avoiding sequences like $01010101 \ldots$
The scrambler is made with a serial shift register and 2 exclusive OR gates which implement the polynomial form $X^{\wedge} 7+X^{\wedge} 5-1$. For the receiver side, a similar circuit performs the descrambling function to decode the received scrambled data.
2. Differential encoder:

After data is scrambled, we encode the data with a differential encoder. The differential encoder XOR's the current input bit with the previous bit. The differential encoder is used to make the modem insensitive to audio polarity inversion of the FM radio system.
3. Waveshape generator:

The waveshape generator converts the processed data bits (scrambled and differentially encoded for DRCMSK) to the DRCMSK audio signal. This audio signal is passed through a low-pass filter before modulating the RF transmitter.

TRANSMISSION PREAMBLE:

Each data transmission begins by sending a 15 millisecond preamble of sinewave (101010...). This is to synchronize the digital phase locked loop of the receiver modem.

TEST PATTERN GENERATOR:
A 30 s test pattern sequence is generated by the test software when the "test data" button is clicked. The highest resulting modulating frequency is (baud rate) $/ 2 \mathrm{~Hz}$. The following pseudo random test pattern was used to modulate the transmitter:
\#\#\#ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789\r\n,
In this pattern \#\#\# is replaced by the number of replays, $\backslash r$ is a carriage return and $\backslash n$ is a linefeed. The data is fed to the RS232 interface IC and processed as described above. The async-to-sync conversion, scrambler and differential encoder make the ABCDE... pattern appear random over the air.

NECESSARY BANDWIDTH (Bn) CALCULATION

See page 15 for Emission Designator determination.
The corresponding emission designator prefix for necessary bandwidth $=\mathbf{8 K 0 8}$
TEST DATA: Refer to the following graphs:

MASK: D for 5W
SPECTRUM FOR EMISSION 5K67F1D
OUTPUT POWER: 5 Watts
4800 bps
PEAK DEVIATION $=2210 \mathrm{~Hz}$
SPAN $=50 \mathrm{kHz}$

WIDE SPAN = 100 MHz
OUTPUT POWER: 5 Watts

ATTEN 30dB
RL 11. 5dBm

					\square							
						\mid						
	Manch	A mander	Ahwernty		Matherl			Hn-r\|l	l	l		

CENTER 138. MMHz SPAN 100. MMHz米RBW $10 \square \mathrm{kHz}$ UBW $10 \square \mathrm{kHz}$ SWP $50 . \square \mathrm{ms}$

ATTEN 30dB
RL 11.5 dBm

ATTEN 30dB RL 11.5dBm 10dB/

CENTER 150. 1MHz
*RBW 100 kHz UBW 100 kHz

SPAN 100.0 MHz SWP 50. Øms

ATTEN 30dB
RL 11.5dBm

ATTEN 30 dB
RL 11. 5 dBm
$10 \mathrm{~dB} /$

| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |

CENTER 174. MMHz
*RBW 1 ØดkHz UBW 1 $\boxed{\mathrm{kH}} \mathrm{kHz}$

SPAN 100. DMHz SWP 50. $\mathrm{\square ms}$

MASK: D for 1W
SPECTRUM FOR EMISSION 5K67F1D
OUTPUT POWER: 1 Watt
4800 bps
PEAK DEVIATION $=2210 \mathrm{~Hz}$
SPAN $=50 \mathrm{kHz}$

> ATTEN 20dB

RL 4.2dBm
10dB/

CENTER 161.01000MHz
籼W 100 Hz UBW 100 Hz
SPAN 50.00k Hz SWP 5.08sec

WIDE SPAN $=100 \mathrm{MHz}$
OUTPUT POWER: 1 Watt

ATTEN 20dB

CENTER 138. MMHz SPAN 100. MMHz *RBW $10 \square \mathrm{kHz}$ UBW $10 \square \mathrm{kHz}$ SWP 5 0 ms

ATTEN 20dB
RL 4.2dBm
10dB/

Mmphench	-	unath	(themen	7menter	Hamenth	4, mamer	(1)	Whamene	440.0.

CENTER 150.1MHz SPAN 100.0 MHz
粎BW 100 kHz UBW 100 kHz

ATTEN 20dB
RL 4.2dBm
10dB/

CENTER 174. MMHz
粎BW $10 \boxed{k} \mathrm{~Hz}$ UBW 100 kHz

SPAN 100.0 MHz SWP 50. Øms

MASK: D for 5W
SPECTRUM FOR EMISSION 8K08F1D
OUTPUT POWER: 5 Watts
9600 bps
PEAK DEVIATION $=2260 \mathrm{~Hz}$
SPAN $=50 \mathrm{kHz}$

WIDE SPAN $=100 \mathrm{MHz}$
OUTPUT POWER: 5 Watts

ATTEN 30dB

11. $5 \mathrm{dBm} 10 \mathrm{~dB} /$									
Lectur	Nrment	draver	Henerno	arend	menuremer	nome	lanmorn		momem

CENTER 138. $\mathrm{MMHz} \quad$ SPAN $1 \boxed{\square} . \square \mathrm{MHz}$ *RBW $10 \square \mathrm{kHz}$ UBW $1 \square \square \mathrm{kHz}$ SWP 5 0 ms

ATTEN 30dB
RL 11.5 dBm

ATTEN 30dB RL 11.5dBm 10dB/

CENTER 150. 1MHz
*RBW 100 kHz UBW 100 kHz

SPAN 100.0 MHz SWP 50. Øms

ATTEN 30 dB
RL 11.5dBm $10 \mathrm{~dB} /$

CENTER 174. MMHz
*RBW 1 ØดkHz UBW 1 $\boxed{\mathrm{kH}} \mathrm{kHz}$

SPAN 100. GMHz SWP 50. $\mathrm{\square ms}$

MASK: D for 1W
SPECTRUM FOR EMISSION 8K08F1D
OUTPUT POWER: 1 Watt
9600 bps
PEAK DEVIATION $=2260 \mathrm{~Hz}$
SPAN $=50 \mathrm{kHz}$

ATTEN 20dB
RL 4.2dBm
$10 \mathrm{~dB} /$

CENTER 161. $\boxed{10} 0 \square \mathrm{MHz}$
粮 $1 \boxed{\square} \mathrm{~Hz}$ UBW $1 \boxed{\square} \mathrm{~Hz}$
SPAN 50. 00 kHz SWP 5. 08 sec

WIDE SPAN $=100 \mathrm{MHz}$
OUTPUT POWER: 1 Watt

ATTEN 2ØdB
RL 4.2dBm

CENTER 138. MMHz SPAN $1 \boxed{\square} . \square \mathrm{MHz}$ *RBW $1 \square \square \mathrm{kHz}$ UBW $1 \square \square \mathrm{kHz}$ SWP $5 \square . \square \mathrm{ms}$

					1				
					\|				
	-								exwachorix

ATTEN 20dB
RL 4.2dBm
10dB/

Mmphench	-	unath	(themen	7menter	Hamenth	4, mamer	(1)	Whamene	440.0.

CENTER 150.1MHz SPAN 100.0 MHz
粎BW 100 kHz UBW 100 kHz

ATTEN 20dB
RL 4.2dBm
10dB/

CENTER 174. MMHz
粎BW $10 \boxed{k} \mathrm{~Hz}$ UBW 100 kHz

SPAN 100.0 MHz SWP 50. Øms

TEST SET-UP:

MASK: E for 5W
SPECTRUM FOR EMISSION 4K00F1D
OUTPUT POWER: 5 Watts
4800 bps
PEAK DEVIATION $=1460 \mathrm{~Hz}$
SPAN $=30 \mathrm{kHz}$

$$
\text { ATTEN } 30 \mathrm{~dB}
$$

RL 11. \quad d dm
$10 \mathrm{~dB} /$

CENTER 138. 02500 MHz粮 $1 \boxed{\square} \mathrm{~Hz}$ UBW $1 \boxed{\square} \mathrm{~Hz}$

$$
\text { ATTEN } 30 \mathrm{~dB}
$$

$$
\text { RL } 11 . \mathrm{DdBm}
$$

ATTEN 30dB
RL 11. $\square \mathrm{dBm}$
10dB/

CENTER 161.01000MHz
SPAN 50. 0 ak Hz SWP 5.08sec

WIDE SPAN = 100 MHz
OUTPUT POWER: 5 Watts

ATTEN 30dB

CENTER 138. $\mathrm{MMHz} \quad$ SPAN $1 \boxed{\square} . \square \mathrm{MHz}$ *RBW $10 \square \mathrm{kHz}$ UBW $1 \square \square \mathrm{kHz}$ SWP 5 0 ms

ATTEN 30dB
RL 11.5dBm

ATTEN 3ØdB RL 11.5dBm 10dB/

menues		Nomost	Aptoment		Therom	ymemper	Anotheren		Noder

CENTER 150. 1MHz
*RBW 100 kHz UBW 100 kHz

SPAN 100.0 MHz SWP 50. Øms

ATTEN 30dB
RL 11.5dBm

ATTEN 30dB
RL 11.5dBm
10dB/

CENTER 174. MMHz
粎BW $10 \boxed{k} \mathrm{~Hz}$ UBW 100 kHz

SPAN 100.0 MHz SWP 50. Øms

MASK: E for 1W
SPECTRUM FOR EMISSION 4K00F1D
OUTPUT POWER: 1 Watt
4800 bps
PEAK DEVIATION $=1460 \mathrm{~Hz}$
SPAN $=30 \mathrm{kHz}$
ATTEN 20dB

ATTEN 20dB
RL 4.2dBm 1 0 dB /

ATTEN 20dB
RL 4.2dBm 1日dB/

CENTER 161. 01000 MHz
籼W 1 Øด Hz UBW 100 Hz

SPAN 30. 00 kHz SWP 3.05sec

WIDE SPAN $=100 \mathrm{MHz}$
OUTPUT POWER: 1 Watt

ATTEN 20dB
RL 4.2 dBm

CENTER 138. $\quad \mathrm{MMHz}$
*RBW $10 \square \mathrm{kHz}$ UBW $1 \square \square \mathrm{kHz}$

SPAN 100. $\square \mathrm{MHz}$ SWP 50. \quad ms

ATTEN 20dB
RL 4.2dBm
10dB/

Mmphench	-	unath	(themen	7menter	Hamenth	4, mamer	(1)	Whamene	440.0.

CENTER 150.1MHz SPAN 100.0 MHz
粎BW 100 kHz UBW 100 kHz

ATTEN 20dB
RL 4.2dBm
10dB/

CENTER 174. MMHz
粎BW $10 \boxed{k} \mathrm{~Hz}$ UBW 100 kHz

SPAN 100.0 MHz SWP 50. Øms

MASK: E for 5W
SPECTRUM FOR EMISSION 3K20F1D
OUTPUT POWER: 5 Watts
1200 bps
PEAK DEVIATION $=750 \mathrm{~Hz}$
SPAN $=30 \mathrm{kHz}$

$$
\text { ATTEN } 30 \mathrm{~dB}
$$

RL 11. \quad d dm
$10 \mathrm{~dB} /$

CENTER 138. 02500 MHz
粮 $1 \boxed{\square} \mathrm{~Hz}$ UBW $1 \boxed{\square} \mathrm{~Hz}$

SPAN 30. $0 \square \mathrm{kHz}$
SWP 3. 05 sec

ATTEN 30dB
RL 11. $\square \mathrm{dBm}$ 1 0 dB /

CENTER 161. 01000 MHz
籼W 1 Øด Hz UBW 1 Ø0 Hz
SPAN 30. 00 kHz
SWP 3.05sec

WIDE SPAN $=100 \mathrm{MHz}$
OUTPUT POWER: 5 Watts

ATTEN 30dB
RL 11.5 dBm

ATTEN 30dB
RL 11.5 dBm

ATTEN 30dB RL 11.5dBm 10dB/

CENTER 150. 1MHz
*RBW 100 kHz UBW 100 kHz

SPAN 100.0 MHz SWP 50. Øms

ATTEN 30dB
RL 11.5dBm 10dB/

CENTER 174. MMHz
粎BW $10 \boxed{k} \mathrm{~Hz}$ UBW 100 kHz

SPAN 100.0 MHz SWP 50. Øms

MASK: E for 1W
SPECTRUM FOR EMISSION 3K20F1D
OUTPUT POWER: 1 Watt
1200 bps
PEAK DEVIATION $=750 \mathrm{~Hz}$
SPAN $=30 \mathrm{kHz}$

ATTEN 20dB

RL 4.2dBm 1 DdB^{2} /

CENTER 138. 02500 MHz䊉W $1 \boxed{\square} \mathrm{~Hz}$ UBW $1 \boxed{\square} \mathrm{~Hz}$

$$
\begin{aligned}
& \text { SPAN } 30.0 \square k H z \\
& \text { SWP } 3.05 \mathrm{sec}
\end{aligned}
$$

$$
\text { fATTEN } 20 \mathrm{~dB}
$$

RE 4.2 dBm 1 $0 \mathrm{~dB} /$

CENTER 143. 01250 MHz
*RB $1 \boxed{\square} \mathrm{~Hz}$ UBW $1 \boxed{\square} \mathrm{~Hz}$
SPAN $30 . \square \square \mathrm{kHz}$
SWP 3. 05 sec

ATTEN 20dB
RL 4.2dBm 1日dB/

CENTER 161.01000MHz
籼W 1 Øด Hz UBW 1 Ø0 Hz
SPAN 30. 00 kHz SWP 3.05sec

WIDE SPAN $=100 \mathrm{MHz}$
OUTPUT POWER: 1 Watt

ATTEN 20dB
RL 4.2dBm
10dB/

Mmphench	-	unath	(themen	7menter	Hamenth	4, mamer	(1)	Whamene	440.0.

CENTER 150.1MHz SPAN 100.0 MHz
粎BW 100 kHz UBW 100 kHz

ATTEN 20dB
RL 4.2dBm
10dB/

CENTER 174. MMHz
粎BW $10 \boxed{k} \mathrm{~Hz}$ UBW 100 kHz

SPAN 100.0 MHz SWP 50. Øms

NAME OF TEST: Field Strength of Spurious Radiation

RULE PART NUMBER:

MINIMUM STANDARDS:

TEST RESULTS:
TEST CONDITIONS:

TEST PROCEDURE:
TEST EQUIPMENT:
2.1053, $90.210(\mathrm{e}, 3)(\mathrm{d}, 3)$

IC: RSS-119 5.8.4, 5.8.3

For 5 Watts: $50+10 \log _{10}(5$ Watts $)=-57.0 \mathrm{dBc}$ or -65 dBc , whichever is the lesser attenuation.

For 1 Watt: $50+10 \log _{10}(1$ Watt $)=-50.0 \mathrm{dBc}$ or -70 dBc , whichever is the lesser attenuation.

Meets minimum standards (see data on following page)
Standard Test Conditions, 25 C
RF Power Level $=1$ Watt and 5 Watts
Voltage $=13 \mathrm{VDC}$
TIA/EIA - 603-C
Waveguide Horn Antenna, EMCO Model 3115
Waveguide Horn Antenna, Electro-Metrics EM-6961
Bilog Antenna, Chase Model CBL6111B
Dipole Antenna, Electro-Metrics Model EM-6924
Power Supply, Model Instek GPS-3303
Spectrum Analyzer, Model HP-8563E
Reference Generator, Agilent Model E82570
Power Meter, Model HP 437B
50-Ohm Attenuator, Bird Electronics 50-A-FFN-20 (20dB, 50W)
MEASUREMENT PROCEDURE: Measurements were made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier.

TEST SET-UP:

Integra

TR

Freqency: Power:	$\begin{array}{r} 138.025 \\ 5 \\ 37.0 \\ \hline \end{array}$	MHz		$\begin{array}{cc}\text { Spec }= & -57.0 \\ \text { Highest } & \\ \text { Spur }= & -85.0\end{array}$		dBc dBc
Spurious Frequency (MHz)	Polarization (Horz/Vert)	Spurious Level (dBm)	Substitution Generator (dBm)	Cable Loss (dB)	Antenna Gain (dBd)	Spurious Attenuation dBc
276.05	HV	-91.2	-67.7	1.67	-0.47	-106.8
		-97.5	-73.5	1.67	-0.47	-112.6
414.075	HV	-88.8	-51.8	2.17	-0.46	-91.4
		-81.8	-55.2	2.17	-0.46	-94.8
552.1	HV	-84.2	-55.3	2.83	-0.49	-95.6
		-82.0	-44.7	2.83	-0.49	-85.0
690.125	HV	-91.0	-53.0	3.17	-0.51	-93.7
		-94.3	-61.7	3.17	-0.51	-102.3
828.15	HV	-106.3	-69.6	3.50	-0.47	-110.6
		-106.2	-67.9	3.50	-0.47	-108.8
966.175	HV	-107.3	-69.1	3.67	-0.54	-110.3
		-107.7	-64.0	3.67	-0.54	-105.2
1104.2	HV	-108.2	-73.7	4.00	2.15	-112.5
		-110.7	-72.0	4.00	2.15	-110.8
1242.225	HV	-99.8	-62.1	4.17	2.15	-101.1
		-104.0	-67.8	4.17	2.15	-106.8
1380.25	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	-108.0	-70.0	4.83	2.15	-109.6
		-110.8	-72.4	4.83	2.15	-112.1

Integra
TR

Integra

TR

Freqency: Power:	$\begin{array}{r} 173.975 \\ 5 \\ 37.0 \\ \hline \end{array}$	MHz		Spec $=$ -57.0 Highest		dBc dBc
Spurious Frequency (MHz)	Polarization (Horz/Vert)	Spurious Level (dBm)	Substitution Generator (dBm)	Cable Loss (dB)	Antenna Gain (dBd)	Spurious Attenuation dBc
347.95	H	-60.2	-29.5	2.00	-0.52	-69.0
	V	-57.3	-25.8	2.00	-0.52	-65.3
521.925	H	-81.5	-53.3	2.33	-0.50	-93.1
	V	-72.7	-39.8	2.33	-0.50	-79.7
695.9	H	-95.8	-57.0	2.67	-0.50	-97.2
	V	-94.8	-62.3	2.67	-0.50	-102.5
869.875	H	-81.8	-47.5	3.00	-0.46	-87.9
	V	-75.5	-32.0	3.00	-0.46	-72.4
1043.85	H	-109.2	-72.7	3.50	2.55	-110.6
	V	-107.5	-72.3	3.50	2.55	-110.2
1217.825	H	-108.3	-71.9	3.83	4.73	-108.0
	V	-107.5	-71.5	3.83	4.73	-107.6
1391.8	H	-108.3	-70.4	4.17	4.73	-106.9
	V	-107.5	-68.5	4.17	4.73	-104.9
1565.775	H	-108.3	-69.8	4.33	4.03	-107.1
	V	-107.5	-70.3	4.33	4.03	-107.6
1739.75	H	-108.3	-69.4	5.00	3.09	-108.3
	V	-107.5	-60.5	5.00	3.09	-99.4

Freqency: Power:	$\begin{array}{r} 173.975 \\ 1 \\ 30.0 \\ \hline \end{array}$	MHz		Spec = Highest Spur =	-50.0 -57.5	dBc dBc
Spurious Frequency (MHz)	Polarization (Horz/Vert)	Spurious Level (dBm)	Substitution Generator (dBm)	Cable Loss (dB)	Antenna Gain (dBd)	Spurious Attenuation \qquad dBc
347.95	H	-61.8	-31.2	2.00	-0.52	-63.7
	V	-56.5	-25.0	2.00	-0.52	-57.5
521.925	H	-81.7	-53.5	2.33	-0.50	-86.3
	V	-79.0	-46.2	2.33	-0.50	-79.0
695.9	H	-96.0	-57.2	2.67	-0.50	-90.3
	V	-99.5	-67.0	2.67	-0.50	-100.2
869.875	H	-80.3	-46.0	3.00	-0.46	-79.5
	V	-78.0	-34.5	3.00	-0.46	-68.0
1043.85	H	-108.3	-71.8	3.50	2.55	-102.7
	V	-107.5	-72.3	3.50	2.55	-103.3
1217.825	H	-108.3	-71.9	3.83	4.73	-101.0
	V	-107.5	-71.5	3.83	4.73	-100.6
1391.8	H	-108.3	-70.4	4.17	4.73	-99.9
	V	-107.5	-68.5	4.17	4.73	-97.9
1565.775	H	-108.3	-69.8	4.33	4.03	-100.1
	V	-107.5	-70.3	4.33	4.03	-100.6
1739.75	H	-108.3	-69.4	5.00	3.09	-101.3
	V	-107.5	-60.5	5.00	3.09	-92.4

Equipment Calibration Information

Equipment	Serial Number	Cal Date	Cal Due
HP 8563E Spectrum Analyzer	3221 A00149	$4 / 15 / 2010$	$4 / 15 / 2012$
Agilent E8257D Signal Generator	MY44320507	$4 / 20 / 2010$	$4 / 20 / 2012$
HP 8901A Modulation Analyzer	2950 A05551	$4 / 12 / 2010$	$4 / 12 / 2012$
HP 437B Power Meter	$3125 U 13882$	$4 / 12 / 2010$	$4 / 12 / 2012$

Instruments have been calibrated using standards with accuracies traceable to NIST standards.

