RF Exposure Compliance Requirements Integra-TR Telemetry Radio Modem

FCC Rule: 1.1307, 1.1310, 2.1091 (b) (d), 2.1093

IC Rule: RSS-102 Section 4.2

Description of Compliance:

The Integra-TR will be professionally installed in the SCADA (Supervisory Control And Data Acquisition) market and will be mounted with a fixed RTU (Remote Terminal Unit). A minimum separation distance listed in the table below must be maintained between the radiating structure and any person to classify as a mobile under FCC MPE regulations.

Antenna Gain vs. Recommended Safety Distance

	Antenna Gain		
	5 dBi	10 dBi	15 dBi
Min Safety Distance (max power)	.79 m	1.41 m	2.51 m

Note: It is the responsibility of the user to guarantee compliance with the FCC MPE regulations when operating this device in a way other than described above.

The calculation for the more stringent specification, a General Population/Uncontrolled Mobile device is shown below:

RF Limits for Devices used by the General Public

Frequency Range (MHz)	Electric Field (V/M rms)	Magnetic Field (A/m rms)	Power Density (W/m ²)	Time Average (min)
0.003-1	280	2.19	-	6
1-10	280 / f	2.19 / f	-	6
10-30	28	2.19 / f	-	6
30-300	28	0.073	2*	6
300-1 500	1.585 f ^{0.5}	0.0042 f ^{0.5}	f / 150	6
1 500-15 000	61.4	0.163	10	6
15 000-150 000	61.4	0.163	10	616 000 / f ^{1.2}
150 000-300 000	0.158 f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 / f ^{1.2}

Environmental Specification: 2W/m²

 $S = (PG)/(4\pi R^2)$ (OET Bulletin 65)

Where:

S = Power Density (mW/cm²)

P = Power input to the antenna (mW)

G = Power Gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna (cm)

Distance Calculation for 5dBi antenna:

 $\mathbf{R} = \sqrt{(\mathbf{PG})/(4\pi \mathbf{S}))}$

Typical Antenna Gain: 5 dBi $10^{(5 \text{ dBi}/10)} = 3.16$ Power input to the Antenna: $37 \text{dBm} = 10^{(37 \text{dBm}/10)} = 5 \text{ W}$

 $R = \sqrt{((5W^*3.16)/(4\pi^*2 \text{ W/m}^2))} = .79 \text{ m}$ (Minimum Distance)

Distance Calculation for 10dBi antenna:

 $\mathbf{R} = \sqrt{(\mathbf{PG})/(4\pi \mathbf{S}))}$

Typical Antenna Gain: 10.0 dBi $10^{(10.0 \text{ dBi}/10)} = 10.0$ Power input to the Antenna: $37 \text{dBm} = 10^{(37 \text{dBm}/10)} = 5 \text{ W}$

 $R = \sqrt{((5W*10.0)/(4\pi*2 W/m^2))} = 1.41 m$ (Minimum Distance)

Distance Calculation for 15dBi antenna:

 $\mathbf{R} = \sqrt{(\mathbf{PG})/(4\pi \mathbf{S}))}$

Typical Antenna Gain: 15.0 dBi $10^{(15.0 \text{ dBi}/10)} = 31.6$ Power input to the Antenna: $37 \text{dBm} = 10^{(37 \text{dBm}/10)} = 5 \text{ W}$

 $R = \sqrt{((5W*31.6)/(4\pi*2 W/m^2))} = 2.51 m$ (Minimum Distance)